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ALGEBRAS OF SPHERICAL FUNCTIONS
ASSOCIATED WITH COVARIANT SYSTEMS OVER
A COMPACT GROUP

MAGNUS B. LANDSTAD

Abstract.

If M is a C*-algebra, K a compact group and ¢: K — Aut(M) a
homomorphism, one can form the covariance algebra K x ;M. In this note we
show that the classification of the factor representations of K x ,M (in
particular the irreducible ones) can be reduced to the classification of all factor
(or irreducible) representations of the algebras M®B(X (D))¢®*2 (D e K)
which can be considered as generalizations of the algebras of spherical
functions defined by R. Godement for groups with a large compact subgroup.
As a corollary we get that if K is abelian then K x ,M is liminal or postliminal
if and only if M® has the same property.

1. Introduction.

One of the main objects of any representation theory is to classify the most
fundamental building blocks, for instance to find all irreducible or factor
representations of a *-algebra or a group. In the theory of representations of
groups this classification often can be done by a reduction process. For
instance if a locally compact group G has a closed normal subgroup N the
classification of the irreducible unitary representations of G (this set is called G)
can be reduced to the classification of N and certain projective representations
of some subgroups of G/N, c.f. [11]. This theory has later been extended to
more general systems, c.f. [5], [11], [13] and [16].

If the group G contains a “large” compact subgroup K, there is another
method of classifying G first studied by R. Godement in [6]. Here the
classification of G is reduced to that of determining K and to find all
irreducible representations of certain algebras of “spherical functions”. In this
article we shall try to extend this method to covariant systems over a compact
group.

Let M be a C*-algebra, K a compact group and ¢ a homomorphism of K
into the group Aut (M) of *-automorphisms of M such that the map k — g,(a)
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is norm-continuous for all a € M. Let L' (K, M) be all integrable functions from
K to M. With the following definitions L! (K, M) is a Banach*-algebra:

fg(x) = L S0, (g™ "x))dy
f*x) = o (f(x~1)*
(WAl =J ILf ()] dx .

K

Let A be the enveloping C*-algebra of L'(K, M) (cf. [3, Chap. 2.7]). U is
called the covariance algebra of the covariant system (M,g,K) and is also
denoted K x, M. These concepts were introduced by S. Doplicher, D. Kastler
and D. Robinson in [4] and they showed that there is a one-to-one
correspondance between non-degenerate *-representations T of U and pairs
(U, n) with U a continuous unitary representation of K, m a non-degenerate *-
representation of M such that = and U acts on the same Hilbert space and

(1) Un(@U,-+ = n(og(a)) for ke K, aeM.
In fact if (U, ) is given, then T is defined by

T, = jn(f(k))dek for fe L"(K,M).

The starting point in the Mackey-Takesaki theory is now to study the
representation 7 of M. m is not necessarily irreducible even if Tis and one looks
at n's decomposition into irreducible  representations. (This may not be
possible so one has to make certain assumptions about M). The group K acts
naturally on the set M of irreducible representations of M, and if this action is
“nice” it is possible to describe A by M and certain projective representations
of some subgroups of K.

We are instead going to look at the decomposition of U into irreducible
representations of K, and we shall classify all pairs (n, U) as above having a
given D € K as a subrepresentation of U.

For D € K, let Y be its character, i.e.

VYp(k) = dim (D)tr (D,-1) for ke K .
L'(K) can be embedded in M(L'(K,M)) = the algebra of multipliers of
L'(K, M) by defining
of(x) = L{ o (ke (f (k™ 'x))dk

Jo (x) = f o) f(xk~')dk, for ¢ € L'(K), fe L'(K,M), xe K .
K
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K can also be embedded in M(L'(K, M)) by

kf (x) = e(f(k™'x))
fk(x) = f(xk™Y) for fe L"(K,M), k, xe K .

Look at the two sided ideal

A(D) = closed linspan {fi)pg | f,g € L'(K, M)}

of L'(K, M). The importance of this ideal is seen from

LemMA 1. If Tis a non-degenerate *-representation of L' (K, M) and U and n
are the representations of K and M such that (1) holds, then a given D € K

occurs in U if and only if the restriction of T to the two-sided ideal A(D) is non-
zero.

Proor. Let Pp= [y p(k)U, dk, so Pp is a projection. Now D occurs in U if
and only if Pp=+0. Since T is non-degenerate Pp+0 if and only if there are f
and g in L'(K, M) with T,PpT, +0. Using that P,T, =T, . it follows that P,
+0 if and only if T(A(D))+0.

