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ANALYTIC CONTINUATION OF FUNCTIONS
DEFINED BY MEANS OF CONTINUED FRACTIONS

W. J. THRON and HAAKON WAADELAND

1. Introduction.

We begin with a brief review of the definition of a continued fraction, with
variable elements, as well as the notation to be used. Let D be a region in the
complex plane and let two sequences of complex valued functions {a,(z)},
{b,(2)}, n21, z € D, be given. Then we define

a,(2)
b,(2)+w

Sa(z,w) =

and
SP(z,w) = 5,41(2,8%(z,w)), 0<nsN-1,
SW(z,w) =

We then have, using one of the standard notations,

Ayt (Z) aN(z)

KW = Dt B @AW

Instead of S{P(z, w) we shall usually write Sy(z, w).
The continued fraction algorithm K,

R ( n(z) _ 4@ a0 a,(2)
n=1 \b,(2) bi@)+b,2)+...+b,(2)+...

then is the function that associates with the sequences of elements {a,(z)}.
{b,(2)} the sequence of approximants {Sy(z,0)}. The notation K2, (a,(2)/b,(2))
is also used for limy_, ., Sy(z,0), if it exists.

In this paper we shall consider only limit periodic continued fractions, that is
those for which
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lima,(z) = a(zy and limb,(z) = b(2)
exist for all z € D. The fixed points of the mapping
a(z)

S(Z, W) = m

’

considered as a function of w, are the solutions of the quadratic equation
x2+b(z)x—a(z) = 0.

Let one of the solutions be x(z), then the other one is — (b(z) + x(2)).
If in the course of an argument, as for example in Section 2, the variable z is
held constant or does not occur we shall simply write
a, b, a, b, x
and
aﬂ
b,+w

SNOwW) = w,  SP(W) = Sy(w).

Sa(W) =

S (w) = Sn+1 (S&'}* ”(W))

This article is in a way a continuation of our investigation [7]. The ideas are
similar but the emphasis has shifted. In the earlier paper our aim was to find a
modification of the approximants of the continued fraction that would lead to
a substantial acceleration of the convergence of the continued fraction under
consideration. Here we seek a modification which will lead to an analytic
continuation of the function to which the continued fraction converges in the
region D into a region D*> D, even though the convergence of the modified
sequence may be quite slow, at least in D* ~ D. Again, the modification can be
considered as a method of summability applied to the sequence of
approximants of the continued fraction with a view to having the modified
sequence converge for values of z for which the original sequence does not
converge or does not converge to the “right” value. As in our earlier paper
there is here also a substantial overlap with work of Gill, in particular his
article [1], where he indicates the possibility of using the repulsive fixed point
to obtain analytical continuation.

The modified sequences we are concerned with are

{Sn(zx(@)} - and  {Sy(z — (6@ +x@))} -

Here x(z) as well as — (b(z) + x(z)) will, for certain values of z, be the repulsive
fixed point of the mapping s(z,w). In order to insure convergence of the
modified sequence in this case it will be desirable (and possibly necessary) to
require that a,(z) and b,(z) approach their respective limits geometrically.
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In Section 2 we shall establish a general result on boundedness of modified
sequences. Making use of a recent result of Jones and Thron [3], which
establishes a connection between boundedness and convergence of sequences
of functions that correspond (see definition in Section 3) to a formal power
series, we then give two applications. In Section 3 we extend earlier results of
Waadeland and Hovstad to general T-fractions. In Section 4 we present an
application to regular C-fractions, it yields among others one of the rare results
on the location of singular points of analytic functions defined in terms of
continued fractions. In this case the exact location as well as the nature of the
singularity can be specified. In a way the result on general T-fractions can also
be interpreted as a result on singularities in that it gives regions in which there
can be no singularities, other than poles, of the functions represented by the
general T-fractions.

Our method can undoubtedly be applied to other types of continued
fractions, but for the time being we restrict ourselves to the ones given here.

Instead of relying on the result of Jones and Thron to make the transition
from boundedness to convergence, the convergence of the “wrong
modification”, that is the sequence {Sy(z,x(z))}, where x(z) is the repulsive
fixed point, can also be established directly. This approach, more straight
forward but possibly more tedious than the one presented here, will be taken
up in a separate paper. It will give an illustration of the role of the geometric
approach of a, to a and b, to b for the convergence of the wrong modification.

