MATH. SCAND. 47 (1980), 91-115

3-DIMENSIONAL COHOMOLOGY OF
THE modp STEENROD ALGEBRA

TETSUYA AIKAWA

1. Introduction.

This paper is concerned with the differential algebra (E'S, d'S) related to the
semisimplicial spectrum and with its application to the cohomology H"*(A4)
=Exty" (Z,,Z,) of the mod p Steenrod algebra A ([9; Ch. 6, § 1]), where pis an
odd prime, Z is the ring of integers and Z,=Z/pZ. (Throughout this paper,
except for this section, p always denotes an odd prime.)

To determine the stable homotopy groups of the sphere is one of the most
important problems in algebraic topology. H™"(4) is an important data
related to this problem through the Adams spectral sequence ([1; Th. 2.1, 2.2]).
Bousfield et al. [3; Prop. 2.4, 2.6, § 8, Prop. 2.4'] constructed the mod p
restricted lower central series spectral sequence {E’S, d’S}, . The cohomology
of (E'S,d'S) as a cochain complex coincides with the cohomology H™*(A) of
the Steenrod algebra A as a Hopf algebra.

The known results on H""(A) are as follows. H®"(A4) is trivial by its
definition. H':*(A) is essentially determined by Steenrod ([9; Ch. 1, Lem. 4.2,
Ch. 6, Th. 2.7]). Adams [2; Th. 2.5.1] determined H? *(A), found a complete set
of relations among decomposable elements in H**(4) and found a linearly
independent subset of H**(4) for p=2; Liulevicius [5; Th. 3.0.1] did the same
for an odd prime p; both using the Adams spectral sequence for a pair of Hopf
algebras ([2; Th. 2.3.1]). Tangora [10; Appendix 2] determined H*‘(A) for p
=2 and t—s<70; Nakamura [8; Th. 4.4] determined E°H""(A) for an odd
prime p and t—s<2(p—1)(3p>+3p+4)—2 and found a linearly independent
subset of E°H"*(A4) (which did not contain £, h;., , and h;., , for i24 by the
symbols in Theorem 7.2); both using May spectral sequence ([7]). Wang [11;
Th. 2.11] determined H*"(A) for p=2, using (E'S,d'S).

The main result of this paper is as follows.

THEOREM 8.1. Let p be an odd prime. All generators listed in Table 8.1 form a

basis of H**(A). All relations listed in Table 8.2 form a complete set of relations
among decomposable elements in H>"(A).
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The method to determine H*"(A) in this paper is as follows. We essentially
use (E'S,d'S). But it is difficult to compute H*®"(E'S,d'S) directly.
Accordingly, using the two facts that (E'S,d'S) has a totally ordered finite
basis for each bidegree and that (E'S,d'S) essentially admits an
endomorphism of a cochain complex preserving the order, we reduce the
problem to find a basis (an infinite set) of H%"(E'S, d'S) to the problem to find
as small a subset B, of H*"(E'S,d'S) as we can find a basis by an appropriate
method. Theorem 2.6 gives such an appropriate method. But it is unsuitable to
apply the method to (E'S,d!S) since the endomorphism 6 of (E!S,d'S)
corresponding to 6 defined before Proposition 5.1 cannot be defined such that
0'(EL,S)cE! S for some t' depending on (s, t). Therefore, instead of (E'S,d'S),
we use a new differential algebra (E, d) characterized by Theorem 4.1 which is
isomorphic to (E'S,d'S) not as a differential algebra but as a cochain complex.
Note that (E,d) has no geometrical meaning. .

2. A cochain complex with a totally ordered basis.

In this section we study a general method useful for determining the
cohomology of a cochain complex over a field which has a totally ordered basis
for each bidegree.

A pair (C,d) is called a cochain complex with a totally ordered basis if Cg , is
a module over a field F with a totally ordered basis K, , for each (s,¢), if C
=3 :Cs., (adirect sum), and if d: C — C is a homomorphism with dd =0 and
with dC, ,= C,, . Then an element of C,, is called to be of bidegree (s,t), of
dimension s, and of degree t. Define the cohomology of (C,d) as follows:

H*(C) = ¥ H*'(C), H""(C) = ), H*"(C)  (direct sums) .

We introduce a partial order in C,, by defining that y, >y, if
(.1 Ve = Y CatC,€F (k=1,2), and
aeK,,
(2.2) Cla = Cala>a)e, o F 0y, = 0.
The restriction of this order in C; , to K , coincides with the total order in K ,.
Y12y, means y; >y, Or y;=Y,.

ProrposiTiON 2.1. Let (C,d) be a cochain complex with a totally ordered basis,

y, and y, cocycles in C, ., y, ~y, (cohomologous), y, +y, y, *y,, and y, £y,.
Then there is a y in C, such that y, >y, y,>y and y~y,.

Proor. Set y; and y, as in (2.1). Since y; —y, =dx for some x in C;_, ,, ¢; ,
=c,, (@a>a), ¢; »*0, ¢c;, %0, and ¢, ,#+c, ,, Wwe can choose such a y.
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Forana € K, , (<a) stands for a linear combination of a’ such that ' <a. If
y=ca+(<a) and O%c € F, then define M(y)=a. Let (C,d) be a cochain
complex with a totally ordered basis.

(1) A cocycle y is called minimal if y is a non-bounding cocycle and if y' >y
for each cocycle y' ~y.

(2) A cocycle y is called semi-minimal if y is a non-bounding cocycle and if
M (y")= M (y) for each cocycle y' ~y.

(3) For a cochain zo=ca+ (<a), 0%c € F, a cocycle y is called zy-minimal if
y=ca+(<a), if y is a semi-minimal cocycle, and if y'—z,<y—z, for each
cocycle y' ~y.

ProposiTioN 2.2. Fix (s,t). Suppose (C,d) is a cochain complex with a totally
ordered basis, C;_, , or C, , is finitely generated, and b is a non-zero cohomology
class of bidegree (s,t).

(1) There is a unique minimal cocycle representing b.

(2) There is a unique pair (a,c) of a € K, and of 0%c € F such that if y is a
semi-minimal cocycle representing b, then y=ca+ (<a).

(3) If there is a semi-minimal cocycle of a form ca+ (<a) representing b, and
zo=ca+ (<a)is a cochain, then there is a unique z,-minimal cocycle representing

b.

Proor. Use Proposition 2.1.

