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ON POLYNOMIAL COVERINGS AND
THEIR CLASSIFICATION

JESPER MICHAEL MOLLER

1. Introduction.

This paper consists of two independent notes on polynomial covering spaces
in connection with the papers [3] and [4]. Roughly speaking, an n-fold
polynomial covering space n: E — X over a space X is the zero set for a
continuous family of simple, normed, complex polynomials of degree n
parametrized by X. The first note (Section 2), which is the more substantial
one and has given rise to the title, shows that polynomial covering spaces do
not admit classifying spaces in the traditional sense, and the second note
(Section 3) offers a criterion for certain orientation coverings to be polynomial.

Section 2 must be seen in connection with [4], which provides an algebraic
classification of n-fold, polynomial coverings. As is stated in the very last
sentence of [4], it would be nice also to have a geometric classification in terms
of a classifying space for n-fold polynomial coverings. Theorem 2.4, however,
shows that a classifying space of this kind does not exist in general.

Section 3 has its origin in [3, Theorem 6.1], which says that the orientation
covering of a nonorientable closed surface is polynomial precisely when the
surface has even genus. At the suggestion of V. L. Hansen, we have tried to find
a proof of this theorem using characteristic classes with the purpose of finding
a suitable criterion for more general orientation coverings to be polynomial.
Theorem 3.1 provides such a criterion, and Example 3.2 shows that it covers [3,
Theorem 6.1].

I am indebted to Vagn Lundsgaard Hansen for encouragement and
guidance throughout this study.

2. On classifying spaces for polynomial coverings.

Let us first agree upon the notation. Throughout this paper B" denotes the
complement of the discriminant set 4 in complex n-space C" (i.e. B"=C"\ 4);
B(n) is the group of n-braids; and X, is the full permutation group on n letters.

Z, acts freely on
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F,(C) = {(Ay..,4) € C"| A#4; all i)}

by permutation of coordinates. The orbit space F,(C)/Z, is canonically
homeomorphic to B", and therefore we get an induced principal X,-bundle
Py F,(C) — B".

Finally, let n": E" — B" be the canonical n-fold polynomial covering as
defined in [3, Section 3].

The following theorem describes a relationship between n" and p,. In the
theorem as well as in the rest of this section, X denotes a connected CW-
complex with a non-degenerate base point x, € X. The fundamental group of
X with base point x, € X will be denoted by =, (X).

ProrosiTioN 2.1. Let a and B be two maps X — B". Then the pull-back
coverings a*n" and B*n" are equivalent as coverings if and only if the pull-back
bundles a*p, and B*p, are equivalent as principal X, -bundles.

Proor. B" is an Eilenberg-MacLane space of type (B(n),1). Hence the
natural epimorphism t,: B(n) — X, induces a map t,: B" —» BX,. As can
be seen from ([1], Theorem 1), this map classifies p,. Since t,0a, and
1,08, m;(X) — X, are characteristic homomorphisms for a*n" and B*n"
([4], Lemma 3.1), Proposition 2.1 follows.

REMARK 2.2. Letting B be a constant map, we see that a*n" is a trivial
covering if and only if a*p, is a trivial principal Z,-bundle; i.e. if and only if
a: X — B" admits a lifting o’: X — F,(C) over p,: F,(C) — B". Thus Prop-
osition 2.1 generalizes [4, Theorem 4.1].

Now let PC, (X) denote the set of equivalence classes of n-fold polynomial
coverings over X, and let [ X, Y] be the set of free homotopy classes of maps of
X into Y for an arbitrary space Y.

As shown in [3] and mentioned in [4, Section 2], pull-back of n" along-maps
a: X — B" yields a surjective map

[X,B"] - PC,(X).

This surjective map is not in general injective; see [4, Example 4.3] or
Proposition 2.5 below. According to Proposition 2.1, there is an injective map

PC, (X)— [X,BZ,],

which to the equivalence class of a*n" associates the homotopy class of t,00.
These maps make the following diagram commutative:
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[X,B"] — PC, (X)
1) e
[X,BX,]

Here, t,+: [ X, B"] — [X,BZX,] is induced by composition with ¢,: B* — BZX,.
Using this diagram we get:

LemmA 2.3. 1) The map [X,B"] — PC, (X) is bijective if and only if t,s is
injective.

(ii) Every n-fold covering over X is equivalent to a polynonial covering if and
only if t,» is surjective.

The following theorem is the main result in this section. It shows that a
classifying space in the traditional sense does not exist for n-fold polynomial
coverings.

THEOREM 2.4. There does not exist an n-fold polynomial covering w": E,
— Z,, n=2, such that the map

[X,Z,] - PC,(X)
defined by pull-back of w" is bijective for all connected CW-complexes X.