2. Boundedness of sequences of modified approximants.
The main result of this section is the following.

LEmMma 2.1. Set

o, d, > max|é,|,

(2.1) van
"" ell > max "’V' bl

v2n

]
IS
s
R

]
S
3

|
&

and let x be one of the solutions of the equation
x2+bx—a =0.

Finally, set

2 =
@2 d b+x

If there exists a Q
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2.3) 0<Q<1,Q0P<1,

so that

(2.4 d,+ (x| +|b+x))e, = k,Q", n=1,

where Y 3%, k, converges, then there is an my, independent of N, such that
Qm+1 (e

@5) SP0-x S e Tk Mz m.

n=1

Proor. Keep N fixed, we may think of it as being very large, and set
0 = SPx)-x, 0=n<N.
Since a=x(b+ x) we have in terms of the notation introduced in (2.1)

_ x(b+x)+9,4,
b+n,41+X+0441

-x, 0n<sN-1,

n

— 6n+1_xnn+l_xQn+l
(b+X)+ns1+Mns1

To obtain a bound r, for |g,| for all n=m, where m is a sufficiently large number
to be determined, it would be desirable to have the following two inequalities
satisfied

(2.6) r, < |b+x|—e, m=ns<N,
and
2.7 dyyyt1xle, s +Ixlr, 4y . m<n<N-1

b+ x| = (rpsy+enst)
If (2.6) holds then relation (2.7) is equivalent to
dyryHIxlensy trueney +IXIrney < IbHXIF=rryy
This will surely be satisfied if .
(i1 +1xle sy b+ Xlens ) +IXInsy < b+xlry—=rarys
holds. Using (2.4) we arrive at
(28) kn 1@ Xy < IbAXIP =Ty

This inequality will be satisfied by

Qn+l i k
29 r, = .
( ) Ib+X| v=n+1
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for n>m provided m is large enough. This we shall show now. Substituting
(2.9) into (2.8) leads to

kn+1Q"H+(PQ)Q"H< Z kv)<Q”+l<kn+l+ Z kv>‘rnrn+1
v=n+2 v=n+2

or
(2.10) Flner < Q"71(1-PQ) Y k.
v=n+2

We note that it follows from (2.3) that

p=1-PQ > 0.
Substituting (2.9) into (2.10) leads to
(2.11) ot Y k,<|b+xp.

v=n+1

Set B=Y3,k, and g=1/Q>1. Then (2.11) will hold if
_B
plb + x|?

n+2

q

or

n > log,B—2log,|b+x|—log,p—2

= m,(a,b,Q,B) .
To have (2.6) satisfied it suffices that
n+1 n
(2.12) %}+x7+|bQ+B;c| < |b+x|, ‘
since
(Ix|+1b+x)e, < k,Q" < Q"B
and hence

Q"B Q"B
e, < < )
" x|+Ib+x|  |b+x|

Inequality (2.12) is satisfied provided
20"B < |b+x|?

or
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n > log,2B—2log,|b+x| = m,(a,b,Q, B)

holds. Hence, for m=max (m,,m,)+1, (2.6) and (2.7) are both satisfied. From
this (2.5), with my=max (m,,m,)+1, follows and Lemma 2.1 is proved.

3. A result for general T-fractions.

We begin by introducing some further concepts, definitions and formulas
which shall be used in the sequel. Since S{”(z,w) is a linear fractional
transformation in w one easily proves that

AR (2) + wAR 1 (2)

(1) - SK@w) = B (z)+wB§ (2)

0=m<sN-1,

where

AfP(2) = by (AR (2) +an () AR »(2),

22N,
B (2) = by(2) BR 1 (2)+ay(2)BR,(2),
(3.2a)
AP(z) =0, AW,(2) = apyq(2),
Bi(z) = 1, BYi(2) = busy(2),
and
N
(32b) AR ()BFL1(2) - AT (2B (2) = (=DV " [ all2).

For m=0 these formulas are well known and can be found for example in [6].
For general m the proof is analogous.
If in particular a,(z)=F,z, b,(z2)=1+ G,z then

N
(3.3) Bz = 1+...+2N"" ] G,.
n=m+1

Next, let
L=Y ¢z ¢=*0,

be a formal power series (not necessarily convergent) then we define A(L)=k.
Further, Ly(R) shall be the Taylor series expansion of R at z=0, provided it
exists. A(Ly(R)) is then defined by our first rule.