THEOREM 2.3. Fix (s,t). Suppose that

(i) (C,d) is a cochain complex with a totally ordered basis;

(i) C, or C,_y, is finitely generated;

(iii) By ,={b;;i€ J,,} is a subset of H*'(C), Y, ,={y;;i€ J; ,} is a set of
semi-minimal cocycles of bidegree (s,t), and y, represents b; for each i € J ,;

(iv) if yi € Yy, y; € Y, and M(y)=M(y)), then y;=y;; and

(v) for each semi-minimal cocycle y of bidegree (s,t) there is an i € J,, such
that M(y)=M ().

Then By, is a basis of H'(C).

Proor. First we will show that B, generates H*'(C). Let b be a non-zero
element in H*'(C) represented- by a semi-minimal cocycle y;. By (v), M(y})
=M (yyy,) for some i(1) € J, .. Hence M ()} —c,yi)) < M (y;1)) for some ¢, with
O%c¢, € F. If yy —c¢,yiy, is a coboundary, then b=c b, Suppose y| —c,y;q, is
a non-bounding cocycle. Then y, =y —c¢,y;;,—dx, is a semi-minimal cocycle
for some x, € C,_, , by induction on the order of M(y,). It follows from (v)
that M (y3)= M () for some i(2) € J, ,. By (ii), repeating this process, we see
that there is a jeJ;, such that y,—cyy;; and yi—cig—Yi+1 are
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coboundaries for 1 <k<j. Hence y) ~X{., cyiy and B, , generates H*'(C).
Secondly we will show thatB; , is linearly independent. Suppose ¥ ; ¢;b;=0 for
¢; € F. By the assumption, }_;c;y;=dx for some x € C,_ ,. Suppose that there
is an ieJ,, such that ¢;+0. Set y,=max{y;;i€ J,,c;+0}. Then M(y,
—c; 'dx)< M(y,), this contradicts the assumption that y, is semi-minimal.

PropPosITION 2.4. Fix (s, t). Suppose (i)-(ii) in Theorem 2.3. Then there is a pair
Y, , and B, satisfying (iii)—(v) in Theorem 2.3.

Proor. Choose a y; of the maximal order in a basis of H*'(C). Replace the
others y; for M(y;)=M(y;) with y,—c,y; for some c; € F such that M(y;—c;y;
<M(y;. Repeat this process.

Let (C,d) and (C',d’) be cochain complexes with totally ordered bases Kj
and K , respectively, over a field F. Then h: (C,d) — (C',d') is called a cochain
map preserving orders if

(i) h: C —» C' is a homomorphism with d'h=hd;

(ii) for each (s, ) there is a t'=t'(s,t) such that h(C, )=C ,;

(iii) if ¢'(s,ty)="1'(s,t,), then t, =t, or h(C,,)Nh(C, ,)={0}; and

(iv) if ye C,,, y € C,, and y>y/, then h(y)>h(y). '

Note that the condition (iv) may be replaced with the two conditions that

(v)ifaeK,, a €K, and a>d, then M(h(a))> M (h(a')); and

(vi) h(a)*0 for each a € K| ,.

ProrosiTiON 2.5. Let h: (C,d) — (C',d’) be a cochain map preserving orders.
(i) h is a monomorphism.

(i) M(h(y))=M (h(M(y))) for each y € C,,.

(iii) h(y) is a cocycle if and only if y is a cocycle.

(iv) If h(y) is a minimal cocycle, then so is y.

(v) If h(y) is a semi-minimal cocycle, then so is y.

Proor. Standard.

Let h: (C,d) — (C,d) be a cochain map preserving orders. A cocycle y of C is

called h-semi-minimal cocycle if M (y— hy' —dx)= M (y) for each cocycle y’ of C
and for each cochain x of C.

For the next theorem, fix the dimension s and suppose that
(i) (C,d) is a cochain complex with a totally ordered basis;
(i) C,, is finitely generated for each t;

(iii) h: (C,d) — (C,d) is a cochain map preserving orders;
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(iv) B,={b;; i € J,} is a subset of H*"(C), Y,={y;; i € J.} is a set of h-semi-
minimal cocycles, and y; represents b; for each iely

(v) if y;e Y, y;e Yyand M(y)=M(y), then y;=y;;

(vi) if y is a h-semi-minimal cocycle of dimension s, then M(y)=M/(y,) for
some i € J.;

(vii) k(i) is a natural number or k(i)=o0 for each i € J;;

(viii) if i € J; and 0<k <k(i), then h*(y;) is a semi-minimal cocycle;

(ix) if i € J, and k(i) <oo, then h*(y,) is a coboundary; and

(x) Mo h(C,)=1{0}.

Set By={(h*}(b); i € J,,0=sk<k(i)} and B, ,=B,NH*'(C).

THEOREM 2.6. Under the above hypotheses (i)-(x), B, and B, , are bases of
H*"(C) and H*'(C), respectively.

Proor. It suffices to verify that B, and Y, ,={h*(y); ieJ, 0=k
<k(i)} N C,, satisfy all assumptions (i)—(v) of Theorem 2.3. For the proof of (v)
in Theorem 2.3, using (x), Proposition 2.5(v) and induction on k, we see that for
each semi-minimal cocycle y there is an h-semi-minimal cocycle y' and an
integer k20 such that y=h*(y')+ (< M(y)).

3. Recollection on (E!S,d'S).

Let X be a semi-simplicial spectrum ([5; Def. 4.1]) whose homotopy groups
n,(X) are finitely generated and vanish from some degree down. Bousfield et al.
[3] constructed the mod p lower central series spectral sequence {E"X,d" X}, ;.
In this section we recall the result of [3] only for the case X =S, the sphere
semi-simplicial spectrum.

CoNVENTION. From now on a binomial coefficient (}) is zero for i<j. t(b)
stands for the total degree (=deg.—dim.) of b in E'S.

THeOREM 3.1 ([3;§ 8, Prop. 2.4, 2.5, 2.6], [4; 14.1]). (1) (E'S,d'S) is a graded
differential algebra with unit 1 over Z, such that

(i) as an algebra E'S is genérated by 4; of bidegree (1,2i(p—1)) for every
integer i21 and by p; of bidegree (1,2i(p—1)+1) for every integer i=0;

(ii) the product is given by

/L,Ap,+" = Z (‘l)j+l<(n~j)([;_ 1)—.1>A|+n jtpiti Jor iz1,n20,

iz0

) ; n—j)(p—1)—1Y\,
AiMpivn = (‘1)”‘(( j)(p. ) >4i+n—jl‘pi+i
jzo J
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+3y (~1)1'(("”])1_(”_1)>p,.+,,_j/1p,.+j for i=1,n20,

iz0

J

. n—j)(p—1)—1 .
Bifpisnsr = (—1)J+l<( ])(pj ) >“i+n—j'lpi+j+l for iz0,nz0,
z0

; n—jp-1-1 .
Hillpi4n+1 = (—1)“1( j)pj Hivn—jlpi+j+1 for iz0,n20;

jz0

Y

(ili) the differential d*S=d" is given by

=% (—l)f(("‘j’(’;.“””)A,,_,-A,- for nz1,

jz1

d'i

R A G T
jz0 J
) (—1y<‘"‘j’j.(” _”)un-jﬂj for n20,
jz1
dt(1) = 0, d*(bb") = (—=1)®(d'b)b' +b(d'b)) for b,b' € E'S .

