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ON THE POSTAGE STAMP PROBLEM
WITH THREE STAMP DENOMINATIONS
ERNST S. SELMER
1. Introduction.
Given stamps (in sufficient supply) of k different integral denominations
(L.1) l=a, <a,< ... <aq.

The envelope does only give room for at most h stamps. What is the greatest
consecutive range of postal rates from one unit upwards which can be formed
under these conditions?

In mathematical formulation: Given a basis

A = {ag,a,,. . .,a,}

of integers satisfying (1.1). We form all linear combinations

M=

(1.2) Xia;; X

v

k
05 Z xiéh’
i=1

i=1
and ask for the smallest integer N,(A4,) which is not represented by such a
combination.

We shall operate instead with the bound
ny(Ay) = Nu(4)—1,

which in German is called the “Reichweite” of the basis 4, with respect to the
maximal number h of — possibly repeated —addends. No established English
name for this seems to exist, but words like “span”, “width” and “breadth”
occur. Personally, I prefer the more direct translation “{'ange”. To avoid risk of
confusion with the use of this word in the meaning “range of a function”, we
shall use h-range.

The h-range of A, is then defined as follows: All integers in the interval
[0,n,(A,)] have a representation of the form (1.2), while n,(4,)+ 1 has no such
representation.

The postage stamp problem has been rather intensively studied, particularly
by German number theoreticians. The main interest has been centered around
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the “global” aspect: Given h and k, find an extremal basis A} to obtain the
largest possible extremal h-range

n,(k) = n,(A¥) .

In this general form, the problem is very difficult from a theoretical point of
view. As would-be expected, the numerical determination of n,(k) and 4} has
been a tempting target for several computer specialists.

To study the extremal h-range, it is of course necessary to know something
about the “local” aspect: Determine n,(A,) when h, k and a particular basis A,
are given. However, local problems play a much less dominant role in the
literature.

The case k=2 is completely solved, and it is therefore natural to study what
happens in the case of three stamp denominations (k = 3). The pioneer here was
Hofmeister, who solved [3, Satz 2] the global problem almost completely.
(The “almost” can now be deleted, cf. Section 4 below.)

Later, some of Hofmeister’s pupils have also made great advances with the
local problem for k=3. Their results have been simplified and extended by
Rodseth [8], [9], who gave a fairly simple procedure to determine n,(A4;). A
priori, it is not possible to estimate the number of steps of the procedure
necessary to give the final result. Strictly speaking, Rodseth’s formulas are
therefore not “explicit” for n,(A4;).

Truly explicit formulas for n,(4;) had earlier been given by Sali¢ [10],
although under rather restrictive conditions on the basis elements a, and aj.
His arguments were based only on the original definition of n,(4;).

One main purpose of the present paper is an application of Rodseth’s
method, in order to generalize the formulas of Salié for n,(A4,). The resulting
formulas are explicit in the sense that at most two steps of a simple division
algorithm are necessary to obtain the final result. Each of these divisions may
represent several steps of Rodseth’s general procedure. — Asymptotically, our
formulas cover slightly more than 99 % of all “admissible” bases A, (cf. Fig. 1
p. 59).

Both Hofmeister and Rodseth spent the Autumn term 1978 with me in
Bergen. I want to thank them for cooperation and inspiration in a field of
common interest to all of us.

My approach to the problem has been an “experimental” one, with
numerical evidence entering heavily into all stages of the development. Hours
of computing have been performed on the UNIVAC 1110 at the Univepsity of
Bergen. I am in the fortunate position that the computer specialist at our
institute, Svein Mossige, also has a solid background in number theory. I may
safely say that this paper would never have been accomplished without
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Mossige’s programming assistance, and I thank him for his help and support
over a period of several months.

2. Known results.

The most comprehensive report on the postage stamp problem, including
references, is found in the lecture notes [4] by Hofmeister. He followed up with
another set of notes [5], which deals mainly with the Frobenius “coin
exchange” problem, but which also treats the connection with the stamp
problem.

In this section, we confine ourselves to those parts of the established theory
which form the necessary background for our new results.
We first note that we may always assume

@.1) 1 <a, <h+2,

since a,=h+2 would mean that no representation (1.2) is possible for h+1.
Under this condition, it is well known that

(2.2) n(Ay) = ny(l,a;) = (h+3—ay)a,—2.
For k=3, we must similarly assume that

(2.3) a, < ay < ny(4,)+2 = (h+3-aja, .

Under the conditions (2.1) and (2.3), we shall say that the basis A3 ={1,a,,a;}
is admissible. In what follows, only such bases A will usually be considered.
We shall use the following notation throughout:

(2.4) {a3 = fa,4r, 0=r<a,
a; = qa,—s, 0=s<a,.
If r=5=0, then g=f. Otherwise, we have g=f+1 and s=a,—r.
It follows from (2.3) that h=a,+f—2. For given a, and a;, we put

(2.5) ho = ay+f-2 =a2+[gi]_2,

2
which is the smallest possible h such that Ay is an admissible basis.— As usual,
[x] denotes the largest integer <x.

We shall see later that it means a great simplification to restrict oneself to the
case h=h,. The importance of this was apparently first realized by Sali¢ [10].
The extremal h-range of “h,-bases” was determined by Hofmeister [3, Satz 3-
4] for sufficiently large h,,.
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Hofmeister [2] introduced the regular representation by a basis A, as
follows: First use g, as often as possible, then a,_, as often as possible, etc. In
terms of (1.2), this means to impose the additional conditions

M\.

(2.6) Xt < @y, j=1,2,.. . k—1.

i=1

If only such representations are allowed, still restricted to at most h addends,
we speak of the regular h-range g,(A4,). This was explicitly determined by
Hofmeister [2, Satz 1]. He also [3] solved completely the problem of finding
the extremal regular h-range g,(3) in the case k=3. (His Satz 5 is formulated
with “for sufficiently large h”, but does in fact hold for all h.)

Since clearly n,(A4,)=g,(4,) (use a, as often as possible), we note that the
admissible bases 4, are the same for regular as for ordinary representations. In
particular, the minimal h=h; of (2.5) is the same in both cases.

It follows from Hofmeister [2] that

2.7 g(43) = (h+4—a,—fa;—(r+2),

provided h= hy — 1. Choosing in particular h= hy, this can be simplified by (2.5)
to

(2.8) 8h,(43) = 2a3—(r+2).

For an arbitrary h=h,, it then follows from (2.7) that

(2.9 gn(A3) = gn(A3)+ (h—hg)a, .

Defining h, suitably, a similar relation holds for all bases A, (if a; is replaced
by a,).

A given integer may have several representations by a basis 4,. A minimal
representation (not necessarily unique) is one with the smallest number of
addends from the basis. Djawadi [1] called a basis A4, pleasant (German:
“angenehm”) if one minimal representation always coincides with the (unique)
regular representation. This implies that n,(A4,)=g,(4,) for all h. Djawadi
showed that A, is pleasant if and only if

(2.10) s<q.