We can now describe the classification of all factor representations T of
L'(K, M) more accurately. It is proved in [13] (Example 6.7 and 6.8) that A(D)
and A4, (D)=ypL' (K, M)y, are strongly Morita equivalent in the terminology
of [14]. Since B(X (D))~ypL' (K)Yp is contained in the multiplier algebra of
A,(D), it follows that A,(D)=B(X(D))®L}(K,M). Here L}(K,M) is the
commutant of Y pL' (K)yp in A, (D), that is, L)(K, M) consists of all functions f
in L' (K, M) satisfying (2) and (3):

) ox(f(k~'xk)) = f(x) for almost all k,x € K,
3 Yof = 1.

So A(D) and L) (K, M) are strongly Morita equivalent. (We have here used the
following: If A4 is an algebra and its multiplier algebra M(A) contains a
subalgebra B isomorphic to a full matrixalgebra, then A=B®C where C
=ANBPB)

The algebra L)(K, M) is the analogue of the algebra L°(d) considered in § 10
of [6], justifying the title of this article.

We shall also prove that L) (K, M) is isomorphic to the algebra

B(D) = {ae M®B(X (D)) | (e,®adD,)(a)=a for all x € K} .

(D is the conjugate representation of D.)
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So the classification of irreducible representations of the covariant system
(M, ,K) has been reduced to the classification of K and the irreducible
representations of B(D) for different D € K. If K in particular is abelian, this
classification becomes very simple, then B(D)=~M¢® So the representation
theory of (M, g, K) is determined by the fixpoint algebra of M, and by K.

This article is a revised and updated version of [10] which originated during
the author’s stay at the University of Pennsylvania, and I want to thank
Professor J. M. G. Fell for introducing imprimitivity bimodules to me. I also
want to acknowledge partial support from NAVF, Norway.

2. The imprimitivity bimodule for a covariant system over a compact group.
We shall keep all definitions made in the introduction. In addition we make
the following conventions: If S is a representation, we let X (S) denote the
corresponding Hilbert space. If X is a Hilbert space, B(X) is the algebra of all
bounded operators on X and CC(X) is the subalgebra of all compact
operators. For a covariant system (M, g, K), M? denotes its fixpoint-algebra, i.e.

M ={aeM | 9.(@)=a for all x e K} .

If D is a continuous representation of K, adD is the map from K to
Aut B(X (D)) defined by

adD,(R) = D,RD,-» for x € K, R € B(X(D)).

Lemma 1 showed the importance of the ideal A(D). An application of the next
lemma will give a more detailed description of the relation between the
representations of L!'(K,M) and A(D). For C*-algebras this is essentially
Lemma 2.10.3 and Proposition 2.10.4 in [3].

LEMMA 2. Let A be a Banach *-algebra, J a closed self-adjoint two-sided ideal
in A. Then there is a bijective correspondance between non-degenerate factor
representations S of J and non-degenerate factor representations T of A with
T(J)={0}. If Tis given, S is the restriction of Tto J. If S is given, Tis defined by

4 T,(S¢) = Spé forae A, bel, Le X(S).

Furthermore, T(A)' =S8(J)’, so S and T are of the same type, and S is irreducible
if and only if Tis.

Proor. If Tis given, let S be the restriction of Tto J. Then the closure S(J)"
is a two-sided ideal in T(A)", so S(J)'=T(A)", S is non-degenerate, and S is
also a factor representation.

Conversely, suppose S is a non-degenerate *-representation of J (not
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necessarily a factor representation), and without loss of generality we may
assume that S has a cyclic vector £, On the dense subspace X,
={Sy¢o | b e J} we define T by

T,(Spép) = Suéy forae A, belJ.

Now,
I8a80ll® = (SarabCos o) < Su&oll S aeaploll
S S 08I IS Sl
< 1SuEol> 72 la*al (b1l 101> " for n=1,2,.. .,
)

[Saoll = llall IS0l  for all ae 4, be J.

Hence T, is well defined over X, and extends to a bounded operator over X (S).
Twill obviously be a non-degenerate *-representation of 4 and (4) will hold for
all ae A, be J, £ € X(S). Obviously S(J)'=T(A)". Conversely if R € S(JY,
ae A, beJ then

RTaSbéo = Rsabfo = Sabkéo = TasbRéo = TaRSbfo-

Thus RT,=T,R for all ae A, so R € T(A). Hence T(A)'=S(J)’, and in
particular S is a factor representation if Tis. To conclude, it is easy to check
that the maps S — Tand T— S are each others inverses.