(2) There is a spectral sequence {E'S,d'S},,, such that (E'S,d"S) is as in (1)
and that {E'S,d'S},, , is exactly the Adams spectral sequence for the sphere ([1;
Th. 2.1, 2.2]). In particular, H"'(EIS,dlS)=Ef,,S=Ext;"(Zp, Z,)=H"'(A).

REMARK. 4; and y; in Theorem 3.1 correspond to 4;,_, and y;_, in [3; § 8,
Prop. 2.4']. Bousfield and Kan [4;p. 102, line 13] confessed that the right side
of the formula for d*u, _, in [3; p. 340] should have been multiplied by —1. We
do not replace the signature in Theorem 3.1 differently from [4].

A monomial v,v,, ...v, of generators (with each v, =4, or u,) is called
admissible if s=0 or if
0, v, =

A
1 " for 12k<s.
’ vn,‘ - ni

s> 0,pn+e > Neyy, & = {

All admissible monomials form a basis of E!S ([3; § 8, Prop. 5.4']).

4. A new differential algebra (E,d).

In this section we introduce a new differential algebra (E,d) such that H™*
(E,d) is isomorphic to H"" (E'S,d'S)=H"" (A) as an ungraded module and
that (E,d) is easy to apply the method in section 2. Let Z’ denote the set of
integers n such that n=0,1 (mod p) and that n21. Let 3 ¢, ;T;T;, ¢; ;€ Z,
denote a sum running over all (i,j) such that i,j € Z’ from now on.
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THEOREM 4.1. There is a graded differential algebra (E, d) with unit 1 over z,
such that

(1) as an algebra E is generated by T, of bidegree (1,n) for ne Z',
(i) the product and d are given by

, . n—j)(p—1)—1
TTyen = ¥ (—ly“(‘ Me=1) )T.»H-,-T,,H,-
jz0 J
for ieZ', n=0,1(p), n20,
[((=i)p—1)—
dTn = Z/ (_ly<(n j)(’i] ) 1>Tn__17; fOr ne Zr ,

jz1
d(1) = 0, d(bb') = b(db)+ (—1)4m®)(db)b’' for b,b' € E, and
(iii) (E,d) is isomorphic to (E'S,d'S) as an ungraded differential algebra.

Proor. Let E denote the Z -module generated by symbols T(n,,. . ., n,) such
that

4.1) $§20, meZ (1Ziss), pn > ny,y (15i<s),

where for the case s=0 there is only one T(n,,...,n) and it is denoted by 1.
Let f: E'S — E be a homomorphism of Z -modules defined by

f(T:ll e T:h) = (— 1)8("h'..,n‘)T(nla~ . '9ns) )
where T, =4; (i21), Ty =p; (i20) and
eny,...,n) = #{@,j) ;1 Si<j<s,n=0(@p),n =1(p)}.

Then fis an isomorphism of ungraded Z,-modules. Define the product and
the differential d in E such that fis an isomorphism of ungraded differential
algebras. Let us denote T(n)=T, and define the bidegree of T, is (1,n). Then
T(ny,...,n)=T,T, ... T, and (E,d) is a differential algebra as requested.

Let us denote T(n,,...,n)=T,T, ... T, for n;e Z’' (1=5i<s) if pn;<n;,,
for some i. A monomial T(n,,...,n,) is called admissible if s=0 or if s>0 and

pni>n,y (1Si<s)

COROLLARY 4.2. (1) f induces an isomorphism f*: H"*(E'S,d'S) — H""(E,d)
of ungraded modules.

(2) All admissible monomials T(n,,. . .,n) form a basis of E.

In general, (¥: T(n,,. . .,n,), B) stands for a linear combination of admissible

Math. Scand. 47 — 7
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monomials T(n,,. . .,ny) satisfying the condition B. It follows from Corollary
4.2(2) that the set of admissible monomials in E of bidegree (s, t), that is, the set

n=t, pn;>n;,; (1=5i<s)}

v

K, ,={T(ny,...,n);n e Z(1<i<s),

]

i=1

is a basis of C;,=E,, We introduce a total order into K, by defining
T(ny,...,n)>T(ny,...,nyY if

lj=ss, nm=n(15i<j) and n;>n;.

By the way in section 2, (E, d) is a cochain complex with a totally ordered basis
and E,, is finitely generated for each (s,t). Hence all results in section 2 hold
for (C,d)=(E,d).

If 1<s<r, T(ny,...,n,) and T(n},...,n;) are admissible, then in the
notations

cT(ny,. .., n)+(<(ny,...,n), cT(ng,...,n)+(<"*),
cT(nyg,...,n)+(ST(nY,...,nY)), cT(ng,...,n)+ (<< ")

for O%c e Z, the four sorts of the second summands stands for linear
combinations of admissible monomials T'(nj,. . .,n,) satisfying

T(ny,...,n)) < T(ny,...,n), Tny,...,n)) < T(ng,...,n,),
T(ny,...,ny) £ T(ny,...,ny), T(ny) < T(n,),
respectively. If y=3""_, ¢,T(n; 4. ..,n,4), 0%c, € Z,, is in admissible form, m
2jzlL,n ,=...=n ;>n j;, and
Ty .. -sn54) > T(ny . ..,n,) for k<i,
then define
j

M@y) = T(ny,y,. . on54), my) = nyy,  My()) = Z Ty .. .ng,) .

k=1

ForMmuLAE 4.3. The following formulae hold under the convention that a
summand in the right side exists only if it is admissible.
(1) f n=n'p*+kp, 20, 0<k<p, i=0,1 (p) and i=1, then

k
—TG,pi+n) = Y C)T(i+n-pj,pi+pj)+(éT(i+n—p2))~

j=o

(2) If n=n'p*+kp+1, 0<k<p, i=0(p) and i=p, then
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. k—1\_ S
—T(i,pi+n) = Z j T(i+n—pj, pi + pj)
k
Z<>T0+n pi—1Lpi+pji+ )+ (S T(i+n-p?).