Analogously we introduce for

L* = Y c*z", ¢t +0,

n=k*



78 W.J. THRON AND HAAKON WAADELAND

Ao (L*)=k*. L (R) shall be the Laurent series of R at z=o00, provided it exists.
A sequence {Ry(z)} of functions holomorphic at z=0 will be said to
correspond to a formal power series L=3% " ,c,2" at z=0 if

lim A(Lo(Ry)—L) = 0.
N- o0

Similarly, a sequence {Ry(z)} of functions holomorphic in a deleted
neighborhood of co will be said to correspond to a formal Laurent series L*
=y 20Ckz" at z=00 if

lim A (L, (Ry)—L*) = —00.

N- o0

The ideas described above were introduced and discussed in greater detail in

[31

A general T-fraction

0
(3.9) K <lszz) F,+0,G,+0, for n2m+1,
is known to correspond to a formal power series L,, =Y, ct™z" at z=0. By
this we mean that the sequence {S¥’(z,0)} of approximants of (3.4)
corresponds to L,, at z=0. The continued fraction (3.4) also corresponds at z
=00 to a series L*=3 % *c™z" These results can be found in [4].

At this stage it may be useful to introduce a concept, which can be defined
more precisely than we are about to do here, but which is quite suggestive. Let
1<R and let «(R, f'(0)) be a positive valued function satisfying certain
conditions (which we shall not state here) then f(2) is said to be very bounded at
z=0 if f(z) is holomorphic for |z/]<R and

1f(2)=f0)—z"(0) <« for |zj<R.

Similarly one calls g(z) very bounded at z= oo if there is a ¢ <1 and a positive
valued function B(g, a) such that g(z) is holomorphic for all |z| >¢ and

|g(z)—al < B for |z|>¢ and a certain a .

Our Theorem 3.1, to be stated presently, descended from a series of results
going back to 1964. In that year Waadeland [9] proved that every function f(z)
very bounded at z=0 had a limit period T-fraction expansion

f(0>+(f'(0>—1)z+ﬁ( 2 )

n=1 1+d,,Z

with limd, = — 1, which converges to f'(z) for all |z| < 1. In 1966 [10] he showed
that the modification {S,(z,z)} converges to f(z) in a larger disk |z|<R’, R'> 1.
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Hovstad [2] was able to improve this result to R'=R —¢, where R is the radius

of the disk in which f(z) is very bounded and ¢>0 is arbitrary small. Hovstad
also showed that

ld,+1| < K/R".

These results are also discussed, in terms of fixed points, by Gill. See for
instance [1].

In two recent papers [11, 12] Waadeland studied the behavior of general T-
fractions

(3.5) K( ) F, +0,G, #0,n21,

1+G,
and obtained results analogous to the ones for ordinary T-fractions. In the first
paper he proved that if L=Ly(f), L*=L_(g), where f(z) and g(z) are very
bounded at z=0 and z = 0o, respectively, then there exists a general T-fraction
which corresponds to L at z=0 and to L* at z=o00. The general T-fraction
satisfies

lim F, = lim (-G,) = F £ 0,
and converges to f(z) for |z|<1/|F| and to g(z) for |z| >1/|F|.
The second result is the following. Given 1 <R’<R there exists a K(R, R’)
>0 such that if (here we have normalized F to be 1)

(3.6) IF,.—1] < K/R", |G,+1| < K/R", n21,

then the general T-fraction (3.5) whose elements satisfy (3.6) corresponds at
z=0to a L=Lqy(f), where f(z) is holomorphic for |z|] <R’ and corresponds at
z=00 to a L*=L_(g), where g(z) is holomorphic for |z| > 1/R'".

Whether the result of Hovstad can be extended to general T-fractions, that is
whether very boundedness of f(z) at z=0 and of g(z) at z=00 (with ¢=1/R)
together implies (3.6) is still an open question. Our main result for general T-
fractions is the following.

