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LIPSCHITZ r-CONTINUITY OF THE APPROXIMATE
SUBDIFFERENTIAL OF A CONVEX FUNCTION

J.-B. HIRIART-URRUTY
Abstract.

Earlier results on the continuity of the approximate subdifferential and on
the local Lipschitz property for ¢>0 of the e-subdifferential of a convex
function are improved and generalized in various ways.

0. Purpose and scope.

The approximate subdifferential has been proved to be an useful tool in
convex analysis, from the theoretical viewpoint as well as for practical
purposes. Given a convex function f defined on E, the approximate
subdifferential ¢ f(.) which assigns to (x,¢) € ExR, the so-called e-
subdifferential of fat x turns out to have remarkable properties. The properties
of the subdifferential x <¢ df(x) (i.e. for ¢=0) are widely known in convex
analysis ([9], [11], [14]). As for the e-subdifferential 0, f, whose definition is
just a “perturbation by &” of that of df, it enjoys, for £¢>0, some noteworthy
properties which are hopeless for the “exact” subdifferential.

One of the main reasons for the nice behavior of the multifunction d f(.) on
E x R* is that 8,1 (x) is not a local notion. To be more explicit, let us look at the
definitions. The subdifferential 0f (x,) of a convex function f at x, is the set of
x* € E* satisfying

(0.1) f(x) 2 fx)+<{x* x—Xo)

for all x. Actually, df (x,) is a local notion in the sense that it suffices to know
the function fin a neighborhood of x, to get all of df (x,). In other words, the
set of x* € E* satisfying (0.1) for x in a neighborhood of x, is exactly df (x,).
Here, the convexity of f makes that the local character is converted in a global
one. The same does not hold for the e-subdifferential. d,f(x,) is the set of x*
satisfying

0.2) Jx) 2 fxo)+<x* x=x0)—¢

Received November 6, 1979; in revised form February 12, 1980.



124 J.-B. HIRIART-URRUTY

for all x. Now, 0, f (x,) may be very “sensitive” to the variations of f, even when
those variations do not hold in a neighborhood of x,. As for an example, let
f:x +— |x| and x,=0. If one modifies this function only on |x|=g, the &-
subdifferential at x, is altered. The necessity, a priori, of knowing the behavior
of f on all of E for the calculation of J,f(x,) is corroborated by the
fundamental approximation result due to Brendsted and Rockafellar [4].
Roughly speaking, this result states that the more precisely you want to know
0. f (x,), the farther from x,, you need to know df (x). However, this disadvantage
is weighed against the good effects wrought by the perturbation by e. Let us
recall some results which are typical in that respect. In [3], Brendsted gave the
exact formulation of the subdifferential of the supremum of two lower-
semicontinuous convex functions f; and f, in terms of e-subdifferentials for f,
and f,, without assuming any further continuity property on f, or f,. In an
another context, the use of the e-directional derivative f;(x,; .) as a substitute
for the usual directional derivative has been proved advantageous in many
algorithms of convex optimization; see [2, 10] and references therein. As the
continuity property of d f(.) as a multifunction of both x and ¢, the main re-
sult goes back to the comprehensive study by Asplund and Rockafellar [1].
In particular, they proved that for a lower-semicontinuous convex func-
tion defined on a Banach space, the approximate subdifferential
0 f(.): (x,e) =<£0,f(x) was continuous in the Hausdorff sense (i.e. for the
Hausdorff-distance h) on (dom f)° x R*. More recently, Nurminskii [13]
showed the following locally Lipschitzian behavior of the e-subdifferential:
given a convex function f: R" — R, ¢>0 and a compact set K, there exists a
constant k such that

k
(0.3) h(0.f (x), 0.f (X)) = —lIx—x|

whenever x and x’ lie in K. This result is rather surprising because, for the
subdifferential, it is known that nothing more than the upper-semicontinuity
can be claimed whereas the e-subdifferential enjoys one of the strongest
properties which can be required on a multifunction.