In particular, all bases 4; with a,=2 are therefore pleasant.
Combining (2.10) with (2.8). we get the following

THEOREM 2.1. If s<gq, that is, if r=0 or r=a,—f, then

.11) Mo (A3) = 2a3—(r+2).
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This result may, of course, be deduced independently of the formal
apparatus for arbitrary k by Hofmeister and Djawadi. In fact, Salié [10] gave a
simple proof (his Satz 2 and 3) of Theorem 2.1. He also showed (Satz 1) that
(2.11) holds with = for an arbitrary basis A4,, with strict inequality when (2.10)
fails. In other words, we always have '

(2.12) ny(As) > gu(4;)

for a non-pleasant basis. (There are several ways to prove this result.) — Note
that we may well have a regular representation (1.2) of the h-range n,(A4;), even
if Ay is a non-pleasant basis.

It follows from (2.2) that
Ny (Az) = ny(Ay)+a, .
For all k, we trivially have

(2.13) Hyy1(AR) 2 n(Ay) +ay

(assuming A, admissible). For k=4. it is easy to give examples with strict
inequality. A numerical search shows that the simplest possible case is given by

Ay = {1,2,5,6}, n,(Ay) = 8, ny(4,) = 18.

With k=3, numerical evidence indicates that we always have equality in
(2.13) for h=h, This was first shown by Windecker [15]. By a very
complicated procedure, he could prove that

n,(A;) = hay+F(a,,a;) ,

where the function F depends only on the basis 4;.

Windecker’s proof is extremely hard to read. At an early stage of the
development, it was therefore decided to verify the result numerically, by
means of Theorem 3.1 with k=3. Mossige [7] wrote a very efficient computer
program to determine n,(A,) directly from the definition, and used it to verify
Theorem 2.2 for hy<70.

Recently, however, a much simpler proof of equality in (2.13) for k=3 has
been given by Rodseth [9]. We formulate the result as

THEOREM 2.2. For h=h,, we always have
Nyt (A3) = m(Az)+a;,
and hence

(2.14) ny(As) =ny,(A3)+ (h=holas .

Math. Scand 47 — 3
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The important property (2.9) of regular representations thus holds also for
ordinary representations in the case k=3.

We now introduce the Frobenius number g(B) of a positive integral basis

B = {bl,bz,.. "bk}’ (blsts""bk) = 1.

This is the largest integer with no representation of the type
k
Z yibi; 2 0.
i=1

This so called “coin exchange problem of Frobenius” has been extensively
treated in the literature. For references, see Selmer [11] and Hofmeister [5].

The connection with the (local) postage stamp problem was discovered by
Meures [6] (see also Rodseth [9]). To a given stamp basis A,, we introduce the
Frobenius basis

(2.15) A'k = {ak—ak_l,. ..,ak""'az,ak"al,ak} N
where the basis elements are coprime since a, =1. Meures then showed that
(2.16) m(4) = ha,—g(4)-1,

if h=h, (where the bound h, is very difficult to determine in the general case).
We shall prove Meures’ result in the next section.

For k=3, however, it follows from Theorem 2.2 that (2.16) holds for all h
=h,. We thus get the important

THEOREM 2.3. If h= h,, then

(2.17) ny(1,a;,a3) = hay—g(as—az,a;—1,a;)—1.

To determine n,(A,), we therefore need a formula for or a procedure to
calculate g(a, b, c) for a basis of three elements. The first such procedure was
published by Beyer and the author [12]. Based on a certain continued fraction
algorithm, we gave a formula for g(a, b, ¢). The formula contained a function of
an even number of arguments:

M{xy, %5 . Xomp =%, if X, Sx, S ... S x

im+1 = Thm "

Our result was simplified by Rodseth [8]. By using negative division
remainders in the continued fraction algorithm, he could replace our M-
function by the minimum of two numbers only. For later use, we shall give a
brief account of Rddseth’s result (which, incidentally, had appeared earlier in

an unpublished thesis by Siering [13]).
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We assume (a,b)=1, and determine s, by
(2.18) bsy = ¢ (moda), 0 < 55 < a.

We also introduce the integer

(2.19) t = 1(bso—c),
a

which is positive if the basis {a, b, c} is independent, that is, if none of the basis
elements has a representation by the other ones.

The above-mentioned continued fraction algorithm is then applied to the
ratio a/s,:

a = q;5—5, 0 =5, <59
(2.20) So = G281 —5, 0 = 5, <5y
lsl =q35,—53, 0 = 55 <5,

The continued fraction convergents P;/Q; are determined by
2.21) {Po =1 P =9q,, P, =q19,—1; Piyy = q4,\Pi— P,
0 =00, =1 0, =4, Qiv1 = 4i+1Qi—Qi—y -

In this notation, the result of Rodseth (and Siering) can be formulated as

THEOREM 2.4, If
Pv+l < 9

222 Totr o
( ) Qu+1 Tt

|

P,
Q,’
then

(2.23) gla,b,¢) = —a+b(s,—1)+c(P,,;—1)—min {bs,,,,cP,} .

Rodseth gave the condition (2.22) in the form

Sp+1 ¢ Sp

(2.24) P £ < X
From his formulas (3.1-4), the equivalence of the left < in (2.22) and (2.24)
follows easily. We also note that the right < in (2.24) may be replaced by =,
since it is simple to show that in the case of equality, the formula (2.23) gives
the same value of g(a, b, ¢) if v is replaced by v— 1. This observation will prove
useful later.

We shall need one more result on the Frobenius number g(a, b, c), due to
Vitek [14, Th. 1]: For a coprime and independent basis with a <b<c, we have

(2.25) g(a,b,c) < (c‘—2)[g:|——1 .
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As mentioned in the Introduction, one main purpose of the present paper is
to generalize the explicit formulas for n,(A4,) given by Salié [10]. He restricted
himself to the case h=h,, which of course suffices because of (2.14) (but this
formula was not known when Sali¢ wrote his paper).

Theorem 2.1, also proved by Salié, has already been stated. We conclude this
section on known results with a summary of his remaining explicit formulas: If

(2.26) hy = ¢ (modr+f-1), 0 < ¢ < f,
then

h
(2.27) My (A3) = r(a3—1)|:r+f°__l]—(r—2)a3—2.
In particular,
(2.28) r=1= n,(4; = (a3——1)|:h7°:|+a3—2.

We further have

ho+2 ho+1
(229 s=4q = n,(4;) = (a3~1)[ 0: ]+[ 0: :|+a3—r—2.

230) f=1= n(Lh+Lh+r+1) = (h+1)*—r(r—1)—1,

with equality if r|h.
The formulas (2.27-30) correspond in this order to Satz 5-8 in Salié. Some of
his formulations have been partly modified above, using (2.5).

3. Some general observations.

Before generalizing Sali¢’s formulas, we present some apparently new results
which apply to an arbitrary basis A,.