ProoF. Assume that w": E, — Z, is an n-fold polynomial covering with the
property that the map [X,Z,] — PC, (X) is bijective for all X.

We will bring this assumption to a contradiction in 3 steps. First of all, note
that Z, may be chosen to be a CW-complex.

Step 1. Z, is pathwise connected and =n;(Z,)=0 for i=2.

Proor of STeP 1. Since any two maps from a one-point space into Z, are
homotopic, it easily follows that Z, is pathwise connected.

Let z, € Z, and b, € B" be non-degenerate base points. Choose a map
(B", by) — (Z,,2,) which induces n" by pull-back of w", and a map (Z,,z,)
— (B", by) which induces w" by pull-back of n". Then the diagram

Bll

@) g

Z,— Z,

n 12_

is homotopy commutative. Here 1, : Z, — Z, is the identity on Z,. Applying
the functor 7;(—, *) to (2) gives n;(Z,,z,)=0 for i=> 2, since B" is an Eilenberg-
MacLane space of type (B(n),1).
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Step 2. H,(Z,; Z)=Z.

Proor oF Step 2. Applying the functor H,(—; Z) to (2), we see that
H,(Z,; Z) is a subgroup of H,(B"; Z), and since B" is connected, we have

H,(B";Z) ~ B(n)/B(n) =~ Z.

For the last isomorphism, see e.g. [2].

Hence we only have to prove that H,(Z,; Z)+0. The maps from (2)
build another homotopy commutative diagram

) pa

B’l T’ B’l

where f: (B",by) = (B",by) is a map such that f*r" is equivalent to n".
According to Proposition 2.1, t,of: B" — BX, is freely homotopic to t,. Con-
sider the following commutative diagram in which the vertical epimorphisms
are Hurewicz homomorphisms

7, (B" by) —aLs s 1, (BZ,, 1,(bo))

H,(B"; 2) 2D, g (BZ,; Z)

Since (t,of), is an epimorphism, H,(t,of)=H,(t,)oH,(f) has to be surjective
also. Since H,(BZX,; Z)=*0, this implies that H,(f)=+0, so from (3) it follows
that H,(Z,; Z)=*0.

Step 3. PC, (S!) is infinite. (The contradiction!)

Proor of Step 3. Since Z, is an Eilenberg-MacLane space, we may identify
[S',Z,] with the set m,(Z,,2,)°°" of conjugacy classes of elements in the
fundamental group =,(Z,,z,). The Hurewicz epimorphism =n,(Z,,z,) —
H,(Z,;Z) factors through m,(Z, z,)®%, so this set is -infinite. By
assumption, we may also identify [S!,Z,] with PC,(S'); thus PC,(S?) is
infinite.

Step 3 finishes the proof since the number of equivalence classes of n-fold
coverings over S' is known to be finite.

Having recognized Theorem 2.4, the question arises: How far is B" from
being a classifying space for n-fold polynomial coverings? That is: For which
spaces X is the map [X, B"] — PC, (X) bijective?

Both [X,B"] and PC,(X) have natural base points, so that [X,B"]
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— PC, (X) is a map between pointed sets. In Proposition 2.5 below we give a
necessary and sufficient condition for the kernel to be trivial.

ProposITION 2.5. The following two statements are equivalent:

1) HY(X; Z)=0.
2) Any map a: X — B", which induces the trivial covering from n", is homotopic
to a constant map.

Proor. For any two groups G and H, we let Hom (G, H) denote the set of
homomorphisms of G into H, and Hom (G, H)®®Y the corresponding set of
conjugacy classes. These sets are equiped with natural base points.

The epimorphism t,: B(n) —» Z, induces a map between pointed sets

1,+: Hom (7, (X), B(n))*®™ — Hom (m, (X), Z,)®" .

In more technical language statement 2) means that the kernel of 1, is trivial.
This is the case if and only if Hom (r, (X), kern t,) vanishes, and since kern t,
has a normal series with free factors [2, p. 574], Hom (n, (X), kernt,)={1} if
and only if 0=Hom (r,(X),Z)=H!(X; Z).

Proposition 2.5 shows, that H'(X; Z)=0 is a necessary condition for the n-
fold_polynomial coverings over X to be classified by B". On the other hand
spaces with H'(X; Z)=0 are apt to have few coverings—in particular few
polynomial ones. This is expressed in

COROLLARY 2.6. Assume that n<4 or that ©,(X) is a finitely generated abelian
group. Then the map [X,B"] — PC, (X) is bijective if and only if all n-fold
polynomial coverings over X are trivial.