Our study is along the lines of the Lipschitz properties of the approximate
subdifferential. It is divided into three parts. In the first'part, we list some basic
calculus rules on the ¢-subdifferential. Besides their own interest since they
cover the case where ¢=0, they will be of use in the next sections. Part II is
devoted to a smoothing operation, namely to the infimal convolution of a
convex function with a norm. From the viewpoint of the study of the e-
subdifferential, performing this operation has regularizing effects. In particular,
it will be shown that, to a certain extent, an adequate Lipschitz function can be
substituted for the given function. Part III contains the main results. We begin
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by proving the Lipschitz behavior of  f(.) as a multifunction of x and ¢>0 for
a Lipschitz convex function f. The proof which hinges on Lipschitz properties
of the e-directional derivatives and on Hormander’s relation is quite simple.
The smoothing operating studied in Part II then allows us to consider the
general case and to handle unbounded e-subdifferentials. For unbounded
subsets, the Hausdorff distance has no meaning and thus must be adapted. In
the way of “quantifying” convergence for closed convex sets, Salinetti and Wets
[16] were led to the notion of r-distance. For r>0, the r-distance between
two subsets C and D of a metric space E is given by

(0.4) h,(C,D) = h(CNrB, DNrB)

where B denotes the unit closed ball in E. The r-convergence (i.e. the
convergence in the sense of h,, for r=ry) quantifies, to a certain extent,
convergence in the sense of Kuratowski [16, Theorem 4]. Actually, we shall
prove what we called “Lipschitz r-continuity of the approximate sub-
differential”, that is to say a Lipschitz behavior of h, (0.f(.),0.f(.)) as a
function of both x and ¢>0. So, the given result improves the continuity result
quoted above and generalizes in various ways Nurminskii’s result. Finally,
consequences to first-order approximations of convex functions are indicated.

We assume that the reader is familiar with basic definitions and properties
from convex analysis [9, 11, 14].

I. Basic calculus rules on the ¢-subdifferential.

Let E be a locally convex Hausdorff topological vector space with dual E*.
The canonical bilinear form on E x E* is denoted by <., . ). Throughout, we
shall use the following notations:

Conv, (E) for the set of proper convex functions (a function f is said to be
proper if f is not identically equal to + oo and if f(x)> — oo for all x),

I'o(E) for the set of functions in Conv, (E) which are lower-semicontinuous
(Is.c.).

Given a proper function f, the ¢-subdifferential of f at x, € dom f (dom f'is
the set where f is finite) is defined for each £20 as the set of vectors x* € E*
satisfying

(L1) f(x) 2 fxg)+<{x* x=Xo)—¢

for all x € E.

The set of such vectors, denoted by @, f (x,), is a 6 (E*, E)-closed convex set in
E* which reduces to the subdifferential for ¢ =0. Moreover, if f € I'y(E), 0, f (x,)
is nonempty whenever (x, € dom fand) ¢ > 0. There are two fundamental ways
of characterizing 0, f(x): through the conjugate function f* and with its
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support function. Let us recall the first one which every computation
concerning the e-subdifferentials hinges on.

ProrosiTiON 1.1. x* € E* belongs to 0,f(x,) if and only if we have:

(1.2) S(xo)+f*(x*) = {xp,x*> S €.

If fe I'y(E), f and f*(e I'y(E*)) play a symmetric role; then (1.2) is also
equivalent to: x, € 0,f *(x*).

ExampLE 1. Let f € I'y(E) be positively homogeneous (i.e. f (4x) = Af (x) for all
x € E and 2>0). For such an f, f* is the indicator of df (0). Hence, ,f(0)
=0f (o) for all 0.

Consider now two proper functions f and g; one defines a function h in
the following way:
h(x) = inf E{f(x1)+g(xz)} .

x;+x€
X;+X,=x

h is said to be the infimal convolution of f and g, and we shall use the notation h
=fVg. The infimal convolution is said to be exact at xo=xJ+x3 if one has
fx)+g(x§) = min {f(W)+g©)} .

u,veE

u+v=x,

General properties of the infimal convolution, particularly those related to
convex analysis, may be found in [11, § 3], [9, § 6.5] or [14].

PRrOPOSITION 1.2. Let f,g be two proper functions, let xo= x4+ x2% be a point
where the infimal convolution is finite and exact. Then

(1.3) 0,(fVe(x) = U . {00,/ (x0) N 0,,8(x3)} -

£,20,6,2
& t+e,=¢

ProoF. We have that (f'V g)(x,)=f(x})+g(x2). Moreover, (fVg)* equals
f*+g* [9, Theorem 6.5.4]. Therefore, accordingly to Proposition 1.1,
x* € 0,(f V g)(x,) if and only if

SOxg)+f*(x*) = xg, X*> + g (x3) +8* (x*) — (x5, x*) S &

Hence, equality (1.3) is easily deduced.

For the sake of completeness, let us note the dual version of the proposition
above.
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ProrosITION 1.3. Let f, g € I'y(E). Assume there exists a point at which fand g
are finite, one of them being continuous at this point. Then
(14) a:(f+ g)(xo) = U {ae,f(x0)+aczg(x0)}
£,20,6,20

& +ey=¢

for all x; € dom fN domg.