The notion of an admissible basis extends immediately to the general case.
An obvious generalization of (2.1) and (2.3) are the conditions

(3.1) ai < ai+1 < nh(Ai)+2, i=1,2,...,k_1 .

These give the correct bounds (2.1) also for i=1, since a, =1 and n,(A4,)=h.
For k=3, the last one of the conditions (2.1) and (2.3) determines the
smallest possible h=h, of (2.5), which also satisfies the first condition (2.1),
since f=1. It was observed that this property holds in general. The last
condition (3.1), for i=k—1, determines the smallest h=hy such that all the
conditions (3.1) are satisfied.
The proof is trivial: If

3.2) a < ny(A-1)+2,
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but a;,, 2n,(A4;)+2 for some i<k—1, then the h-range n, (4;) will not be
increased by addition of basis elements a;, ,,. . .,a, This would imply that

Mo (A1) = m(4) € a4, -2 < a,—2,

contradicting (3.2).
Incidentally, the conditions (3.1) are equivalent to the one condition

m(A4) 2 a .
Another observation is perhaps more surprising: When extending a basis

Ay, with a new element a,, the conditions (3.1) do not ensure that the h-range
increases. In other words, we may have

(3.3) (A Uda)) = ny(4i-y) s
even if both bases are admissible.

We shall see soon that (3.3) is impossible for k=3. Already for k=4,
however, we can give an example where several basis elements may be added
without increasing the h-range. Let

a4, = h+1, ay = h+2; ny(Ay) = hh+2),
and put
Apyr = {1,a5,a5,a, +as,2a, +as,. .., (h—1)a, +as} .
Then
ny(Apyz) = ny(4s),

even if all extensions of A; are admissible.
To prove this, it suffices to show that

m(Ay)+1 = (h+1)* = (h+1)a,

has no representation in at most h addends from A,,,. Using a, alone, h+1
addends are necessary. All other basis elements are =1 (moda,), and it is
clearly impossible to form a multiple of a, by using at most h=a, —1 of these.

The result bears a striking resemblance with an earlier observation by the
author [11, § 4], concerning extension of Frobenius bases without altering
(decreasing) the Frobenius number.

Considering only regular representations, the analogue of (3.3) does not
hold. Indeed, we can show that

(3.4) g;.(Ak_l u {ak}) > gh(Ak-l) s

assuming admissible bases.
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Incidentally, this implies that

n(As) 2 gy(4;) > g4(4;) = n,(A4y),

showing that (3.3) is impossible for k=3.
To prove (3.4), we consider the (unique) regular representation of

gh(A- U{a}) = g4(4) = x; 1+ xa,+ ...+ x4, .

The coefficients x; were determined by Hofmeister [2, Satz 1]. It follows from
his formulas that x; depends only on a,,as,...,a;,, for i<k. It is an easy
consequence that

(3.5 gn(A) —8n(Ar-1) = xilay—ay_y),
which implies (3.4) (since x, >0 for an admissible basis).
Our final observation concerns the possibility of equality in (2.13). We have

already seen that this is always the case for k=2 and k =3, and shall now give a
sufficient condition for arbitrary k:

THeEOREM 3.1. If h=hy—1, and

(3.6) n(4) 2 (h+la,_,—a,,
then
(3.7) Ny 1 (A) = ny(4)+ay .

If h is increased by 1, the right hand side of (3.6) increases with a, _,, while
the left hand side increases with at least g,. There is consequently a smallest hg
such that (3.6) and hence (3.7) are satisfied for all h= hg.— This has been used
effectively by Mossige [7] in a computer program to determine n,(k) for arbi-
trary k.

Let us call the numbers (1.2) “h-representable”. These integers form a certain
pattern along the non-negative number axis, with the first “gap” at n,(A4,)+ 1.

The (h+ 1)-representable numbers can be divided into two sets: 1) Those
with x, >0, corresponding to a translation of the above pattern a, units to the
right. 2) The combinations with x, =0; these cover all non-negative integers
<ay (since h+ 12 hy), and do not exceed (h+ 1)a, _,. The translated first gap is
thus not affected by the second set if n,(A4,)+1+a,> (h+1)a,_,.

This completes the proof of Theorem 3.1. Incidentally, the same argument
shows that the inequality (2.13) is valid for h=h,— 1.

We may say that n,(A4,) is “stabilized” for h=h, if (3.7) holds for all h=h,
but not for h=h; — 1. With k=3, it follows from Theorem 2.2 that h, = h, for a
non-pleasant basis (since it is then easily seen that n, (43)>n, _,(43)+as). On
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the other hand, it is not difficult to show that h, =h,—1 for all pleasant bases
A, (when ny(A4,)=g,(4,).

It is clear that h, also represents the bound for h in Meures’ fmmula (2.16),
for which we can now give a very simple proof.

If we choose h = h,, the difference ha, —n,(A,) is independent of h. We note
that the largest h-representable number is ha,, and that ha,—t, t>0, is h-
representable:

if and only if

t = Y x(a—a)+(h—h)a,
i=1
has a representation by the basis A4, of (2.15)— with no restriction on the
number of addends, since h can be chosen arbitrarily large. The largest non-
representable ¢ is thus the Frobenius number g(4,), and all non-negative
integers <ha, —g(4,) are then h-representable (by 4,). But this is just Meures’
result (2.16).

It follows from (2.1-2) that (3.6) always holds — with strict inequality — for
k=2. For k=3, however, we cannot reverse Theorem 3.1:

For k=3, we know that (3.7) always holds for h= h,. On the other hand, the
discussion in connection with Theorem 10.1 below describes some general
cases where (3.6) fails.

For k=4, there are no counter-examples with hy=2, but two with hy=3:

Ay = {1,3,8,9}, ny(A,) = 21, ny(4,) = 30
A, = {1,3,8,11}, ny(4,) = 17, ny(4,) = 28.

4. Organizing the bases A,.
We now turn to the case k=3. For a given h=H, the conditions (2.1) and
(2.3) give the total number

H(H*>+6H—-1)

4.1) 6

of admissible bases. This number includes all the admissible bases with hy < H.

To avoid this repetition, we shall focus attention on the “h,-bases”. For a
given h, this means to consider only those bases for which this h is just the h, of
(2.5). In other words, we choose the combinations
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42) a, = 2,3,...,h+1
' ay = fa,+r = (h—a,+2a,+r, r =0,1,...,a,—1.

Il

If we can determine the range n, (A4;) for such a basis, the general case is
immediately covered by Theorem 2.2.

We may further restrict ourselves to non-pleasant bases, since the pleasant
ones are covered by Theorem 2.1. In (4.2), it then suffices to choose

@.3) r=12...,a,—f—1 = 2a,—h—3.

If this interval for r shall not be empty, we must have

/
2a,—h—-3 =21, or a, = [1;5].

For non-pleasant hjy-bases, the conditions (4.2) are thus replaced by

h+5
a, I:—;—],...,h-i—l
4.4)
a (h+2—ajy)a,+r, r = 1,2,...,2a,—h—3.