THEOREM 3.1. Let 1 <R'<R. Let a general T-fraction

%% F.£0,G +0,n2x1,
IS(HG,,z)’ n ¥ nF Oz

whose elements satisfy
|F,—1] < K/R", |G,+1] < K/R", n 21

for some K >0 be given. Then there exists an m(R’, R, K) such that the sequence
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{5§°(z,2)}

of modified approximants of the general T-fraction
el F,z

3.7 -

6.7 n=Im(+1 <1 +G,,z>

converges to a holomorphic function f,,(z), uniformly on compact subsets, for
|zl <R'".
The power series
L, = Lo(fm)

is the series to which the general T-fraction (3.7) corresponds at z=0. The
Sunction f,,(z) is also the limit of the sequence of approximants of (3.7) for |z| < 1.
Similarly, there exists an r(R', R, K) such that the sequence

{SW(Z, - 1)}

of modified approximants of

kel F,z
(38) ..=I,(+1 (1 + G,,z)

converges to a holomorphic function g,(z), uniformly on compact subsets, for
|z2|>1/R’. The Laurent series

LY = L,(g,)

is the series to which (3.8) corresponds at z=o00. The function g,(z) is also the
limit of the sequence of approximants of (3.8) for |z|> 1.

Proor. We first consider the case where |z <R'. The results of Lemma 2.1
apply to (3.5). We can set

x=12z —((b+x)=-1.
Then

Further

and if we introduce
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then

k,Q" = K(1 4]zl + 1)/R" = K(2+rz|)(’:>"/(k")".

We thus can choose @ =1/R” and

k, = (2+|z|)K<l;,>".

It follows that QP =|z|/R"” and hence for all |z|<R’

Zl _ R'—=R" _R-FR

=1-0P = 1-"L =
p Q RI/ > Rl/ R+R!
and
R" 1 R+R
B = (2 K—. —— < 2+R)K——.
CrEK G S C+RK g
R

Hence an m for which

S{(z,z)—z

_ Q"B _( 2 \"2KQ+R)
= b+x = \R+R') R—-R

is valid, can be chosen independent of z provided |z| <R’. This leads to

2K(2+R) < 2

Sg R
| }V (z7z)| < + R_R; R+Rl

), 2l < R, N >m.

Thus the sequence {S¥”(z,z)} is uniformly bounded for |z|<R'.

To prove convergence of the sequence we use a recent result of Jones and
Thron [3] to the effect that if a sequence {Ry(z)} of functions holomorphic for
z € D is uniformly bounded on compact subsets of the region D, if further
0 € D and if finally the sequence corresponds to a formal power series L at z
=0, then {Ry(z)} converges, uniformly on compact subsets of D, to a
holomorphic function f(z) with L= Ly(f).

It is known [4] that {S{’(z,0)}, the sequence of approximants of (3.7),
corresponds to a formal power series L,, at z=0. We shall show that {S{"(z, z)}
also corresponds to L,, at z=0. Using (3.1) one obtains

z(“l)N_m nrlxv=m+l (Fnz)
B (2) (B (2) + 2B 1 (2)) -

Since, by (3.3) B{”(0)=1, N=m, it then follows that
ALo(S§(z,2) — S§(2,0) = N—m+1

Syl")(z’ Z) - Sx/")(z’ 0) =

Math. Scand. 47 6
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and hence {S{"(z,z)} corresponds to L, at z=0.

That there exists an r, independent of z, so that {S¥(z, — 1)} is bounded for
|zl > 1/R" is proved in an analogous manner. In this case x=—1, —(b+x)=z
so that P=1/|z| and

R—FR
p=1-QP = 1-1/(R"|z) > 1-R/R" =

= m for |Z| > l/R, .

To establish the correspondence of the sequence {S{(z, —1)} at z=n0 we
consider

('" I)N—r—l I—LI:J=r+l (Fnz)
B (2)(BR(2) - BR_1(2))

Since no G, vanishes B{(z) and BY)_,(z) are polynomials of exact degrees N —r
and N —r—1, respectively. It follows that

A’c(Loc(SX?(Z’ - 1)'_SW(Z’ 0))) = - (N—I‘) .

That the sequence of approximants of (3.7) converges for |z|<1 and that of
(3.8) for |z|>1 can be seen in a number of ways. One can refer to classical
theorems on limit periodic continued fractions or to the recent result of the
authors [7], since, for |z|< 1,z is the attractive fixed point of

SV(z, - 1)—8R(2,0) =

z
1—z+w

and, for |z| > 1, —1 is the attractive fixed point. Hence for those values of z the
limit of the modified approximants equals the limit of the approximants. This
completes the proof of the theorem.