ReMARK. We have in fact proved that any non-degenerate *-representation
S of J can uniquely be extended to a non-degenerate *-representation T of A4
with T(A4)’'=S(J)". The converse it not true in general, i.e. if Tis not a factor
representation of 4, then we may have T(J)= {0} but the restriction of Tto J
may be degenerate and S(J)' +T(A)".

In the introduction we indicated that A (D) is strongly Morita equivalent to
the subalgebra L) (K, M) of L' (K, M) defined by (2) and (3). Before showing
this, we shall give an equivalent description of L) (K, M).

Suppose D € K and let D be the conjugate representation of D, ie. X (D)
= X (D) = the conjugate Hilbertspace of X (D), and if J is the natural conjugate
linear map from X (D) to X (D) then

D, = j*D,j for ke K.
LEMMaA 3. Define a linear map ®: L'(K, M) - M®B(X (D)) by

2(f) ='[ fk™H)®D, dk
K
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then @ is a *-isomorphism of LY (K, M) onto

B(D) = M®B(X (D))e®2dD

Proor. Note that @ is not a *-homomorphism of L!(K, M), but using that
elements of LY (K, M) satisfy (2) and (3), straight forward calculations show
that @ is a *-homomorphism of L(K, M) into B(D).

Let Q: M®B(X (D)) - M be defined by

Q(s®a) = dim (D)tr (a)s for se M, ae B(X(D)).
Then define ¥: M®B(X (D)) - L'(K, M) by
Y (b)(x) = Q(b(I®D,)) for be M®B(X (D), xe K .

It is now not difficult to see that ¥ maps B(D) into L) (K, M) and that ¥ | B(D)
and @|L)(K, M) are each others inverses.

In the introduction it was shown that 4(D) and B(D) are Morita equivalent,
both being equivalent to the algebra A4,(D). How to find an imprimitivity
bimodule connecting A(D) and A, (D) is described in [5, Prop. 9.2] and [13,
Example 6.7]. Using that 4, (D)= B(X (D))®L})(K, M) and a procedure similar
to the one given on [5, p. 90] one can get an imprimitivity bimodule connecting
A,(D) and L}(K,M). However, we shall directly give an imprimitivity
bimodule L between 4(D) and B(D), i.e. A(D) acts to the left on L and B(D)
acts to the right on L such that the axioms in [5, § 7] are satisfied.

Having this in mind, the following definitions should be rather natural.
L=M®X (D) and we define actions of L!(K, M) and M®B(X (D)) on L by

5 fa®d) = Jf(x)Qx(0)®Dx€ dx
‘ for fe L'"(K,M), ae M, ¢ € X(D),

(6) @®&)(b®s) = ab@j*s*j¢
for a,be M, s e B(X(D)), ¢ € X(D).

Straight forward computations show that this really defines actions and that
f(rb)=(fr)b for feL'(K,M), reL and be B(D), but not for all
b € M®B(X (D)).

If £ and n are vectors in a Hilbert space H, let E({,n) be the rank one
operator in B(H) defined by

E¢,n = <.
The A(D)-rigging and B(D)-rigging are now defined by
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[a®¢&, b®n]a(x) = <& D.nyag,(b*)

[a®¢,b®n]p = j 2x(a*b)®D,E(¢,jmD,-+ dx

for a,be M and &1 e X(D).

Obviously [r,s]g € B(D) for r,s € L. To see that [r,s], € A(D) note that if {¢;}
is an orthonormal basis in X (D),

(7 [ai®€i»aj®éj],4(x)

= dinD J\<éi’ Dyél>aigx(<éj’ Dx“y§1>aj)*dy = fuf,*(x)
where
®) filx) = dim D¥(¢;, D &, )a; .

Since fiyp=f;, it follows that [r,s], € A(D) for all r,s € L.
It is more or less straightforward now to check the formulas (1)-(5) on page
72 of [S]. As an example we take (5):

[a®<,b®N]4(c®E) = J<€, D.nag.(b*)e.()®@D,{dx

= jaex(b*t‘)(@j *D,E(j{, jn)Dy-1j¢ dx

= (@®&)(0x(b*c)®D,E(jn, j)D,-1)dx
=(a®&)[b®n,c®{lp -

So (L,[*,"14[",-1p) is an imprimitivity bimodule. Since
linspan {a*b®E (j¢&, jn) | a,be M, ¢ ne X(D)}

is norm dense in M®B(X (D)) it should be obvious that lin span{[r,s]B|
r,s € L} is norm dense in B(D).
If fe L'(K), a € M define f®a € L' (K, M) by

(f®a)(x) = f(x)a .