We note that r=2a,—h—3 corresponds to s=gq, cf. (2.10).
A simple count shows that the number of non-pleasant bases A; with hy <H
is given by

4.5)

HH+2)QH-1)
24 '

Comparing with (4.1), we see that asymptotically 50%, of all bases Ay are
pleasant.

From a computational point of view, the conditions (4.4) are very simple to
implement. So are of course also the conditions (2.1) and (2.3) for the set of all
admissible bases for a given h. Some more care is required if we want to
exclude the pleasant bases in the latter case.

This problem arises if we want to determine the extremal h-range n,(3) for a
given h. We then need to scan all admissible bases, to find the largest n,(4,).
We may, however, leave out the pleasant ones, since it is easily seen that

(4.6) n(3) > g,(3), hz2.

One way to prove this inequality is to use two bounds of Hofmeister, one
upper bound [2, (35a) p. 54] for g,(3), and one lower bound [3, Folgerung 1 p.
81] for n,(3). A comparison shows that (4.6) is always satisfied for h=9, and
the cases 2<h<9 are easily dealt with numerically.
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Incidentally, it seems a “safe bet™” that we always have
nh(k) > gh(k)9 h g 2’ k g 3 5

but apparently no proof of this inequality exists for arbitrary k.

To exclude the pleasant bases from (2.1) and (2.3), we note that (2.3) gives f
<h+2-—a,, while (4.3) shows that f<a,—2. All non-pleasant bases 4, for a
given h are thus determined by

a, = 3,4,.. ,h+1; ay = fa,+r
4.7 S =12, min{a,—2,h+2—a,}
ro=12,...,a,—f—1.

For a chosen basis A;={1,a,,a,}, the simplest way to find n,(4;) is to
determine h, from (2.5), then calculate n, (4;) from the formulas given later,
and finally use (2.14) to determine n,(A;).

We mention that this procedure was used successfully to decide a problem
due to Hofmeister: He proved [3, Satz 2] a formula for the extremal h-range
n,(3) and the corresponding extremal basis A%, for h “sufficiently large”. He
also gave a table for h<34 (where, incidentally, the “anticipated” extremal
basis {1,19,102} for h=22 is missing). For h>22, all entries of the table
confirm his general result on A¥.

Prompted by the possibility of further computer results, Hofmeister has
recently taken a new look at his proof. He has informed me that it suffices to
check separately the cases with h<200. This was done on our computer by
Mossige [7], but no further exceptions were found. For h>22, Hofmeister’s
result on the extremal h-range n,(3) thus covers all extremal bases.

We note that Hofmeister’s result must fail for some small h, since his bases
A¥ are not admissible for even h<8, and for odd h=17.

We conclude this section with Table 1, which gives all non-pleasant h,-bases
A, for hy 210, together with the corresponding values of n, (45;).

The pairs (a,,a;) are grouped in intervals, with a, and f fixed within each
interval. The intervals are arranged according to decreasing f. In what follows,
“interval” will always refer to this grouping. In particular, the “last interval”
corresponds to

(4.8) f=1,a,=h+1,a;=h+r+1, 1 £r < h-1.



42 ERNST S. SELMER

Table 1. Values of n, (A;), hy <10, for non-pleasant bases.

hy=2 ho=6 hy=8 ho=9 hy=10
a, 4y ny |4, 4y nNg|a, a4z nNg| a; 4, Ny | @ Az Ny
3 4 8! 5 16 44| 6 25 171 7 29 83 7 36 104
7 30 86
hy=3 6 13 47| 7 22 62 g 33 95
6 14 50 7 23 8| 8 25 951 8 34 130
ay a3 ny| 6 15 40| 7 24 67| 8 26 98 | 8 35 100
8 27 103
4 5 1517 8 48| 8 17 79| 8 28 78 9 28 107
4 6 14| 7 9 46| 8 18 84 9 29 110
7 10 42| 8 19 87( 9 19 8 | 9 30 142
hy=4 7 11 48| 8 20 74| 9 20 112 9 31 118
7 12 52( 8 21 77 9 21 971 9 32 120
a, ay n, 9 22 104
hy=1 9 10 8| 9 23 107 |10 21 119
4 9 23 T 9 11 78| 9 24 8 (10 22 124
ay a3 n, | 9 12 76 10 23 130
5 6 24 9 13 68} 10 11 99 1 10 24 134
5 7 2216 19 53] 9 14 8|10 12 98 | 10 25 118
5 8 26| 6 20 56| 9 15 82|10 13 93 110 26 146
9 16 86| 10 14 102 |10 27 125
hy=5 7 15 55 10 15 83
7 16 58 10 16 102 | 11 12 120
ay a3 ng| 7 17 63 10 17 109 | 11 13 118
7 18 65 10 18 98 | 11 14 128
5 11 29 11 15 124
5 12 32 8 9 63 11 16 100
8 10 62 11 17 126
6 7 35| 8 11 68 11 18 132
6 8 34| 8 12 54 11 19 140
6 9 31| 8 13 69 11 20 128
6 10 34| 8 14 62

5. The Frobenius-dependent bases.

We shall now apply Theorem 2.3 to the determination of n,(A4,), and first
consider the case where the Frobenius basis

(51) B = {03"‘02,03—'1,(13}

is dependent. This means that one of the elements has a representation by the
other ones, and it is easily seen that this occurs if and only if

(5.2) (a3—ay)| (a3—1) or (az—ay)|a;.
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We then call the corresponding bases A; “Frobenius-dependent” or just
“dependent”.

It is clear that
{((13—512)“(13—1) = g(B) = glaz—a,,a,)

(5.3)
(a3—a,)|ay = g(B) = glazy—aj,a3;—1).

The problem is thus reduced to a Frobenius basis of two elements. These are
clearly coprime, and we may then use the well known formula

(5.4) g(byby) = bby—b, —b, .

The conditions (5.2) imply that a; <2a,. We leave out the pleasant case a;
=2a,, and can then confine ourselves to the last interval (4.8). Here ay;—a,=r,
and

(ay—ay)|(as—1) < rlh, (a3—ajy)|ay < r|(h+1).

Using (5.3), (5.4) and (2.17), a simple calculation shows that

(h+12=r(r—=1)-=1 if r|h,

(55) n"(l’h+]’h+r+l)={(h+1)2—r(r—2)—2 if r)(h+1).

The case r| h was already covered by Salié, cf. (2.30). His method is in a sense
more “elementary”, using only the definition of n,(4,;). We mention that a
similar proof, independent of Theorem 2.3, is fairly simple to carry through
also in the case r| (h+1) (in the formulation (5.8) below).

When r*h, we have strict inequality in (2.30). This was not stated explicitly
by Salié, but is included in the following result:

The two formulas of (5.5) coincide for r=1. When r>1, the second
expression is clearly larger than the first one, but smaller than the range of any
non-dependent basis:

(5.6)  m(Lh+Lh+r+1)> (h+1)*=r(r=2)=2 if rfhh+1.