(B) If n=n'p*+kp+1,0<k<p, i=1(p) and i=1, then

k

—T(,pi+n) = 'Z (?)T(i+n—pj—l,pi+pj+1)+(§T(i+n——p2)).

(4) If n=n'p*> +kp, 20 and 0<k<p, then
ko (k
aT, = 3 <j>T(n—pj,pj)+(§T(n—pz))-
=1

(5) f n=n'p*+kp+1, 20 and 0<k<p, then

k-1

i, = Y <"]‘.1>T(n—pj,pj)

k
Z ( )T(n pi—1L,pj+ 1)+ (£T(n—p?).
(6) If n=p(p?), then

p—1 2 N2
dT, = T—p,p)+ ¥, (‘" rr ) )T(n—pﬁ,pﬁ)

+Z ((n pp~ ) (n_plj_p,p2j+p)+(§T(n-173))-

(7) If n=p+1(p?), then
dT, = T(n—1,1)+ T(n—p—1,p+ 1)+ (n—p*—p—1)p~2T(n—p?,p?)
+(n—p*—p—1p 2T(n—p*—1,p*+1)
+(n—p=Dp *T(h—p*—p—1,p*+p+ 1)+ (ST(n-2p%).

Proor. As an example, we prove only (4) here. It follows from Theorem 4.1
that

=Y T+ (ST-p), 0, = (- w(‘”""” ”‘1)

i=1 J

The coefficient Q; is converted to



100 TETSUYA AIKAWA

(9 +kp—jp)(p—1)—1

0, = (—1)'<"” Pt )
=(—JY(MT_”+k—j‘”f**P—k+f—Dn+@—15

jp

(p—k+j—1 (p—k+j—1)(p—k+j—2)...(p—k
5(_1)1(” + )=(_1),(P Hi—D—k+j=2)...(p—h)

j!
= (f) (mod p)

for 1<j<k, and to

(“1)j<n'p-—n’+k——j)p2+(p—k+j—1)P+(P‘1)>
jp

Qm‘

(—1)f<j"';_l) = 0 (modp)

for k<j<p, where n=n'p. Here we use Lemma 1.2.6 of [9]. Using the lemma
similarly, we can show that if n=n'p+n”, 0=n"<p, n 20, j=jp+j’, 20,0
<j’<p and j”>n", then Q;=0(p).

5. Fundamental properties of the differential algebra (E, d).

In this section we study the fundamental properties of the product and the
differential of (E,d).

For the next proposition, define a homomorphism 6: E — E of Z -modules
by

6(T(ny,...,n)) = T(pny,...,pny), 6(1) = 1

for each monomial T(n,,...,ny).

PROPOSITION 5.1. 6 is an endomorphism of a differential algebra. 0 is a cochain
map preserving orders.

Proor. It suffices to show that 6 is compatible with the formulae of the
product and the differential given in Theorem 4.1 (ii).

For the next proposition, define

s—1 -1

e(T(ny..m)) = m+ 3. (=pmitniy) = m— % (=1,

i=1 i=1

for a monomial T(n,,...,n,).
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ProposiTioN 5.2. If T(ny,...,n,_,) is admissible, s=1, n=n, and n
2e(T(ny,...n)), then

T(ny,...n) = (3 : T(ny,...,n),n2ny=n,).

Proor. The proof is by induction on s+n,. The case s=1 or n;=1 is trivial.
The case s=2 follows from Theorem 4.1 (ii). Assume that m>4 and that the
proposition holds for all pairs (s, n,) with s+n,<m. Let s+n,=m, s>2 and n,
> 1. Rewrite T'(n,,. . .,n,) first by applying Theorem 4.1 (ii) to the (s — 1)st ~ sth
factors, secondly by applying the induction hypothesis to the first~ (s—1)st
factors, and thirdly by applying the induction hypothesis to the first ~sth
factors.

For the next theorem, define

m(T(ny,...,n)) = max{e(T(n,,...,n)); 1=5i<s)

for a monomial T(n,,...,n,).

THEOREM 5.3. If T(n,,...ny) is any monomial, then

T(ny,...,n) = (3 : T(ny,...,n), m(T(ny,...,n))2n}

[\%

ny).

Proor. By induction on s. The theorem for the case s=2 is exactly
Proposition 5.2 for the case s=2 and n=m(T(n,, n,)). For the proof of the case
s23, rewrite T(n,,. . .,n,) first by applying the induction hypothesis to the first
~ (s—1)st factors, and secondly by applying Proposition 5.2 for the case n
=m(T(ny,...,ny)) to the first ~sth factors.

ProrositioN 54. If T(ny,...,n,) is admissible, then
(dT(n)T(ny,...,n) = (O T(ny,...,np4y),  ny>ny>ny/p).
Proor. By Theorem 3.1 (ii),

dT(n,) = }: aT(ny wny i), 0 F cx€Zyng > ny o > ny/p,
k

in admissible form. Here the last condition follows from the convention that (j-)
=0 for i<j. By Theorem 5.3,

T(ny 4,0y 0N .. 0) = Z C,iT (Mg kise o oo Mgt 1, ki) »
i

O%c,,€Z,,

in admissible form and n,>n, , ;2n, ,>n/p.
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For ne Z, let E(n) denote the Z,submodule of E generated by all
admissible monomials T'(n,,...,n,) such that s=0 and n, <n.

ProrosiTiON 5.5. E(n) is a differential subalgebra of (E,d).

Proor. Use Theorem 5.3 to show that E(n) is closed under the product. Use
Proposition 5.4 and induction on dimension to show that E(n) is closed under
d.

ProposITION 5.6. Let y=T,x+ (< T,) be in admissible form. If dy=0, then dx
=0.

Proor. By Theorem 5.3 and Proposition 5.4,
dy = T,(dx)+ dT)x+d(<T,) = T,(dx)+(<T,)
in admissible form. If dx =0, then dy 0.

There is a non-bounding cocycle y=T,x+ (<7, such that x is a
coboundary. For example, T(2p,p? p?) is a minimal cocycle and T(p?, p?)
=2-14T(2p?).

ProposiTiION 5.7. Let y=T(n,,...,n)x+ (<T(ny,...,n))+0x" be in ad-
missible form and either T(n,,...,n;) ¢ Im0ordegx =0 (p). Ifdy=0, then dx =0.

Proor. Similar to the proof of Proposition 5.6.