Then with &, as above

(f®a)¥p(g®b)* = dimD ), [a®D; &, b®DCila

where

Df = jf(x)D,dx .
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From this it follows that linspan {[r,s] 4 | r,s € L} is norm dense in A(D), so
our imprimitivity bimodule is topologically strict as defined in [S, § 9].

LeEMMA 4. Every *-representation of A(D) (respectively B(D)) is L-positive.

(CL. [5, § 4]).

Proor. Let {{;} be an orthonormal basis of X (D) as before, and let r
=Y a;®¢&; € Lwith a; € M. Then

[r,rlg = Z Qx(ai*ak)®[)xE(féi,j€k)Dx" dx ,
ik

so [r,r]p=0 as an element of the C*-algebra B(D). Take f; as in (8) and f=3 .
Then (7) gives that [r,r]4=ff*. Hence S, ,),20 and T, 1,20 for any *-
representations S of B(D) and T of A(D). It should now be clear that
(L, [, 14, [, 1p) satisfies the assumptions of Theorem 9.1 in [5], and combining
this with Lemmas 2 and 4 we have

THEOREM 1. For D e K, there is a bijective correspondance between
(equivalence classes of) factor representations S of B(D)=M®B(X (13))9®adD
and factor representations T of K x, M such that D occurs in the restriction of T
to K. If S and T correspond

S(B(D)Y = T(K x, MY

so S and T will be factor representations of the same type, and S is irreducible if
and only if T is.

ReMARK. The correspondance is given by first inducing S from B(D) to a
representation T of A(D) as on page 51 of [5], then lifting T from A(D) to
L'(K,M) and K x, M by Lemma 2. This can also be considered as inducing S
directly from B(D) to L'(K, M), since L also is a left L' (K, M)-module.

The next two corollaries show that taking the crossed product with a
compact group will always give a “nicer” algebra, contrary to what happens
with discrete groups.

CoROLLARY 1. K x, M is postliminal if and only if M@B(X (D))*®2P = B(D)
is postliminal for all D € K. In particular this is the case if M itself is postliminal.

Proor. The first part follows from the fact that a C*-algebra is postliminal if
and only if all its factor representations are of type I. If M is postliminal, then
so is M®B(X (D)) and its C*-subalgebra B(D).
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CoROLLARY 2. K x,M is liminal if and only if M®B(X (D))*®2? = B(D) is
liminal for all D € K. In particular this is the case if M itself is liminal.

Proor. From Proposition 8.6 of [5] it follows that A(D) is liminal if and
only if B(D) is liminal. If K x, M is liminal then so is 4(D). Conversely, suppose
A(D) is liminal for all D € K and that T is an irreducible *-representation of
K x ,M and thus also of L'(K, M). We want to prove that T} is compact for
all fe L'(K, M). Let T? be the restriction of T to A(D), then T? is irreducible
for each D occurring in the restriction of T to K (and T? =0 otherwise). Now
f=3per fUp (convergence in norm) for each fe L'(K, M), so to prove that
T, is compact it suffices to prove that Ty, is compact for all D € K.. Now
f*¥pfe AD)so (Tp,)*Tyy,= T}’.M is compact, thus Ty, is compact for all
D € K, and we have proved that K x o M is liminal.

If M itself is liminal, then obviously M® B(X (D)) together with its C*-
subalgebra B(D) also will be liminal.

The next result is a slight generalization of a result in [15].

CoOROLLARY 3. If K x,M is simple, then so are all M@B(X (D)e®2P, In
particular M€ is simple.

Proor. If K x,M is simple, then B(D) also must be simple being Morita
equivalent to the ideal 4(D)” in K x, M.

REMARK. It is not true that if B(D) is simple for all D € K then K X, M is
simple. A counterexample is obtained by taking ¢=i and M simple.

If K is abelian B(D)= M¢, so we have:

COROLLARY 4. If K is a compact abelian group, K x, M is liminal (postliminal)
if and only if M? is liminal (postliminal).

Our algebras B(D) should be considered as analogues of the algebras L°(d)
of spherical functions defined in [6]. The following should therefore come as
no surprise, c.f. Corollary on p. 522 of [6].

ProposITION 1. If dimS<n for every irreducible representation S of B(D)

=M ®B(X (D))?®D and Tis an irreducible *-representation of K x, M, then D
occurs at most n times in the restriction of T to K.

Math Scand 47 — 10
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Proor. Let Tbe an irreducible *-representation of K x, M and let X, be a
non-zero subspace of X (T) invariant under the restriction of Tto K and such
that

jwp(x)Txadx =o forallaelX,.
Then the induced representation S of B(D) corresponding to Tin Theorem 1 is

first defined on L® X (T) (L = conjugate space of L, c.f. [5, page 73]) with inner
product

9) (a®ERxbRN®BY = {Tipgnaeel,% B
_ j (1,D,E>bo(a*){ T, B dx
for a,be M, ¢, ne X(D),o,B € X(T).