To prove this, we use Vitek’s bound (2.25), which shows that
grh+rh+r+1) (h+r~—1)[g:|—l .
Substitution in (2.17) gives
(5.7) ny(Lh+ Lh+r+1) = (h—[g])(h+r—1)+2h.
A simple calculation shows that this bound exceeds the right hand side of (5.6)
when r>2. And the bases with r=1 or r=2 are always dependent.

We conclude this section with an alternative formulation, useful later, of
(5.5): For any two positive integers p and r, we have
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(5.8) {”vr(l’l’r+1»(v+1)r+1) = (PP =1)r’+ 2p+)r

Ny -1 (1, pr, (p+1)r) = (PP=1)r*+2r-2,

where we must assume p>1 in the latter case.

6. General formulas for n,(4,).

We shall now combine the Theorems 2.3 and 2.4 to obtain formulas for
n,(A3). It turns out that we get a substantial simplification of the general
conditions in Theorem 2.4, implicitly due to the fact that two of the Frobenius
basis elements (5.1) differ by a unit.

We note that there are a priori six permutations of these basis elements, to
be used as the a, b. ¢ of Theorem 2.4. It is possible (cf. [11, formula (3.1)]) to
remove a common factor of two elements in a 3-element Frobenius basis.
However, if we want to solve the congruence (2.18) for s, in the general case, we
must be certain that a and b are coprime. In addition, this congruence should
preferably have an explicit solution.

Fortunately, both these conditions are satisfied simultaneously by the two
choices of a and b among the basis elements a; — 1 and a;. At the same time, we
get a simple expression for the t of (2.19):

(6.1) a=4as b=a;—1,c=a3—a,; 5o =a, t =a,—1
6.2) a=a;—1,b=a; c=a3—a,; s =t =ay—a,.

With the first combination (6.1), we shall perform the division algorithm
(2.20) with a=as;, s, =a,. For the numbers P; and Q,; of (2.21), it is easily shown
by induction that we then have

6.3) a,Pi—asQ; = s, i=0,1,2,....

This implies that
P, b (a—DP—(a3—1)Q; si—(Pi—Q)

Q; ¢t - tQ; tQ; ’
and the conditions (2.22) are thus equivalent to
sv=>=Pv~Qw Sp+1 éPv+1—Qu+1‘

We can also give an explicit condition for the choice of argument in the
minimum of (2.23):

min {bs,, ,cP,} = min{(a3—1)s,+,, (a3 —a;)P,} .
It follows from (6.3) that
(03”— l)(Pv—Qv)_ (a3_a2)Pv = Sy (PU-QU) ; 0 s
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hence
min{} = (a3~a)P, if 5,4, = P,—Q, .
On the other hand,
(a3—ay)P,— (a3 —1)(P,—Q,—1) = a3—5,+P,—Q,—1 > 0,
since

N

IIA

v So = dp < aj, Pv_QngO—Q():: L.
This shows that
mm{ } = (03—1)Sv+1 if Sp+1 é Pu—Qv_1 .

Substituting a, b, c from (6.1) into (2.23), and using (2.17), we thus get

THEOREM 6.1. In the notation of Theorem 2.4, put a=a,, sy=a,. If
(6.4) So 2 P,=0Qp Spu1 = Py —0Quiy s
then
6.5) ny(l,a5,a3) = (h+3)az—a,—2—(a3—1)s,— (a3 —a,)P, .,

+{(a3—-a2)Pv ifsv'l-l g Pu_Qva
((13—1)Sv+1 l:fsv+1 < Pv_Qv'

We next turn to the second combination (6.2), where now a=a;—1, so=
a3 —a,, so that (6.3) is replaced by

(6.6) (a3—ay))Pi—(a;—1)Q;, = s, i=0,1,2,....

We then repeat the arguments that led to Theorem 6.1. Since now sy=c,
these arguments become even simpler, giving

THEOREM 6.2. In the notation of Theorem 2.4, put a=a;—1, so=a;—a,. If
(6.7) Sp 2 Qus Sps1 = Quar s
then
(6.8)  my(l,a3,a3) = (h+3)ay—a,—2—ass,— (a3 —ay)P, .,

+{(“3““2)Pu if sp41 > Qy,s

azSy+ 1 if s,01 £ Q.

As already mentioned in the Introduction, the Theorems 6.1-2 are not
strictly “explicit”, since the necessary number v+1 of division steps (2.20)
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cannot be determined a priori. Let us examine some cases where only one or
two steps suffice:

In Theorem 6.1, we get v=0if s, S P, —Q,=¢q, — |. In our standard notation
(2.4), we now have s, =s, ¢, =¢. A comparison with (2.10) shows that r=0
in Theorem 6.1 corresponds exactly to the pleasant bases Aj,.

Let us also examine the case v=1, to illustrate a typical technique which will
be used frequently below. For a non-pleasant basis, we now perform the next
division step (2.20):

a, = ¢,5—5,, 0 <5, <.
By (6.4), the condition for v=1is
S3 = (s—ay = P,—Q, = qq,—1—¢q,,

or
(6.9) a,—1 2 (s—q+1)q, = (s—q+1)<€55>.

As usual, (x> denotes the smallest integer = x.
For real numbers x and y, it is easily seen that

(6.10) yZLxy = x = [y].

The condition (6.9) for v=1 in Theorem 6.1 can thus be formulated
alternatively as

02—]
<
(6.11) a, < s[s——q+l:|

(assuming a non-pleasant basis, that is, s=g).
Let us also consider the case v=0 in Theorem 6.2. By (6.7), the condition for
this is s, =Q, =1, where

a3—1 = qi(a3—a))—s,, 0 = 5, < az—a, .
Now s, =0 and s, =1 are the only possibilities, and we see that
sy = 0 < (a3—ay)|(a3—1), sy = 1 = (a3—ay)|a; .

A comparison with (5.2) shows that v=0 in Theorem 6.2 corresponds exactly to
the Frobenius-dependent bases As.

7. Two explicit formulas.

In this section, we shall prove the following generalizations of Salié’s
formulas (2.29) and (2.27):
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THEOREM 7.1. Let A; be a non-pleasant basis satisfying the condition

a,—1
7.1 < 2 )
(7.1) @2 = s[s—q+1]

Then

s—a[h 2+i
(7.2) nho(A3) = (03—1) 'Z() [%]

_(s—q+1)<a3—[h°:1:D+2a3—r—2 .

THEOREM 7.2. Let A; be any basis satisfying the condition

(1.3) ay—1 < (r4f— 1)[“72] .

Then

=1 h i h
(7.4) ny,(4;) = (_ZO [r:;—'l] -r+ 2>a3 —r[r +f0— 1] -2.

Inspired by Sali¢’s formulas (2.27-29), and using numerical evidence
provided by Mossige, I first conjectured the simplest formula (7.4), and later
also (7.2). Both formulas were next verified numerically for a larger set of bases,
before the proofs were found.