Proor. Under the assumptions made on fand g, (f+g)* is f*Vg* and the
infimal convolution is exact at all x* of E* [9, Theorem 6.5.8]. Then (1.4) is
derived through the characterization (1.2).

Remark. If E=R", assumptions different from those made in Propositions
1.2 and 1.3 yield the same results. Conditions are expressed in terms of relative
interiors of domains of functions involved in the problem; these conditions
themselves can be deleted if the functions are polyhedral. For all these
materials, see [14].

II. Smoothing a convex function.

In this Section, we suppose that E is a Banach space. The norm (function) on
E will be denoted by ||.|| and the associate dual norm on E* by ||.||,. Let
f € Conv, (E) and let r be positive. We are interested in the function f,
=fVr|.|. Due to the properties of the infimal convolution, f, appears as the
result of a sort of “regularization”. Actually, f, does have some peculiar
properties that we describe now. First, observe that f,(x)< + oo for all x € E.
Hence, since f, is a convex function (as the infimal convolution of two convex
functions), there are only two possibilities: either f, identically equals — oo or f,
is finite everywhere. In the latter case, we note the following “regularizing
effect”.

PRrOPOSITION 2.1. If there exists X € E at which f,(X)> — 0o, then f, is Lipschitz
on E with Lipschitz constant r.

Proor. [7, Corollary 1].
The problem, however, is to give conditions ensuring that there exists a point

where f, is finite. For that purpose, let rg (0, f) denote (for £20) the range of
. f, that is to say

xedom

rg(@.f) = U facf(x)'
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ProrosiTiON 2.2. The following statements are equivalent:

(i) there exists x € E at which f,(X)> — oo,

(i) for all >0, there exists x* e rg (0,f) such that |x*|| <r,
(ili) there exist €20 and x* € rg(0,f) such that |x*| <r.

ProoF. (i) = (ii). According to Proposition 2.1, f, is (convex and) Lipschitz
on E with Lipschitz constant r. The conjugate of f, is f*+ (. | rB*) where B*
denotes the closed unit ball in E*. Hence, the (nonempty) subdifferential 0 f,(x)
can be characterized as follows:

2.1) 0f(%) = {x* e rB*, f* (x*)+f, (X)— <X x*> = 0}.
Now, for £¢>0, let us consider x, satisfying
(2.2) S (xo)+rllxo—X| = f(X)+e.

From (2.1) and (2.2), one easily checks that df,(X)<=d,f (x,).
. (i) = (iii). Obvious.
. (ili) = (i). Let €20, x € E and x* € 0,f(X) with ||x*|| <r.

Following the definition of the e-subdifferential, we have that
f(x) 2 fR)+Lx*x—x)—¢
2 f(X)—r|x—x| —e¢ for all xe E .
Hence, f,(x)=f(X)—¢ and (i) is proved.
Besides the interesting equivalence (i) <> (ii), we note that the condition (iii)
written for ¢=0, i.e.
(Hy) “there exists x* € rg (0f) such that ||x*|, < r”,

is a sufficient condition for (i) to hold. However, this condition is not necessary,
as shown by the next example.

ExaMPLE 2. Let f e I'y(R) be defined by f(x)=1/x if x>0 and + oo if x<0.
By taking r=0, we get a function f; identically null on R. However, 0 ¢ rg (df).

For the “smoothing operation” f~» fVr|.| we are concerned with, we
define C,(f) as the coincidence set of f and f,, that is to say

C(f) ={xeE, f(x=f()}.

Actually, C,(f) can be expressed in a more usable way, in connection with the
assumption (H,).
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ProvposiTiON 2.3. The coincidence set of f and f, is the “inverse image” of rB*
by the multifunction 0f, i.e.

(23) C.(f) = {xeE, of ()NrB*+ 2} .
Moreover,
(2.4) 0cfr(x0) = 0.f(xo) N rB*

for all xy, € C,(f) and all ¢=0.

Proor. If f, identically equals — oo, rg (0f) N rB* is empty (Proposition 2.2).
Hence, (2.3) trivially holds.

Suppose now that f,(x)> —oo for all x. Let x be such that df (X) meets rB*.
We proved earlier that f,(X)=f(x) (let ¢=0 in the third part of the proof of
Proposition 2.2).

Conversely, if f,(x)=f(x), the infimal convolution f Vr| .| is exact at x=x
+0 and, according to Proposition 1.2, we have that

0f.(%) = of (%) N rB* .