If we now look at the sequence
(39) {Sn(z,2)}

we see that for each R’, 1 <R’ <R, a “tail” converges to a holomorphic function
for |z| < R'. The sequence (3.9) itself thus convergés to a meromorphic function,
which does not have a pole at z=0, for all |z] <R’. Since the functions obtained
for different R’ are all analytic continuations of each other we have one
meromorphic function to which the sequence (3.9) converges for all |z} <R. It is
also easily seen that the Taylor series of this function at z=0 is the power series
to which the general T-fraction (3.5) corresponds at z=0.

A similar argument holds at z=00 so that the following result has been
proved.
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THEOREM 3.2. Let the general T-fraction

’ F >
I=(<I+G,,L> 2+ 0,G, #0,n2=21
satisfy

IF,—1| < K/R", |G, +1| < K/R", n>1,

for some R>1 and K>0. Let L and L* be the formal power series to which the
T-fraction corresponds at 0 and oo, respectively. Then

L = Lo(f),

where f(z) is meromorphic for all |z|]<R, and

f(z) = lim Sy(z,2), |zl < R.

N-«

Similarly,
L* = L.(8),
where g(z) is meromorphic for |z| > 1/R, and

g(z) = lim Sy(z, —1), |2/ > I/R.
N-w

4. An application to regular C-fractions.
A regular C-fraction is a continued fraction of the form

n=1 1

1) K (“"Z>, o002l

Its sequence of approximants {Sy(z,0)} corresponds to a power series

at z=0. These and other results on regular C-fractions can be found in Perron
[5]. In terms of the notation of Section 1 we have a,(z)=a,z, b,(z)=1. As
before we shall assume that the continued fraction is limit periodic, that is

4.2) lima, = a + 0, .

B (Aade¥

and that the approach to the limit is fast enough so that

(4.3) - og—al = y,0", n21,0<Q<1, ) y, =B < 00.
=1
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By + VE we shall mean the root in the right half plane (including the positive
imaginary axis but excluding the negative imaginary axis). In terms of this
notation

x,(2) = —%+[/;—+E
is the attractive fixed point of s(w)=oaz/(1 +w) and
x() = ~§-Vitaz
is the repulsive fixed point of s(w). If we now introduce
4.4) o* = 1+4oz
then
x(2) = —3(1-0)

shall equal x, (z) for w in the right half plane and shall be x,(z) for w in the left
half plane. Thus

x(z) | |o-—1
1+x(2)|  |o+1]|

In terms of w and g=1/Q the condition PQ <1 becomes w € Q, where

w—1
4. = D .
( 5.) Q [w |w+1 < q:| g>1

Since w=0 € Q, it is clear that Q is the outside of the circle with center and
radius given by
1+¢*
g -1

2q

d DY R
an qz—l

respectively. The boundary of Q intersects the real axis at the points
-1 1
— L and — g.+_ .
q+1 q—1

4 =40B,7,M) = [w: —B<argo<n/2+7y, lo|<M],

Next, we define

where y+p<n/2, f>0,y>0, M> 1. In addition y is to be sufficiently small so
that 4< Q. This is the case if

2q
1+¢*°

y < cos™!

The figure below shows the two regions Q and 4.



FUNCTIONS DEFINED BY MEANS OF CONTINUED FRACTIONS ... 85

Q 1 w-plane

To the region 4 for w corresponds the region

2_
(4.6) D=L(A2——1)=|:z: z=2 l,weA]

4o 4a

in the z-plane. The region D is sketched below.

J z-plane

It was already known to Van Vleck in 1904 [8] that a limit periodic C-
fraction converges for all z not on the ray
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T=1[z: z=—t/4a, 1St<00]

to a meromorphic function.
For the modified approximants {S§(z, x(z))} of the tails of (4.1), satisfying
(4.3), it follows from Lemma 2.1 that they satisfy
Qm+lB
11+ x(2)|

for all z € D and some m depending only on Q, B, f, y, M. Hence

m+1
1S (z, x(2))] < 2+M+Q P zeD, N>m.