6. Representing cocycles in E.

In this section we study in what range it suffices to find a set Y| of
representatives in Theorem 2.6 in order to determine H%"(E,d)=H*"(A).

THEOREM 6.1. Suppose that

@) y=2r-1aT(ny k.. .,ng4), 0Fc, € Z,, is a minimal cocycle in admissible
form of bidegree (s,t);

(b) s<t; and

© T(ny .. ng )>T(ny .. .,n0 ) for k<i.
Set w = max{j; n,,;=0(p? for 1Li<j},

v =max{j; n,;=0(p?), n,;>p* for 15i<j}.
T hen
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(i) ns ,=0(p) for all k;
(i) mz1, 1svE=wsm+1;
(iii) n,,=0(p?), ny_ =0(p) for k<w,
(iv) if v<w, then any one of (1)-(3) holds:
(1) ng,,=p% n,_y ,=0(p?),
@) ng,=p* ng_y ,=pp?),
3) n,,,=p% n,_y ,=2p;
(v) ng .\, =p;
(vi) any one of (1)-(4) holds:
(1) ng_3,w=1(p), ny_y w=p+1,
(2) ng_5,,=1(p), ny_y,w= —p+1(PY), Cyr1=—Cy»
(3) "s—],wzpz—P, w+p—25m, cw+iT(n1,w+i" . "ns,w+i)
=c (=D (i+ 1) T(ny .. sng_3 s P*— (i+1)p, (i+1)p)
0=i=p-2),
(4) ng_3,w=1(p) PN—3 W —P=Ng—y 4 523, ns_q ,=0(p),
ne_y,wE —p(P).

Proor oF (i). Set
q
y = Z yiTil9 Vi = (Z : T(nls' . "ns~i)a ns—i:':l) jor Oéléq ’
i=0

and

Vo= 2 Ty o sng_gi), OceZ, m21,
k=1

in admissible form, where T(n; y,...,n5_, )>T 0y ;...,n_, ) for k<i. It
suffices to show the following two statements:

(A): ng_, =0(p) for all k;

(B): g=0.
First we will show (A). Suppose n,_, ,=0(p) for 1 =k <j, n,_, ;=1(p) and 15j
<m'. It follows from Theorem 5.3 that

6.1 dy=(Y: Tny,...,n_ )T, iSqn_;2p)+ciz+(<2)%0,

where z=T(n, j,...,n,_4_y n,_, ;—1)T{*'. This contradicts the assumption
dy=0. Secondly we will show (B). If g=1, then

y4+d((=1)%,T(ny (... .0 gy g  + DT <y

which contradicts the assumption that y is minimal.
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ProOF OF (iii) (the second part). The assumption that
N1,k = 0 (p) for k<]9 e = 0 (Pz) for ké]’ and ns-l,j =1 (P)

incurs a contradiction similar to (6.1).

PRrOOF OF (iii) (the first part) and (v). The assumption that
n =0 (%) for k <j, n; %0 () andn,; +p
incurs a contradiction similar to (6.1).
PROOF OF (v). Suppose n,_, ,*0, p(p?) and n,_, ,=+2p. By Theorem 5.3, (iii)
(the first part) and (v), set
62 y=0Q: Thy,...,n), n,_,=0(p), n,_, =n,=0(p?), n,>p?
+ Ty e sNg—z V1 H(<T(ny ... 05_32,)
y1 =&, Tney 0, )+ (0 Tlny,ny), ny=0(p), n,=0(p%) ,
T(ny,n)<T(ng_y ,n) -

It follows from the reason of degree and dy =0 that dy, =0. On the other hand,

nS- vl -1
dy, = _< ll’lp )ch(ns_l,,,~2p,2p,p2)+(<...) +0.

ProoF oF (vi). First consider the case n,_; ,=1 (p). By the admissibility,
n,_, .2p+1. Suppose n,_, ,=2p+1. Set

(6.3)
- 1’ T(nl.w+l"'"ns,w+l) = T(nl,wa""ns-2,w’ns—l.w—p’2p)
0, otherwise.
Since dy=0,

2cw+lc_‘(ns—lw—p_l)p—lcw = 0’ cw+lc~(ns—l.w—1)p—lcw =0.

Therefore c=1, ¢, = —c,4y, and n,_, , = —p+1 (p?), In the case n,_, ,=
p+lorn,_, ,=—p+1 (p?), by the method similar to (A) in (i), we see that
ny_3,w=1 (p). Secondly consider the case n,_, ,,=0 (p). Since dy=0,

(64) ns—l,w = p or “2cw-l>lc—cwn.v~l,wp_1 = 0» ns—l.wgzp” ’
where ¢ is defined in (6.3). Since y is minimal,

(6'5) Bs_y,w = —PD (p2); or
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(6.6)

Phg—2w=P =M1,y N3 =1(p),s23, n_y,* -p @ .
First consider the case (6.5). By (6.4), we have c=1 and 2¢,,,,= —c,,. By the
method similar to (6.3), y,=c¢,T(n,_{ ,,p)+ (<...)is a cocycle and y, =c,L,
(see Remark after Theorem 7.2) and hence (3) in (vi) holds. In the case (6.6),
according to (6.4), c=0. This completes the proof of Theorem 6.1.

COROLLARY 6.2. Let y be a semi-minimal cocycle in admissible form in (a) of
Theorem 6.1 satisfying (b)—(c) of Theorem 6.1. Then (i)—(vi) with (3)—(4) of (vi)
omitted hold.

ProvposITION 6.3. Let y be a coboundary, s=1 and

y= (2 T .. ,ny), sy =0 ().

Then there is a cochain x such that dx=y and that
X = (Z : T(nh'-"ns), ng = 0 (p)) .

Proor. It suffices to show the two statements similar to (A) and (B) in the
proof of Theorem 6.1 (i).

COROLLARY 6.4. If =2, y is a cocycle, and

y= O ;Thny..,n), n,=1(p) for 1Zi<s, n,=0 (p),

then y is a minimal cocycle.

Proor. Let y—dx<y for some cochain x=cT(n},...,n,_)+(<...),
O%ceZ, By the reason of degree, nj=1 (p) for 1<Si<s—1 and dx
=cT(ny,...,n_,,n,_y—1,1)+(<...). This is a contradiction.

ExampLE 6.5. It follows from this proposition that y=T(p+1,...,p+1,p) is
a minimal cocycle of bidegree (s,sp+s—1) for s=2. y corresponds to )
=W ly ... Ui, in E'S of bidegree (s,2(p—1)s+s— 1) through f. y’ represents
—h_,.,,, in Proposition 7.2 for s=2 and @, in Theorem 8.1 for s=3.