Hence the result is proved since df,(x) is nonempty.
As for the result (2.4), see Example 1 and Proposition 1.2.

As for an example, we calculate the ¢-subdifferential of the distance function.
Let S be a nonempty convex subset of E and x, € S. The distance function dg
is nothing more than (. |S)V | .|; hence, for all 620, we have that

0.ds(xo) = N,(S; xo) N B*

where N,(S; x,) designates the set of x* € E* satisfying {x*, x —x,) <¢ for all
x € S.

REMARK 1. fand its ls.c. hull f** both yield the same smoothed version f,.
Hence, one can suppose, without lack of generality, that f € I'4(E). In such a
case, C,(f) is closed and can be viewed as the image of rB* by 0f *. Moreover,
if rB* = (dom f*)° (that expresses an inf-compactness condition on f), C,(f) is
o(E, E*)-compact and connected.

REMARK 2. Proposition 2.3 also points out that, under suitable assumptions,
the knowledge of d,f (x) for x € S and ¢ € [0,&] amounts to the knowledge of
the e-subdifferential of a more workable function, namely of a Lipschitz
function. To be more precise, let S be a nonempty subset of dom f'and let £>0.
We assume that

Math. Scand. 47 — 9
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(H)) sup {llx*l,,, x*€0:f(x), x€S} =r<+00.
Then f, is Lipschitz on E with Lipschitz constant r and

fi(x) = f(x) Vxes§,
0.f,(x) = d,f(x) VxeS, Veel[0,8].

Actually, (H,) is assumed in order to get a finite smoothed function f,. Along
the same lines, let us indicate what happens in the general case. As before, let S
cdom f and £>0. We set

Js =fVé*(.|1B)
where B designates U, 5d;f(x). Then one easily checks that
Js(x) = f(x) Vxes§
0.fs(x) = 0,f(x) VxeS, Vee[0,¢].

As an illustration of the results of this Section, let us look at the following
simple example on R.

ExampLE 3. Let f € I'y(R) be defined by f(x)= —[/§ if x=0and + oo if x<O0.
£, is finite if and only if r>0. For each r>0, the coincidence interval of f and f,
is I,=[1/4r?, + oo[.

According to Remark 2 above, the calculation of d,f(x) for x € S and
¢ € [0,&] amounts to the computation of 0, f,(x) for a certain Lipschitz function
/., provided that ScR¥.

III. Lipschitz r-continuity of the approximate subdifferential.

Let us denote by €, ,(E*) the collection of all nonempty o(E*, E)-closed
bounded convex subsets of E*. We recall that the Hausdorff-topology on
€,.,(E*) is the topology in which, for each C e %, ,(E*), the sets
of the form

{De¥,,(E*)| DcC+aB* and C<D+aB*}

constitute a fundamental system of neighborhoods of C as « ranges over R*.
Given fe I'y(E), 0,f(x) is o(E*, E)-bounded whenever x € (dom f)°. So, the
multifunction (x,e) << J,f(x), restricted to (dom f)°xR, ranges over
€,.,(E*). The following result asserting the continuity of the approximate
subdifferential is due to Asplund and Rockafellar [1, pp. 456-458].

THEOREM 3.1. Let fe I'((E). Then the multifunction (x,e) =X 0,f(x) is
continuous from (dom f)° xR¥ (endowed with the strong topology) into
€,.,(E*) in the Hausdorff-topology.
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In the theorem below, we shall “quantify” this continuity, and what actually
will be proved is a local Lipschitz property of the approximate subdifferential
on (dom f)° x R%.

The Hausdorff-topology on €, ,(E*) can be defined by a metric (the so-called
Hausdorff-distance h) but, for our purposes, it will be more convenient to use
the Hausdorff-topology such as defined in a dual way. In fact, the cornerstone
relation turns out to be the Hormander’s equality [8]:

VC,D € %, ,(E*): h(C,D) = sup |6*(d|C)—5*(d|D)| .
fdii <1
In view of results of Section II, we begin by convex Lipschitz functions.

THEOREM 3.2. Let f: E — R be a convex Lipschitz function. Then there exists
k such that

@.1) W@ (9, 0,1 (X)) < m—mﬁ(ux—x'u +lo—¢)

for all x,x" in E and all ¢,¢' in R%.

Proor. Let d be any direction in B, unit ball of E. Given x e Eand e e R,
define ¢ on R% by

fx+Ad)—f(x)+e

A p(2) = ;

Strictly speaking, ¢ depends on d, x and &. The infimum of ¢(4) over R¥ is just
Sfi(x; d), suppbrt function of d,f(x) in the d direction [14, pp. 219-220].