ISR(z, x(2) = x(2)| <

Next we show that at z=0 the sequence {S{"(z, x(z))} corresponds to the
same power series to which

o) a"z
4.7 K ( 1 >
n=m+1
corresponds.
Using the binomial expansion of (1 +4az)* one obtains
X n 1 A
X(:) = '—%’}‘% Z A 0 (2 _) (4 )u

= az+3 Z ———nk 02 )(4az)".

n=2 n!
From (3.1)

x(Z)(“l)N "'H =m+1 (042)
B (2)(BY"(2) + x(2)B 1 (2))

so that, since in this case also B{"(0)=1,

A(Lo(S§" (2, x(2) — S¥(2,0))) = N—m+1,

S (2, x(2)) - 5%(2,0) =

and our assertion follows. Using the result of Jones and Thron [3] again one
can then conclude that {S{(z, x(z))} converges uniformly on compact subsets
of D to a holomorphic function f,,(z) which is such that P,, the series to which
the regular C-fraction (4.7) corresponds at z=0, satisfies

m = l@(f;)'

Hence, in particular, f,,(z) provides an analytic continuation beyond T of the
function to which the regular C-fraction (4.7) converges in C~T.

A completely analogous argument can be made with 4 replaced by its
conjugate 4 and D replaced by
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b = L ((dP-1)
4o o
Hence analytic continuation of f,, across the ray T “from below” is also
possible. We have now proved the following result.
THEOREM 4.1. Let a regular C-fraction satisfying

«
= = 3,0" n2L,0< Q<1 ¥ y,=B<oo
n=1

be given and let

21
D=[z;z=w ,—B<argw<g+)*,|wl<M:|,

4o

where

20 n
0 o= Y < = .
< y < cos Q2+1,B>O,B+y<2,M>l

Then there exists an m depending on Q, B, D such that the sequence
8% (z, x(2)}

of modified approximants of

4.7) K <°‘]—Z>
n=m+1

converges uniformly on all compact subsets of D to a function f,, holomorphic for
all z € D. Further

P, = Lo(fu) >

where P,, is the power series to which (4.7) corresponds at z=0. Finally, f,,() is

the analytic continuation across T “from above” of the function to which the

regular C-fraction (4.7) converges in C~T. An analogous statement holds for
" 1

= (A -
D=4 1)

and for analytic continuation across T “from below”.
As in Section 3 there is in this case also a version of this result which asserts

the convergence of the sequence of modified approximants of the whole C-
fraction to a meromorphic function in the region
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+ 2 -1 20
DT =]z: z=(w*—1)/4a, — /2 <argw—cos Q2—+T<n/2 R

which provides an analytic continuation across T of the meromorphic function
to which the C-fraction is known to converge in C~T.
We conclude this section by showing that there is a singularity of f,,(z) at z=
—1/4a and that it is a branch point of order 2.
Let z ¢ T, z+0 and put
IM(z) = lim S{(z,x;(2)), L(z) = D), i=1,2.

N-oo

We shall show that
Li(z) * ,(z) .

Since z will be kept fixed in the argument we shall delete it from now on.
From Theorem 2.1 it follows that
lim ™ = x, i=1,2.
Since x, #x, it then follows that for m sufficiently large I +I$". Let k be a
natural number such that [+
The linear fractional transformation

A+wA,

S =
W) = 5 B,

is non-singular, since
k
AyBy_y—ByAy- = (-l)k—lzk H a, + 0,
v=1

and hence it maps the Riemann sphere 1—1 onto itself. Now

L = Allim Sn(x) = Ilim Si(SR(x) = S, (1) .
Since S,(w) is 1—1 and I+ it follows that I, +1,.

Hence continuation across T changes the value of the function so there must
be a singular point at z= —1/4a. As T is crossed x, (z) changes into x,(z) and if
one continues in a path around — 1/4a x,(z) becomes x,(z) again and hence the
singularity is a branch point of order 2. This completes the proof of the
following theorem.

THEOREM 4.2. Let a regular C-fraction

R (%)
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satisfy

logy—al = 7,0" nzl,0<Q<1, Y y,=B< .
n=1
Then the meromorphic function to which it converges in C~ T has a branch point
of order 2 at z= —1/4a.

That limit periodicity alone is not sufficient for the conclusions of Theorem
4.2 to be valid is illustrated by

z

log (1+2) = IR, )

where

1 1

= -4 — >
B2n+1 4+8n+4’ n=z

1 1

=-——\ nzl
ﬁ2n 4 8n+4’ h=1,

which has a logarithmic branch point at z= —1.
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