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COHOMOLOGY OF SOME
NON-SELFADJOINT OPERATOR ALGEBRAS

JENS P. NIELSEN

In this paper we prove that a certain class of non-selfadjoint operator
algebras have isomorphic continuous and normal cohomology for dual normal
coefficient modules. We use this result to show that nest algebras have trivial
cohomology groups for some dual normal coefficient modules.

The cohomological notation will be similar to that of [7]. The bar — will
always denote ultraweak closure. Throughout the paper H is a fixed Hilbert
space, B(H) the algebra of all bounded operators on H, and I will denote the
identity operator on H. If #"< B(H) is an operator algebra 4", will denote
the algebra of compact operators in A". If 4" contains I and A" = A" then we
will call A" a hypercompact algebra. (We see that 4" is hypercompact if and
only if A" is ultraweakly closed and I € A" .) In the following A" will be a
fixed hypercompact algebra of operators on H. If &, € H, £®n will denote the
rank one operator in B(H) defined by (®@n(y)=(y| &), y € H.

In this section we prove that if g is a n-cocycle from 4" into any dual normal
A -module then g is cohomologous to a normal n-cocycle. This is then used to
prove the existence of an isomorphism between the nth normal and continuous
cohomology groups.

Let # be a dual normal A"-module with predual .#,, & the set of singular
states on B(H) (see [8] for details), and, for each fe &, {n,H,} the
GNS-construction with respect to f of B(H). Let #=3, ,®H, and
@: B(H) — B(s#) be the *-homomorphism defined by

‘D(X)<Z @éf) = Z @nf(X)§f~

fe& Je&

Let K denote the Hilbert space # @ H. Then we can regard the operators on K
as 2 x 2 matrices in the usual way. We now define n: B(H) — B(K) by
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n(X) = (%X’ ;) X e B(H) .

It is obvious that = is a faithful *-representation.

LeEMMA 1. Let ¢ be a bounded functional on w(A"). Then there exists an
ultraweakly continuous functional y on B(K) such that ¢ =y| , and |¥| = ¢@].

ProoF. p=¢om is a bounded functional on A" and ||@| =]l as = is
isometric. Extend @ to a functional ¢ on B(H) with ||¢|=]|¢|. We define
¥, € n(B(H))* by ¥, (n(X))=¢(X), X € B(H). Again, as = is an isometry [/, ||
=|¢|. By [8], »=f+ g where f'is singular (i.e. a linear combination of singular
states) and g € B(H),, so easy but tedious calculations show that y, is
ultraweakly continuous on =(B(H)). Extending ¢, to an ultraweakly
continuous functional § on B(K) with ||{/|| =] ¢]| it is clear that i extends ¢.

Let €#=n(A")" Nn(A")~". The projection

0 0
P=<0 I)eB(K)

is in €. It is obvious that P commutes with n(.4")". As A" is hypercompact
there exists a net (X,),. 4 in A 4 such that X, — I ultraweakly. For fe & we
have f(X,)=0, A € A. Hence (ultraweak convergence)

_(o(X) 0N _ (0 0 (0 0)_
= (7 ) =6 ) )=

so also P € n(A)". n(A")” P consists of all operators of the form

0 0
X e .
(o x)xe

We define

0
o: t(AN)"P — A by <0 ?{)—»X.

It is clear that « is an isometric algebraic isomorphism, is ultraweakly
continuous, and a~': & — n(A")” P satisfies the same conditions.

LeEMMA 2. Let B< AN be a norm closed subalgebra, n=1, and let
0 € ZE(N ', M) such that g vanishes when any of its arguments lie in #B. Then
there exists & e Cc"~ Y (N, M) such that ¢g—AE € ZW(N, M) and ¢— A
vanishes when any of its arguments lie in .
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Proor. If A en(A)” then a(AP)e A, so we can define module
multiplications on n(A)” x4 and M xn(AN)" by A.m=a(AP)m, m.A
=ma(AP), m € #. In this way # becomes a dual n(4")”-module. We define
01 € CL(r(N), #) by

0,(4,,...,A4,) = o(a(4,P),...,a(A,P), A,,...,A,€mn(N).