7. Recollections on H'*(4) and H>"(A).

ProrositioN 7.1 ([9; Ch. 6, Th. 2.7], [6; Th. 3.0.1]). All generators listed in
Table 7.1 form a basis of H""(A).
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Table 7.1. A basis of H""(A).

enerator corresponding representative degree | range of
g cocycle in E, . cocycle in Ej S () indices
. Ap') 2p-1)p'| 20
hi T(pH- l)
Ho 1 i=—1

ProrositioN 7.2 ([6; Th. 3.0.1]). (1) All generators listed in Table 7.2 form a
basis of H>"(A).

Table 7.2. A basis of H>"(A).

enerator corresponding representative degree range of
& cocycle in E, . cocycle in E} S (1) indices
APk, pY) 2(p—1)(p*+p) i-22k20
hihy T, pY) HoA(P) 2(p—1p'+1 iz, k=—1
Lollo 2 i=k=-—1
Ik Ly Ly Z(P—I)Pkﬂ k=0
hy2.1 TP, p**?) AQRp4 P 2(0-D)p*+p**Y) [ k20
APk, 2p*1 ) 201 +2p**") | k20
hi.1,2 T(P"H,ZPHZ)
HoA, 4(p—1)+1 k=-—1

(2) All relations listed in Table 7.3 form a complete set of relations among
decomposable elements in H>"(A).

Table 7.3. A complete set of relations among

decomposable elements in H>"(A).
by = 0 (k2Z0)  hysihy = 0 (k= —1),

the relations by the fact that H"*(A4) is commutative.
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REMARK. h, (k=0), h_,, Z, hy. 2.1, hgo 1,2 (k20) and h_,., , in Propositions
7.1-7.2 corresponds to h, (k=0), do, Aw M Vi (k=0) and ¢ in [6; Th. 3.0.1],
respectively. Define

p—1

Lo= 3 (=0T i ),

i=1
p—1

L= Y (=1 hiptp—i,p) .

k=1

For a ring R, let R{#,,1,,. ..} denote the free module generated by ny,1,,. . ..
H?"(E) is expressed as a module over the polynomial ring ZP[B'] as follows:
H2‘*(E) = Zp[o*]{h—lh—l’hih—l’AO’hO;Z,l’h—l;1,2 5 lgl}/(g‘(h—lh—l)) ’

where for a base n € H>"(A4) the same symbol # stands for f*(n).

8. Determination of H>"(A).

In this section we determine H>"(A), using Theorem 2.6.

THEOREM 8.1. Let p be an odd prime. All generators listed in Table 8.1 form a
basis of H*"(A). All relations listed in Table 8.2 form a complete set of relations
among decomposable elements in H>"(A).

REMARK. As seen in Table 8.1, we can choose a basis of H»(A) such that
each generator in the basis, except for h 4;’s, is represented by a monomial in
E'S. by, ;. stands for the indecomposable generator in H™**(4) represented
by a monomial in E'S corresponding to a monomial T(j,p**?, j,p**2, j;p**3)
for 15j,<p (i=1,2,3).

Proor. Use Theorem 2.6 for the case C, ,=E, , and h=0. Trivially (i)—(iii) of
Theorem 2.6 hold. We will find B and Y satisfying (iv)—(vi) of Theorem 2.6. It
follows from Corollary 6.2 that each representative y; in Y5 is written as

y; = ¢T(ny,nyn3)+ (< T(ny,nyn,))+0x",
0+ ceZ, T(n,nyny) ¢Imo,

in admissible form satisfying any one of the following conditions:

(8.0) ny =n, =n3 =1,
(81) n; = O (pZ)’ n3 > p2 °
(8.2) ny = p*,

(8.3) ny =p.
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First, in section 9, we will find a set Y(1) of #-semi-minimal cocycle y; under
the condition (8.1) such that Y)(1) satisfies the assumptions (iv)—(vi) of
Theorem 2.6 with Y5 replaced with Y’(1). Secondly we find similar sets Y5(2)
and Y5(3) under (8.2) and (8.3), respectively. Put Y’ to be the union of Y%(1)
—Y5(3) and of T(1,1,1); that is, as Y’ we may choose the set listed in Table
8.3. Verify that Y’ and their cohomology classes Bj satisfy (iv)—(vi) of Theorem
2.6. It follows from Proposition 8.2 that for each y; in Y7 there is a k(i)
satisfying (vii)—(ix) of Theorem 2.6, that k(i)=1 for any one of

(84) T3, T(,1,p% for k 22, T(1,1,3p) for p + 3,
T(1,1,6p) forp = 3,

and that k(i)=co for the others in Y}. According to Theorem 2.6 and the
isomorphism f, we can choose representatives Y; of the basis B,, the basis B} of
H*" (A) and their representatives Y’ corresponding to B; and Y, as the
columns “corresponding cocycle in E; +”, “generator” and “representative in
Ej} ,S” in Table 8.1, respectively. For the relations, use the differential algebra

structure of (E'S,d'S).

ProvositioN 8.2. (i) If y is any one of cocycles listed in (8.4), then y is a
minimal cocycle and 0(y) is a coboundary.

(ii) If k=0 and y is any one of cochains in Table 8.3 except for (8.4) and for
LoT(p'), i=4, then 6*(y) is a minimal cocycle.

(iii) If k=0 and y=L,T(p"), i=4, then 6(y) is a semi-minimal cocycle.

PRrOOF. As an example, we prove that y= T (p*, p’, p’) is a minimal cocycle for
0<k<=<j—2<i—4. By the direct calculation, y is a cocycle. Suppose that y —dx
<y for some cochain x. Calculating dT(p'+ p’ + p*—n,n) for all n € Z', we see
that

TP +p +p*~p" P+ (<...), 0sh<k
x =1 cTP+p,pH+(<...)
TP +p—p* 450 D+ (<),
for some 0%c € Z,,. In the first and third cases, M (dx)> M (y) and hence y is
not a minimal cocycle. In the second case, x=cdT(p'+p'+p"+ (< T(p'

+p’, p4), which is reduced to the other cases. Hence the three cases incurs
contradictions.