Proor. If H! (X ; Z)=0 and n<4, then all n-fold polynomial coverings over
X are trivial according to [2, Theorem 3.1]. If H*(X; Z)=0 and =,(X) is a
finitely generated abelian group, then m, (X) must be a torsion group. Since
every element in B(n) has infinite order, this implies that Hom (=, (X), B(n))

={1}.

ReEmMARk 2.7. Questions similar to those discussed above arise when
considering finite coverings over X that admit embeddings into the product
bundle pr;: X xM — X: (x,m) — x, where M is an arbitrary closed surface;
cf. [5]. Without going into details, we mention that the analogues of
Proposition 2.1, Remark 2.2, and Lemma 2.3 are valid. An analogue of
Theorem 2.4 is valid at least when M is different from the 2-dimensional sphere
S? and the real projective plane RPZ
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3. A criterion for certain orientation coverings to be polynomial.

In this section we use [3, Remark 7.5] to prove a necessary and sufficient
condition for certain orientation coverings to be polynomial. Let M denote a
connected nonorientable differentiable manifold with finitely generated
homology groups H,(M; Z), 4=0,1,2. The result is:

THeEOREM 3.1. Assume that H,(M; Z) contains no 4-torsion. Then the
orientation covering n: M — M is polynomial if and only if the first Stiefel-
Whitney class of M satisfies w,(M)*=0.

Proor. Let n[R] be the real line bundle associated with # when viewed as a
principal Z/2-bundle. As can be seen from the Gysin-sequence associated with
n ([6, Corollary 12.3]), the Stiefel-Whitney classes w, (M) and w,(n[R]) are
identical. The map between coefficient sequences

0—Z25Z —>2Z2-0

! l 1
0> 2Z2— Z/4A—>Z/250

induces a map between Bockstein sequences

— HY(M; Z) — HY(M; Z/2) —— H*(M; Z) 2> H*(M; Z) %> H*(M; Z/2) —
! l 2| | l
— HY(M; Z/4) - H'(M; Z/2) 3% H*(M; Z/2) > H*(M; Z/4) - H*(M; Z/2) —

where f: H'(M; Z/2) - H*(M; Z) is a Bockstein homomorphism, and
A: H*(M; Z) - H*(M; Z/2) is reduction modulo 2 of the integral cohomology
classes. The Bockstein homomorphism in the lower sequence is
Sq': H'(M; Z/2) » H*(M; Z/2): x — x? and since H*(M; Z) contains no 4-
torsion, we have kern Sq' =kern . Now [3, Remark 7.5], which shows that = is
polynomial if and only if B¢w, (x[R]))=0, finishes the proof.

In particular we get

ExampLE 3.2. (Compare with Section 6 in [3]) Let U,.; denote the
nonorientable closed surface of genus g+12=1. The second Stiefel-Whitney
class of U, wa(Ugs1)=w,;(Ugy )% is related to the fundamental class
[Ug+1] € Hy (U4 y; Z/2) by the formula

<W2(Ux+1)’[Ug+1]> = X(Ug+1) mod 2

where ¢+, ) is the Kronecker product, and x(U,,,) is the Euler number of
Ug+y ([6, Corollary 11.12]). Since [Ug+,] generates Hy(Ugyy; Z/2) and
x(U,+1)=2—(g+1), we conclude that w, (U, )=0if and only if 2— (g+1)=0
mod 2, i.e. g is odd.
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The orientation covering of U,,, is equivalent to the standard double
covering p,: T, = U, ., of U,,, by the orientable closed surface T, of genus
g=0. Thus we have given an alternative proof of [3, Theorem 6.1].

REFERENCES

1. E. Artin, Braids and permutation, Ann. of Math. 48 (1947), 643-649.

2. E. A. Gorin and V. Ja. Lin, Algebraic equations with continuous coefficients, and certain questions
of the algebraic theory of braids, Mat. Sb. 78 (120) (1969), 579—-610. = Math. USSR Sbornik
7 (1969), 569-596.

3. V. L. Hansen, Coverings defined by Weierstrass polynomials, J. Reine Angew. Math. 314 (1980),
29-39.

4. V. L. Hansen, Polynomial covering spaces and homomorphisms into the braid groups, Pacific J.
Math. 81 (1979), 399-410.

5. V. L. Hansen, Embedding finite covering spaces into trivial bundles, Math. Ann. 236 (1978), 239~
243,

6. J. Milnor and J. Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton
University Press, Princeton 1974.

KOBENHAVNS UNIVERSITET
MATEMATISK INSTITUT
KOBENHAVN

DANMARK