As o is a homomorphism and P € ¥, it follows that ¢, € Z¢(n(A"), #). Let
we M, Ajen(AN), 1=j<n. For 1j<n define ¢; € n(A)* by

0;j(A) = wl(e,(Ay,.. ., Aj_, A, Ajiy,. . Ay .

By Lemma 1 each ¢ is the restriction of an ultraweakly continuous functional
on B(K), so in particular is ultraweakly continuous. This shows that g, is
separately ultraweak-weak* continuous. As in [7, section 5], (but simpler in
this special case) we see that g, extends to a bounded n-linear mapping
01:(N)" x...xn(N)" — A which is also separately ultraweak-weak*
continuous, that is, ¢, € Cly(n (A7), .#). An easy continuity argument shows
that ¢, € Z}y(n(A")", #) and that g, vanishes if any of its arguments lie in
n(4). By [7, Lemma 6.2] we see that there exists &, € Cly ! (n(A")~, #) such
that g, —4¢&, vanishes when any of its arguments lie in either n(%) or the
subspace spanned by P and I. We now define ¢ € C& (A, #) by

é(a(AIP)V . "a(An—lP)) = él(Al,' . -9An—l)
A,...,A,_, € i(A). Exactly as in [7, Lemma 6.3], o — 4¢ € Z}(A", #) and ¢
— A& vanishes when any of its arguments lie in 4.

THEOREM 1. HYy(AN ', MY HE(AN, M), n2 1.

ProOF. As in [7, Lemma 6.5] we see that

(1) (N, M) N Z% (N, M) = By(N, M) .

The class ¢ + By (A", #) € H}y (A, #) is contained in the class ¢+ BE(AN, #A),
so define a natural homomorphism

E: Hiy(N, M) — HEN, M)

by Z: o+ By(N, M) — @+ BL(AN, #). From (1) we see that Z is injective, and
by Lemma 2 (with £2={0}) E is surjective.

Now 2=A4"NA* is an ultraweakly closed selfadjoint operator algebra
containing I, that is, 2 is a von Neumann algebra. Call 2 the diagonal of 4.
Define
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DZE (N, M) = {0 € ZE(N, M) | o vanishes when any of its arguments lie in
9},

and similarly for DZ%, (A, #).

THEOREM 2. Assume that the diagonal @ of A is of class F (in the sense of
[7, p. 4210). If o € Z&(N, M) then there exists & € CE (N, M) such that
o—A4& € DZy (N, M).

Proor. There exists an amenable subgroup ¥~ of unitary operators in 2
such that the C*-algebra # generated by ¥” is ultraweakly dense in 2. By [7],
Theorem 4.3 there exists &, € C& (A, #) such that ¢ — A¢, vanishes when
any of its arguments lie in #. Lemma 2 gives &, € C& (A, .#) such that
(@—A4¢&)—AE, € ZyW (N, M) and (9 —AE)— A&, vanishes when any of its
arguments lie in 4. By ultraweak continuity (9 —4&,)— A&, will vanish when
any of its arguments lie in #~ =9%. Thus setting (=&, +¢&, we have
o—A¢ € DZy (N, M).

All nest algebras (in the sense of [6]) are hypercompact, [3], and have
diagonals of class #. In fact the diagonal of a nest algebra is a type I von
Neumann algebra.

Let #”< B(H) be a nest algebra and .# an ultraweakly closed 4"-module in
B(H) containing .4#"; that is, .# is an ultraweakly closed subspace,
NS MHB(H)and AM,MA € # when A € /', M e #. It is clear that .# is
a dual normal A"-module, the weak* topology on .# coinciding with the

ultraweak topology. The following theorem extends [2, Corollary 3.11] which
proves the case n=1.