With s=gq, the condition (7.1) is automatically satisfied, and (7.2) coincides
with Sali¢’s formula (2.29). Note that s=gq corresponds to the last (non-
pleasant) basis in each interval. For a basis just above the last one, with s=
q+1, the condition (7.1) fails only in the one case 4;={1,4,5}, with hy=3.

Salié¢’s main formula (2.27) is a special case of Theorem 7.2. To see this, we
note that the condition g <f of (2.26) implies

(1.5) fo | hotl | _|htr=1l}
r+f—1 r+f—1 r+f-1
showing that the formulas (7.4) and (2.27) coincide.
We note that the condition (7.3) has the equivalent formulation

a,—1
>
(7.6) a, 2 r<r+f—l ,

cf. (6.10). On the other hand, (2.26) may by means of (2.5) be written as

ho+r—1 =a,-2 =9, (modr+f-1), r—1 S ¢, < r+f-1,
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which is more in accordance with Salié’s original formulation. It is now easily
seen that his condition ¢,=r—1 implies—and is stronger than—the
condition (7.6).

With r=1, the condition (7.3) is automatically satisfied, and we get Salié¢’s
formula (2.28). Note that r=1 corresponds to the first (non-pleasant) basis in
each interval. The condition (7.3) is also always satisfied for r=2, and for r=3
if f>1.

To prove Theorems 7.1-2, we must first determine the sums of integer values.
In Salié’s case (7.5), these all coincide. In the general case, there may be a
“jump” of one unit if the numerator “passes” a multiple of the denominator.

Consider first the sum in (7.2), where clearly the residue of hy+2 (mods) is
decisive. We prefer to use the negative residue

ho+2 = —p (mods), 0 =pu<s.

If m=min {yu,s—q+1}, there is then a set of m equal addends:

["o“] _ [ho“] _ - [M] cach = [’Li]
s s s s

If u<s—gq, there is also another set of s—¢q+1—pu equal addends:

[h_t%ﬂf] _ [L”ﬂ] _ - [w] cach — [h_oﬂ_]ﬂ'
N N S S

Substituting in (7.2), an easy calculation shows that Theorem 7.1 is equivalent
to the following

LEMMA 7.1. Let A5 be a non-pleasant basis satisfying the condition (7.1), and
put
ho+2 = —p (mods), 0 S p < s; m=min{g,s—q+1j .
Then
ho+1

(7.7) ny,(A3) = a3(s——q+l)[ ]—m(a3—-l)+2a3—a2+q——3.

To determine the sum in (7.4), we may similarly put hy= —v (mod r+f—1),
and proceed as above. There is, however, some trouble with the case v=0. This
trouble can be circumvented by using instead the smallest non-negative
remainder hy=g. We then find that Theorem 7.2 is equivalent to the following

LEMMA 7.2. Let A, be any basis satisfying the condition (7.3), and put
he = @ (modr+f—1),0 £ ¢ < r+f—1; M = max{g, f—1}.
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Then

h
(7.8) N, (A3) = r(a3-1)[r+f°_1]—a3(r+f—M——3)——2.

In particular, we get the correct formula (2.11) in all pleasant cases, since
(7.3) is satisfied if r=0 or r+f=a,.

We note that the case M =f—1, that is, ¢ <f, corresponds exactly to Sali¢’s
main formula (2.27). As shown above, the condition (7.3) (in the form (7.6)) is
then automatically satisfied.

There is in fact a similar case of Lemma 7.1, if m=s—gq+1, that is, u>s5—q.
This is equivalent to

a, = —yy (mods), 0= pu <g-1.

The condition (7.1) (in the form (6.9)) is then automatically satisfied, and we
get
hy+1

n,(A3) = a3(s—q+1)<[ :|——1)+2a3-—(r+2),

in striking analogy with Salie’s main formula (2.27).

Because of the congruences entering into Lemmas 7.1-2, they are “less
explicit” than the original Theorems 7.1-2. On the other hand, the Lemmas are
in most cases simpler to apply to a given basis Aj,.

We next proceed to prove Lemma 7.1. Since the condition (7.1) coincides
with (6.11), we must expect to need Theorem 6.1 for v=1. With
7.9 a, = ¢,5—5,, 055, <5,
we then have
(7.10)  n, (A3) = (ho+3)ay—a,—2—(a;—1)s—(a;—a,)(qq,— 1)

(az—a)qg if s, 2 9-1,
(a3—1)s, ifs, <g-—1.

For a non-pleasant basis, f=q—1 and hence ho=f+a,—2=qg+a,—3 by
(2.5). For the integer value in (7.7), we thus get

(7.11) [ﬁﬂ] _ [q+az~2] _ [q+qzs-s2—2] _ q2+[""52”2],
N S s ———'—""s

using (7.9). On the other hand, s=q for a non-pleasant basis, and ¢22, 0=<s,
<s, SO

q—2 _q—s-2 < q—5,—2 < q—2

N N N N

<1.

Math. Scand. 47 — 4
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The last integer value of (7.11) thus equals —1 or 0, and clearly

(1.12) [L“] _ {‘h“ it 2 g1,
§ P} if s, <g—1.

We must also determine the minimum m of Lemma 7.1. Now
ho+2 = g+q,5—5,—1 = q—s,—1 = —pu (mods)

shows that u=s,—q+1 if s,=2qg—1, and u=s+s,—q+1 if s,<q—1. This
gives
s,—q+1 ifs, 2qg-1,

<

7.13 = min{y,s—q+1} = i
(7.13) m = min {y,s—q+1} {s—q+1 if s, <g—1.

We thus get the same two alternatives in (7.12-13) as in (7.10), and it is now
straightforward — but tedious — to verify that (7.7) and (7.10) coincide in both
cases. For the verification, we must substitute

hy = q+a,—3, ay = qa,—s, s, = q,5—a, .

This completes the proof of Lemma 7.1 and thus of Theorem 7.1. We may
safely say that this theorem would never have been formulated without first
being conjectured from numerical evidence.

The same remark applies to Theorem 7.2, or the equivalent Lemma 7.2,
which we shall now prove. This will give the first illustration of the important
fact that several division steps of Theorems 6.1-2 may sometimes be combined
into a single formal operation.

We now use Theorem 6.2, and shall apply the division algorithm (2.20) to
the ratio

a;—1  fa,+r—1
as—a, (f-Day+r’

a
So
The algorithm takes the form
fay+r—1 = 2{(f=Day,+r} —{(f-2ay+r+1}
(f=Day+r = 2{(f=ay+r+1}—{(f—3)a, +r+2}
3a,+r+f—4 = 2{2a,+r+f-3} —{a,+r+f-2}
A{a,+r+f-2} —{r+f-1}

2(12+r+f—3

Sf_l
(7.14) ay+r+f-2 =q;r+f-1)-s, 0= s, <r+f-1.
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We see that g, =q,=...=q,_;=2 (and it is easily shown that g,>2 for a
non-pleasant basis). This gives

P,=i+1, Q,=1i; i=0,1,...,f-1
Py =fq,—(f=1), Qy = (f=Dgq,—(f-2).
Since
(7.15) Spoy =r+f—1 20, =f-1

(including the pleasant case r=0), it follows from (6.7) that we always have v
>f—1. It turns out that Theorem 7.2 corresponds to the choice v=f—1. The
condition for this is

(7.16) Sp 20, = (f=1Dg,—(f-2).
It follows from (7.14) that

-1
qs; = <;—l+3f—_—f>+l, sp = q,r+f=1)—(ay+r+f-2).