For the next proposition, suppose that

(85) y = zo+ ), Tyx, is a cocycle, where Y is in admissible form ,

k<n, k
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and

8.6) zo = ¢T(ny,...,n)+(<...),0 £ ce Z,, is a cochain in admissible
form .
If there is a natural number
ko = max{k, € Z' ; ny>ky>m,(d(T, x,))
= my(dzo), my(d(T,,x,) = my(d(T,x,)) for all ke Z'}

then T, x,, is called the maximal summand for (y, z,) and is denoted by S(y, z,).
By the definition, x, is a cocycle.

ProposiTiON 8.3. Under the assumption (8.5)—(8.6), let T, x, = S(y, z,) and set
K'=m, (d(Tkoxko))'

(a) x, is a cocycle for k>k".

(b) M,(d(Xy Tixi)) +dx, =0 if k" >m(dz,).

© Mz(d(Zk Tix) + M, (dzo) +dx,. =0 if k" =m, (dz,).
Here the two summations run over all k € Z' such that

ko = k > k', my(d(Tx) = K .

PRrooF. (a) is proved by induction on k. (b) is proved similarly to (c). (c) is
proved by the equation

0=dy= T,,,(Mz(d(Z Tkx,‘+zo>>+dx,‘n>+(< L)
k

ProposiTION 8.4. Under the assumption (8.5)-(8.6), if there is not the maximal
summand for (y, z,), then x, is a cocycle for k>m(dz).

Proor. Easy.

9. Preparations for the proof of Theorem 8.1.
PRrorosiTION 9.1. Suppose (a)-(c) of Theorem 6.1. Set

v(r) = max{j; n,;=0 (p*") for 15i<j}.
Then

(l) ns~2.k§O (p)9 ns-l.kEO (p2)’ ns,kEO (pS) fOY 0(3)§k<v(2)»
(ii) v(2) and v(1) are exactly v and w in Theorem 6.1.
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ReMARk TO TaABLE 8.1. M;, N;, M and N; are defined as follows.

p-1 (_I)H-l

M, =Y

k=1 l

{T(2Pi+1,pi+2_kpi+1,kpi+l)_2T(2pi+l_kpi’kpi,pi+2)
—2T(pi+1—kpi,pi+l+kpi,pi+2)} R
p—1 (_1)i+1

N, =Y i

k=1

{ZT(pH— 1’ 2pi+2 __kpi+ l’ kpi+1)

+2T(pi+l,pi+2—'kpi+1,Pi+2+kpi+l)—T(pi+1—kpi,kpi,zpi+2)} R
p—1 (_1)i+1

M, =Y

k=1 !

{A@p', P! —kp', kp') = 24(2p —kp'~ ' kp'™ 1, p'T )

—2/1(pi—kpi_l,pi+kpi_l,pi+l)} ,

p—1 (_1)i+1

{24(p', 29" —kp', kp) + 2A(p', p'+ 1 —kp, p't ! + kp')

—A(p'=kp "t kp'm 1, 2pT )}

k=1 l

Table 8.2. Relations among decomposable elements in H 3% (A).
Relations following from the fact that H"™"(4) is commutative.

hi+1hihj = 0, hk;z.lhk—l =0,

hl%hi =0, M2, = 0, p * 3,

hk+2Ik = Zk+1hk+1’ hk+1hk;2.1 = hk;l,zhk ’

hk+lzk = Myr2,1he P = 3, hi;l,zhi+2 =0,

Zi+1hi = hi+1hi;1,2a p =3 hi;1,2hi+l =0,p#+3,
hi;l,2hi—1 =0,

hk;2.1hk+2 =0,
where i2 —1, j=—1 and k=0.

h—1;1.2h—1 =0,

PROOF OF PROPOSITION 9.1. Let n,_, =0 (p), n,_, , =0 (p?) and n, , =0 (p*)
for k<j, and n,_, ;=0 (p), n, ;=0 (p*). It suffices to show that n,_, ;=0 (p)
and n,_, ;=0 (p?). Since y is in admissible form, n,_, ;>p. First suppose
n,_, ;%0 (p?). By Theorem 5.3, (iii) (the first part) and (vi) both in Theorem
6.1, set y as (6.2) with v replaced with j. It follows from the reason of degree and
dy=0 that dy, =0. But a contradiction

dy, = cjny_y, p ' T(ny_y j—ping ;=P +p,p)+(<...) £ 0

occurs. Hence n,_, ;=0 (p?). Secondly suppose n,_, ;%0 (p). Set
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Table 8.3. 0-semi-minimal cocycles.

0-semi-minimal cocycle its maximal monomial range of
y M) indices
(1) T(L,p,p) T@ —p* ' +p—p+1,p* —p* +p,p?)| 25j<i-2
T(1,1,p) T(p'-2p+1,p+1,p) i=2
T(1,1,1) T(1,1,1)
() TL T2 —p*t—p+1,p " —p*+p,p?) i1
2T\Lo+dT(p*—2p+1,2p) | T(p*—2p,p+1,p)
i T(p'—p*>+p% p*—p% p?) iz4
LoT(P) T(pl “2P, 2P, pZ) i=2
T,Lo T(p,p*~p,p)
(3) T@p,p% pY) T(p'—p*—p*+2p,2p% p) iz4
T(2p,p% p?) i=2
T(1,2p',p'*") TQp'-p+1,p"*' —p*+p,p?) i22
4 T(@1,2p,p) TP —2p*+p+1,p*+p,p?) i3
T(l,pi,2p1+l) T(pi+l+pi_p+1’pi+l__p2+p,p2) lgz
(5) T(1,2p,3p?) T(p*+p+1,p*+p,p) | p#3
(6) T(1,2p,2p% TP +p*+p+1,p2+p,p?) . p=3
(7 T({1,3p,p?) T(p+1,2p,p?) p+3
(8) T(2p,p%2p) T(p*—p*+2p,2p%, p’)
9) T(3p,2p%p% T(3p,2p% p?) p%3
(10) T(1,1,3p) T(p+1,p+1,p) p+3
(11) T(1,1,6p) T@4p+1,p+1,p) p=3
(12) M, Tp? p*—p*,p?)
(13) N, T(*+p% p*-p*p?)
y = (Z : T(nls- . ~,ns), ns—ZEO (p)9 ns—l EO (pl), nsEO (pS))

+T(nyjp. - sfs_3 1 +(<T(ny, .. o hg_3,)) )
i =T, )y2+ T3, ;— Dy3+(<T(n,_,, ;- 1),

]

Y2
Y3 = (Z : T(”x,"z)s HIEI (p))

It follows from the reason of degree and dy =0 that dy, =0. By Proposition 5.6,
dy, =0. By dy, =0 and by the reason of degree, dy; = — T,y,. By Theorem 7.2,

ch(n,_,,j,ns,j)+(< ),
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(91) Y2 = _ch(pr,pi)’ 2 é r § 1_29 chhi g 2; ch(zpi’pi+1)’i g 2;
—c;T(p,2p"*Y), i 2 2; ¢;m™'dT (mp)+ (< T((m—1)p', p)),
m=%0(p), m22.