THEOREM 3. HY (A, M)=HW (N, M)={0}, neN.
PRroOF. If 6 € Z%(AN", #) then Theorem 2 gives ¢ € C&~ ' (A, #) such that ¢
=0—A¢ € DZ}Y (A, #). For each P € Lat (A") define
P_ =sup{Q: Qelat(#) QsP}.

Let P € Lat (#"), P_=1, and choose a fixed £ € (I—P_)H, ||| =1. For all
neH,EQPn e A, so define a (n— 1)-linear mapping Yp: /" X A X ... X N
— B(H) by

Yp(Ay,. . A = @Ay, A,y EOPA)C,
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Ay,.. A, €N, neH (compare with [4, Theorem 3.1]). In fact
|//p(A1, .,A,_1) e N, for if Q € Lat (A") then by [7, Lemma 4.1],

Vp(Ay,. .., 4,-1)0n = e(Ay,. .., Ay, EQPON)E
= ¢(Ay,. .., 4,-1, Q(ERPON))E
e(Ay,. .., A,-1Q, EQPON)S
= 0(4,...,04,-,0, E®PQy) =
= 00(Q4,0,,...,04,-,0, (QPON)E =
= Qo(Ay,. .., A,-1, E®PON)
= QyYp(4y,...,A,-,)On .

I

It is clear that

IWp(Ay,. .o Ag-nll < llell 1Al - 1A, LIP I inll
SO
) Ype CE AN, M), el < lell -
Now
Mp(Ay,...,A)Pn = A0(Ay. .., A, EQPY)E+
+12: (— oAy . s AjA 1y -y Ay EQPYE+

+(—"1)nQ(A19 n 1 €®PA P")é
= [4,0(4,,. .., A4, QPN+

n-1
+ Z (_I)JQ(AI’- . ~aAjAj+1;- . -yAn—ly €®P’1)é+
j=1

+(=1D'e(4y,. ... 4,1, A,(EQP)C +

+(= 1)"“2(141,- c AN (C®PE]+ (= 1)"e(4y,. . ., A)Py
= 4¢(Ay,. . ., Ap ER®P)E+ (—1)0(Ay,. .., 4,)Pn
= (=De(4,,...,4,)Pn,

since ¢ is a cocycle. Thus we have
3) Ayp(Ay,...,A)P = (—1)"0(Ay,..., A)P .

If I_=1I then y; is defined as above, and from (3), 4y;= (— 1)"g, and hence
=4(p+(=1)y)).
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Now assume I_=1I. Then #={P: P e Lat(A4"), P+I} with the natural
direction is a net converging ultraweakly to I. We identify C% (A", #) with
the dual space of /'@N'® ... RN @ .4 ,, the n-fold projective tensor product
of (n—1) copies of A" and one copy of .# .. As the net (Y p)p.» is bounded (by
llell) there exists a weak* convergent subnet (Yp;)ic4 With limit
Y e C& (AN, M). In particular for A,,...,A, € N Yp,y(Ay,...,Au_y)
— Y(A4;,...,A,-,) ultraweakly, and so

4) AYpy(Ay,. .., A,) = AY(Ay,.. ., A,) ultraweakly .

The set Hy=Up.» P(H) is norm dense in H. It is easily seen from (4) that
(Appy(Ay,. ., ADP(DXo 1 yo) = (AY(Ay,. . ., AXo | Yo)

whenever x,,y, € H,. The argument of [5, Lemma 4.3] gives

(5) AYpiy(Ay,. .., AYP(A) — AY(Ay,.. ., A,) ultraweakly

Ay .., A, € A The net (P(4)),. 4 converges ultraweakly to I so combining (3)
and (5) gives ¢=(—1)"4y, and hence a=A4(p + (—1)"}).

This shows HE (A, #)={0}. The rest of the theorem follows from Theorem
1.

Note that Theorem 3 shows that the hypothesis of [4 Theorem 2.1] are
satisfied by nest algebras.
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REMARK. Since the completion of this paper the author has received a
preprint “Cohomology and perturbations of nest algebras” by E. C. Lance, in
which the continuous case of theorem 3 was proven [by the same method].
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