Actually, due to the Lipschitz property of f (with Lipschitz constant r>0),
one easily checks that, for any positive o and &, all the 4, satisfying.

inf ¢(4) < ¢(4,) < inf p(N)+a
A>0 A>0

belong to the interval [&/(2r +a), + oo[, whatever x € E and d € B. Let now x,
x' € E and ¢,& € R* be arbitrarily chosen. According to what has been claimed
just above and to the Lipschitz property of f, we have

2r+ , ,
Fu; d)=fulx; d) S 22 @rlx—x D +le—¢)

Fos d=fixs d) < 2% Qrlx—x ]+l )

3

for all >0 and all d € B.
Hence the result (3.1) is achieved with k =max (2r,4r?) by a straightforward
application of Hormander’s relation.
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THEOREM 3.3. Let f € Conv, (E), let S be a subset of dom f. We suppose that,
for a certain ry>0, 0f (x) N roB* is nonempty for all x € S. Then, for all r=r,,
there exists k, such that

(32)  h(0.f(x) NrB* 0.f(x)NrB*) £ ———(lx—x'| +|e—¢])

k,
min (g, &)

for all x,x' in S and ¢, in R%.

Proor. In view of Proposition 2.3, for all r=r,, the smoothed function f,
coincides with fon S and 0, f,(x)=0,f(x) N rB* for all £20 and all x € S. It
remains to apply Theorem 3.2 to the function f,.

The formula (3.2) can be looked at under different angles: Lipschitz r-
continuity of J,f(x) as a multifunction of ¢ when x is fixed and e=2¢>0,
Lipschitz r-continuity of d, f (x) as multifunction of x when ¢> 0 is fixed, and so
on ... As a particular corollary, we shall derive Nurminskii’s result on the
(local) Lipschitz continuity of d,f(x) as a multifunction of x.

CoRroLLARY 3.4. Let fe Conv, (E) and assume that there exists a nonempty
open set on which f is bounded above. Then for all §>0 and for all compact K
< (dom f)°, there exists k such that

k
(3.3) h(0.f (x),0.f (x)) = S =X
for all x,x" in K and all ¢ € J0,&].

Proor. Since f is bounded above on a nonempty open set, (dom f)° is
nonempty and f'is locally Lipschitz on it. Therefore, there exist >0 and ¢>0
such that

= {u| Ix e K with |u—x| <y} = (dom f)°
and

Ifx)=f()I £ ellx=x"|| for all x,x" in K, .

Consequently, there exists r such that

U 0.f(x) c rB*.

e € ]0,€]
xe K

Hence we get the result (3.3) by a straightforward application of Theorem 3.3.
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A consequence which is worth mentioning concerns first-order approxi-
mations of convex functions.

CoRroLLARY 3.5. Let fe I'y(E) be bounded above on a nonempty open set.
Consider a convex compact subset K < (dom f)° and §>0. Then, for all x,x’ in
K and all € € ]0,£], there exists x} € d,f (x) satisfying

(3.4) F0=1() = Cxtx =+ O 2

Proor. Let x and x’ be arbitrarily chosen in K. According to the mean value
theorem for convex functions (see, for example, Theorem 7 in [6]), there exist
x" € 1x,x'[ and u* € df (x") such that

(3.5) S —f(x) = {u*,x=x").

Let now x* in 0, f(x) satisfying:

lu*=x2l, = min [u*—x*|,
x*€0,f(x)
(such a point exists since the norm function |.|, is o(E*, E)-inf-compact).

According to Corollary 3.4, we have that

k
lu* =xFlly = S lIx"=x] .

Hence the announced result is proved.

REMARK. As a consequence of (3.4), note the following “adjustment”
property: let {x,} and {x,} be sequences converging in K to x,; then there
exists a sequence {x}} in 0,f(K) satisfying

(3.6) lim LS Ge) —f () = <xs X = XD | _

/
n— oo ||x,,—x,,||

0.

This kind of adjustment is usually hopeless with sequences {x*} = df (K). In the
same vein, expansions like (3.4) are useful for subgradient methods. As for a
very simple example, let f: R — R be a convex function; assume that {x,} is a
bounded sequence and that {¢,} is a given positive sequence converging to 0.
Then there exists x¥ € d, f(x,) such that

f(xn + A’n) —f(xn)

A

A
= x¥+0(1)—".
n 8"
So, by using only the values of the function, the quotient above provides an
element of d, f(x,) with an accuracy which can be controlled.
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