Substituting this into (7.16), we get

a,—1
a, 2 r(g;—1) = r<ﬁ—2—f_—~T> )

which is just the condition (7.6) of Theorem 7.2.
Under this condition, (6.8) gives

Myo(A3) = (ho+3)az—a,—2—a3(r+f—1)—(az3—a))(fa,—f+1)
+,{(as“az)f if s, 21,

ass, if s, <f.

For the integer value and the maximum of Lemma 7.2, we now find

hO _ qf_2 if Sy ;f’
r+f—1]  |g,—1 ifs,<f.

M=maX{Q,f_1}={f__1 ifsf <f’

and the proof of Lemma 7.2 is completed as for Lemma 7.1.
The total number of non-pleasant bases A5 with hy<H is given by (4.5). A

numerical investigation with H =500 indicates that each of the Theorems 7.1
and 7.2 covers approximately 609, of these bases (asymptotically, as H — 00).
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This should be compared with a coverage of about 309, for Sali¢’s main
formula (2.27).

However, the figure 609 does not give a true picture of the “density” of
bases covered, since there are many bases which a priori fall outside the scope
of the conditions (7.1) or (7.3). In general, Theorem 7.1 fails completely in the
beginning of most intervals, and Theorem 7.2 in the end. More precisely, the
condition (7.1) of Theorem 7.1 is a priori possible only if a,—1=2(s—q+1)
=2(a,—r—f), or
(7.17) rz [522—] —f+1.

Similarly, the condition (7.3) of Theorem 7.2 is a priori possible (for a non-
pleasant basis) only if a, =2r, or

(7.18) r< [“72]

An elementary but complicated count shows that the numbers of non-
pleasant bases A, satisfying (7.17) or (7.18), accumulated for h, < H, are given
by '

[H2(2H + 3)+9] - I:Hz(H +3)]
36 18 ’

respectively. Asymptotically, both these numbers represent only two thirds of
the total number (4.5). The asymptotic coverage for each of the Theorems 7.1
or 7.2, in those regions where they are a priori possible, is therefore
approximately 90 %.

In every interval, there is always an overlap between the two regions
determined by (7.17-18) (and the region of overlap increases with f for a given
hy). In combination, the Theorems 7.1-2 are therefore a priori possible for all
non-pleasant bases A;. A numerical investigation indicates an asymptotic
combined coverage of approximately 86 %. An improvement of this figure (to
98 9%,) will be the aim of the next section.

It turns out that the asymptotic coverage is lower for small values of f, in
particular for f=1. As a matter of fact, we can show that the coverage is 0% in
the case of Theorem 7.2 for f=1.

This theorem was deduced from Theorem 6.2 with v=f—1, hence v=0 for
J=1. By the concluding remark of Section 6, this corresponds to the Frobenius-
dependent bases (5.5), where r is a divisor of h or h+1.

Let t(n) denote the number of divisors of an integer n, including 1 and n. The
number of different divisors r<h of h and h+1 is then

t(h+t(h+1)-3.
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We now accumulate over the last interval (f=1), of length hy— 1, for hy < H.
The total number of bases is then {H(H —1). On the other hand, it is well
known that

Y t(h) = HlogH+(2y—1)H+0(/H),
hsH
where y=0.57721 ... is the Euler constant. This shows that the relative

frequency of non-pleasant bases with f=1 and h, < H covered by Theorem 7.2
is given by

4logH+8y—10

(7.19) g tOHT").

Asymptotically, the coverage is thus 0.

8. The main formulas.

We have now reached a stage where further progress was again based on
numerical evidence. In the next section, we shall see that in the last interval, for
f=1, n,(A;) can be expressed as a quadratic polynomial in h. A study of the
coefficients of these polynomials, as computed by Mossige, led me to
conjecture the following result: In the last interval (4.8), we put

(8.1) h=g (modr)), 0=Zg<r.
If
8.2) rs (a+1>H,
0
then

83) n,(L,h+Lh+r+1) = (h+r)(h+2—9)—r— (h+r—g)[~g—:_—l:| .

If =0, we define (8.2) to be satisfied. This is the Frobenius-dependent case
r|h, and (8.3) then coincides with the first formula (5.5). If similarly r| (h+1),
o=r—1, we also have (8.2) satisfied, and get the second formula (5.5).

The proof of (8.2-3) turned out to be comparatively simple: By (8.1), we
have

(8.4) h=1twr+9, 0ZLo<r.

We now use Theorem 6.1, and shall apply the division algorithm (2.20) to the
ratio

ay _ h+r+1 (t+1)r+o+1

a, h+l —  wr+e+l
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The algorithm takes the form
(t+Dr+o+1 = 2{rr+o+1} —{(t=Dr+o+1}
4o+l = 2{(e—Dr+e+1}—{(t—2r+e+1}

3r+o+1 = 2{2r+po+1} —{r+eo+1}
2r+9+1 = 2{r+o+1} —{o+1}
s
(8.5) r+0+1 = q.41(0+1)—5,41, 0 £ 5,4y < o+1.
We see that g, =¢q,=...=¢q,=2, and hence

P,=i+1,Q, =1i; i=0,1,...,1

Py = (+1)q41—7 Qg = 1 —(t—1).

Since
s; =0+1 2P —-Q. =1,

it follows from (6.4) that we always have v=t. It turns out that (8.2-3)
correspond to the choice v=1. The condition for this is

(8.6) Serr = Py —Qeiy = gy — 1.
It follows from (8.5) that

r
qe+y = <m> +1’ Si+1 = qt+1(Q+l)“(r+Q+1) .
Substituting this into (8.6), we get the condition

r
> -1 = R
rz o+ —1) Q<Q 1>

which by (6.10) is equivalent to (8.2).
When this condition is satisfied, (6.5) gives

n(As) = (h+3)h+r+1)—(h+1)=2—(h+r)(e+1)—r{(t+1)g.4, —7}

r(t+1) if s,,, 2P -0, =1,
(h+rs,yy =0 ifs, =0.

[ 1.2 s
T =171 it s,

a simple calculation shows that we have obtained the formula (8.3).

v

Since clearly
t,
0,

v
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The proof just completed is analogous to the earlier proof of Lemma 7.2. In
both cases, several steps of Rodseth’s division algorithm have been combined
into one formal operation. In the case of Theorems 8.1-2 below, the same

principle applies, and we shall then content ourselves with brief sketches of the
proofs.