Take X (S) to be the separated completion of L® X with this inner product. S is
then defined by
$,(a®®x) = (a®{b*®@a  for b e B(D),

for details see §§ 4 and 7 of [5].
Let Y, be the closed linear span in X(S) of {r®u« |r € L, « € X,}. Then
Yo # {0}, because if the expression (9) always is 0 we will have

J M, DLHTa, dx = 0,

SO

(o, p> = jll/o(xKTxa,ﬂ)dx =0 forall «,feX,,

a contradiction.

Furthermore, if X, L X, is another subspace of X(T) with the same
properties as X, define Y, to be the corresponding subspace of X (S). (9) then
shows that Y, L Y,, so D can occur at most dim X (S) times in the restriction of
Tto K.

CoROLLARY. If M®B(X (D))¢®24D is abelian, then D occurs at most once in
the restriction to K of any irreducible representation of K x, M.

We next give an application to W*-crossed products of compact groups:

PrOPOSITION 2. Suppose (M,o,K) is a covariant system with M a von
Neumann algebra and ¢ a-weakly continuous. If each D € K occurs only finitely
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many times in g, then K x, M (W *-crossed product) is a type 1 von Neumann
algebra.

ProoF. Suppose M = B(H) and let
My, ={aeM l X — ¢,(a) is norm continuous} .

This is a o-weakly dense C*-subalgebra of M (cf. [1, Theorem 9]), so
(My,0,K) is a C*-covariant system. For D,E € G let

M(E) = {a € M‘ JWE(X)Qx(a)dX=a}

and

B(X(D),E) = {b e B(X(D))‘ J sz(x)Dbex-ldx=b}.

M (E) is by assumption a finite dimensional subspace of M, and M(E)<= M,,
For a given D, B(X (D), E) is non-zero for only finitely many E in K. It then
follows from the theory of tensor-product representations of compact groups
(cf. [7, 27.34¢]) that

B(D) = M,®B(X (D))*®*P < ¥ M(E)®B(X(D),E).
EeG
So B(D) is finite dimensional for all D € K, thus K x, M, is a type I C*-algebra.
Since K x, M is the o-weak closure of K x, M, over L*(K, H), K x, M is type 1.

CoROLLARY. If (M, g, K) is as in Proposition 2 and g is ergodic (i.e. M®=CI),
then K x, M is a type 1 von Neumann algebra.

Proor. It is proved in [8] that ergodicity implies finite multiplicity, so the
result follows from Proposition 2.

REMARK. I have been informed that this fact has also been observed
independently by M. Takesaki.

ExampLE 1. M. Takesaki showed in [17] that if 4 is a uniformly hyperfinite
C*-algebra there is a compact abelian group K and ¢: K — Aut 4 such that
K x, A is liminal. It is not difficult to show that in this case A4° is abelian,
so Corollary 4 gives a different proof that K x , 4 is liminal.

ExampLE 2. Let H be Mautner’s 5-dimensional non-type I solvable Lie
group (for details, see [16, Appendix].) Then one can form a semi-direct
product G of H and the circle group Texactly as in [16, § 9], except that we use
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T instead of the real numbers. The action of T on H induces an action ¢ on
C*(H) such that

C*(G) = Tx,C*(H).

Also in this case one can show that C*(H)? is liminal so by Corollary 4 C*(G)
(thus G) is liminal.

FiNAL REMARKS. If T'is a factor representation of K x, M, usually more than
one D in K will occur in the restriction of Tto K. Therefore the description of
all factor representations Tof K x, M is repetitious, and in general we have no
way of telling when a representation induced from B(D) is equivalent to one
induced from B(E) for two inequivalent representations D and E of K. So if M
is liminal, the Mackey-T akesaki method in [16] is superior to the one given
here, since they describe the factor representations of K x, M by a process
producing each representation only once. But if M is not liminal, our method
can give much information of the representation theory of K x, M even if the
representationtheory of M is very inaccessible, c.f. the two examples above.

Corollary 4 tells us that there is a close correspondance between the
representation theories of K x, M and M?® when K is abelian. They are however
not Morita equivalent (e.g. take M =C), but 4. Kishimoto and H. Takai has
shown in [9] that under certain assumptions K x , M ~M°®CC(L*(K)) so
K x,M and M® are Morita equivalent.
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