If y, is non-bounding, then so is T,y, by Proposition 8.2, which is a
contradiction. Hence

y, = ¢;m YT (mp), m £ 0 (p), m 2 2,

y3 = —em ' T(L,mp)+cdT(mp'+1), ¢ € Z,,.

¢ +0 contradicts (i) of Theorem 6.1. Since y is minimal, mp* = pn,. Since T (n,
—1)y, is in admissible form, p(n; —1)>mp'—p+ 1. These are contradictions.
Hence n;_, ;=0 (p). The proof of (i) is easy.

ProrosiTioN 9.2. Suppose (a)—(c) of Theorem 6.1. Set v(r) as in Proposition
9.1. If s=3, then

nx = 0 (p?), ny, =0 (P, n3 =0 (p*)  for k<v(3).
Proor. Similar to the proof of Proposition 9.1. Raise the power of p by one.

ProrosiTioN 9.3. If
y = cT(ny,n,, p°)+(<T(ny,ny))+0x, 0*ceZ,,
T(n)x'+ (< T(n,))+6x

is a semi-minimal cocycle in admissible form, then
x' = cTQpp3, n =2p(p?) or

x = cTQ2p%pY), n, =3p,p+3.

PRrOOF. Since y is admissible, n, = 3p, n, = 2p? and n, 2 4p(n, > 2p?). It follows
from Theorem 6.1 and Proposition 9.1 that n, =0 (p) and n, =0 (p?). The case
n,=0,p (p?) is reduced to (8.2)-(8.3) and is omitted. Set y=3, <, T,x; in
admissible form. By Proposition 5.6, x, is a cocycle. By Theorem 7.2,

X, = ¢TQ2p?,p*); —cT(p?,p?); —cT(p*p) i 2 4 cLy;
em~ YT (mp*)+ (< T((m—1)p,p*)), m £ 0 (p), m =2 2.

Suppose that n, £2p (p?) and n, =4p. Then

Math. Scand. 47 — 8
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d(T,x,) = ¢'T(n,—3p,3p2p%, P)+ (< ...);
cT(ny,—2p,2p, p2pY)+ (.. .);
cT(n,—2p,2p,p%,P)+(x...); ¢T(ny—p,p)L,+ (< ...);
¢T(ny—p,p)AT(mp*) + (< T((m- 1P, P°))+(x<...),

for 0*c € Z, respectively. By Theorems 7.2, 6.1, x,=0 for n,>k>n"
=m,(d(T, x,)). Thus dx, .= —M,(d(T,x,)). It follows from Proposition 8.2
and dy=0 that x, is a coboundary. Since y is semi-minimal and in admissible
form, mp*2pn, > (m—1)p3. Therefore x, _,=—cm 'T(p,mp®)+ (a cocycle).

By Theorems 7.2, 6.1, (a cocycle)=0. Hen'::;px,,l _p=cm~'T(mp*—p*+p,p*)+
(<...). This contradicts the assumption that y is in admissible form.
ProrosiTiON 94. If
y = cT(n,2p%,p)+(<...)+0x, 0% ceZ, n, =2p (p?),
is a semi-minimal cocycle in admissible form, then
y = cT@2p,p*2p")+ (<M(T(2p,p?,2p%)) or
y = cTQp,p",p)+(<M(TQ2p,p",p9), qz4.

ProoF. Set y as in (8.5)—(8.6),
zo = ¢T(2p, p*,np%), n" = m,(dz,), and
np? = m+p*+p*-2p,n£0(p),n21,q22 np 2 p+2p*.

Let y be z,-minimal for a change. By Theorem 5.3 and Proposition 5.5,
(9'1) ch((n— I)Pq_p3_P2+2P,2P2,p3,Pq)+ (<< .. ) ’
g=2n2p+3;q=3,n=23;q25n22

dzo = } enT((n—1)p*—=2p*—2p*+2p,3p%, 2P, pY)+ (< ...), q=4, n=2

—cT(2p,p*, 2p%, p°), q=2, n=p+2
0, (@.m=(3,2); n=1, q24.

First consider the first three cases of (9.1). Using Propositions 8.3-8.4, there is
no S(y,z,) and dx,.. = M(dz,). Therefore, either of the followings follows from
9.1):

1) g=2,n2p+3, n" = nm—p=-2p*+2p, p + 3,
Xy = —cT(Q2p% p*+p*)—2c37'T(3p% p°);
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@ q=2n=p+2,n" =2p,p+*3, x,. = —c3"'T(3p%p’).

The second case contradicts the assumption that y is in admissible form.
Secondly consider the first case. Set z, =z, + T,,..x,- and let y be z,-minimal for
a change. By theorem 5.3,

dzy = =37 'T(n,—p*—p,p, 305 P+ (< ...).
Using Proposition 8.3-8.4, we see that there is no S(y,z,) and
dxn"-l = _MZ(le)+CT(1a3p,p2)'

Since p 3, this contradicts Proposition 8.2. In the last case of (9.1), z, is a
minimal cocycle by Proposition 8.2 and hence y=z,+ (< M(zy)).

REFERENCES

1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv.
32 (1958), 180-214.

2. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960),
20-104.

3. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger,
The mod p lower central series and the Adams spectral sequence; Topology S (1966), 331-342.

4. A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a
ring, Topology 11 (1972), 79-106.

5. D. M. Kan, Semisimplicial spectra, Illinois J. Math. 7 (1963), 463—478.

6. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations,
Mem. Amer. Math. Soc. 42 (1962).

7. J. P. May, The cohomology of restricted Lie algebras and Hopf algebras, Thesis, Princeton Univ.,
1964.

8. O. Nakamura, On the cohomology of the mod p Steenrod algebra, Bull. Sci. & Eng. Div., Univ.
of the Ryukyus, Math. & Nat. Sci. 18 (1975), 9-58.

9. N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, 50,
Princeton Univ. Press, Princeton, 1962. )

10. M. C. Tangora, On the cohomology of the Steenrod algebra, Thesis, Northwestern Univ., 1966.

11. J. S. P. Wang, On the cohomology of the mod2 Steenrod algebra and the non-existence of
elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
TSUSHIMANAKA

OKAYAMA-SHI, 700

JAPAN