Having conjectured and proved the result (8.2-3), it is natural to try a
generalization to f>1. The crucial point is then the extension of the division
(8.4). After some trial and error, the answer turned out to be

(8.7) a—1 =1(r+f=D+e, 0=eo <r+f-1.

We still use Theorem 6.1. Assuming so far r>0, we have g, =q=f+1. If 1>1,
we further find

4 =¢q3= ... =q, = 2.
The last division (8.5) is replaced by
r= (g 41— 1), =841, Where s, = 1(f—1)+o+1 = a,—1r.
As above, we use v=1 in Theorem 6.1. A straightforward calculation then

gives

THEOREM 8.1 (First main theorem). Let

a,—1 = t(r+f—1)+0, 0= <r+f-1
r=ala,—tm)—p, 0= <a,—1r.
If
(8.8) r+f—12 ag,
then
(8.9 n,(Az) = (rr+2)(az—1)—r—a(tf+1)(a;—a,)
+{(Tf+1)(as“az) if B >(f-1,
Blaz—1) if p<(f-1.

With f=1, we get the earlier case (8.2-3). However, two other specializations
of Theorem 8.1 are more interesting:

First, Theorem 8.1 contains Theorem 7.1 as a special case, namely for t=1.
This follows from the fact that the latter theorem corresponds to Theorem 6.1
for v=1. (There is one case with 7> 1 covered by Theorem 7.1, namely for t
=2, 0=01in (8.7). Then s,=P,—Q,, and we may use either v=1 or v=2 in
Theorem 6.1.)
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Next, Theorem 8.1 also contains Theorem 7.2 (including all pleasant bases) as
a special case. To prove this, we show that the condition (7.6) implies—and is
stronger than —the condition (8.8):

For ¢=0, (8.8) is always satisfied. For ¢>0, it follows from (8.7) that

a,—1
= 1
(o) =+t
and (7.6) may be written as r <a, —tr. On the other hand, the condition (8.8)
has the two equivalent forms

(8.10) rf—12 g<a2:"> er< (az—tr)[r+_£——1].

Since g <r+f—1, the last condition is certainly satisfied if r<a, —1r.

So far, the applications of Theorems 6.1 and 6.2 have worked in parallel. It
is therefore natural to look for an analogue to (8.7), to be applied in connection
with Theorem 6.2. It took some time to discover the very simple answer:

(8.11) a, = As+0, 0=Zo0<s.

We use Theorem 6.2, and assume so far 1> 1. The incomplete quotients g;,
for a non-pleasant basis, now become

9 =4 = .... =QJ—1=2,‘1[=3’
and if A>2 further

dr+1 =qge2 = - = qgp1-2 = 2.

The calculations are straightforward but rather complicated. With v=f+1—-2
in Theorem 6.2, we find

THEOREM 8.2 (Second main theorem). For a non-pleasant basis A,, let
a, = As+0, 0=Zo0<s
s—f=yAM+0-1)—-8, 0=6 < Af+o—-1.
If
(8.12) s 2 vyo,

then
(8.13) ny,(A3) = {A(s—f)+2}a;—r—2—y{A(f+1)—1}(a3—a,)

+{{i(f+1)—1}(aa—az) if 0 2 4f,
day if 6 < if.
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We have not excluded the case 4 =1, even if the division algorithm then takes
a different form. It is easily seen that A =1—and in addition A =2, 6 =0—cover
all the non-pleasant cases of Theorem 7.2 (and also a few pleasant ones). Quite
unexpectedly, it turns out that these cases are all contained in Theorem 8.2, in
spite of the formally different proofs.

In analogy with the arguments around (8.10), it is easily shown that
Theorem 8.2 also contains Theorem 7.1 as a special case. Thus, each of the new
main theorems comprises the non-pleasant cases of both of the earlier explicit
theorems.

If both main theorems fail, we can improve the situation by strengthening
Theorems 7.1-2 (which, of course, then also fail). The common failures have a
tendency to occur when r is in the interval

a, 2a,

3 ST 3
This corresponds to g,=3 in (7.9), or g,=4 in (7.14). For these particular
values, we therefore extend Theorem 7.1 from v=1 to v=2, and Theorem 7.2

from v=f—1 to v=f. With g, or g, given, only one division step will then
appear explicitly in the formulas. Standard arguments yield

THEOREM 8.3 (Supplementary theorem). Let

and put
a,—r = n2a,—3r)-9, 0=9 < 2a,-3r.
If 3 (3f—1)n—f, then
m,(A4;) = (Br+5f—az)ay+r—2a,-2
+ed(az—1)— (e+n3f+2)(as—ay) .

Let next

and put
r+f—1 = n(3r+3f—a,—-2)—-9%, 0=9 < 3r+3f—a,—2.
If 92 (3f—2n—f+1, then
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ny(A3) = a,—3r+2f+e9)as;+2(2r—a,—1)

= E+nEf+Dias—ay) .

In both cases, choose

0 9z 31,
T ire <3f—1.

For small h,, this theorem represents a great improvement. If we consider
only f>1 (all intervals but the last one), the combined main theorems fail for
42 non-pleasant bases with hy < 50. If we also use the supplementary theorem,
there is only one common failure left:

he = 47, a, = 47, ay = 106.

In the last interval (f=1), the theorems are much less effective. For hy <50,
there are then 108 non-pleasant bases 4; where Theorems 8.1-3 all fail. To
improve the coverage, we argue as follows:

The supplementary theorem represents particular cases of v=2and v= f—1
in the general Theorems 6.1 and 6.2. If we use these theorems without
restrictions for v<2 and v=1 respectively (in addition to the main theorems),
we cover all but 46 non-pleasant bases for f=1, hy<50. If we also extend
Theorem 6.2 to v<2, there are only four common failures left:

(ho,7) = (43,17), (43,19), (48, 19), (50,22) .

Let us also indicate what happens for 50 <h,<100. With f>1, Theorems
8.1-3 then fail for 217 non-pleasant bases A5, of which 195 have f=2 and the
remaining 22 have f= 3. The first case with f=3 occurs for hy=76. — With f=1,
Theorems 8.1-2 in combination with v <2 in Theorems 6.1-2 fail in 194 cases.

As for Theorems 7.1-2, we shall also examine the percentage of bases A,
covered by the different Theorems 8.1-3. The denominator of the percentage is
then given by the total number (4.5) of non-pleasant bases with hy < H.

Considering all such bases, the asymptotic behaviour of this percentage is
apparently very regular, cf. Table 2. Even if the behaviour has not been studied
theoretically, no great risk is involved by stating the following results:

Each of the two main theorems seem to cover asymptotically ~291.3%; of all
non-pleasant bases, and ~96.7% in combination.— The former number
should be compared with the combined coverage ~ 869 of Theorems 7.1-2,
which are both particular cases of each of the main theorems.
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Table 2. Percentage of non-pleasant bases A5 with hy < H where the following
theorems fail:
I: Th. 8.1. II: Th. 8.2. III: Th. 8.1-2. IV: Th. 8.1-3.

H= 100 200 300 400 500 600 700 800 900 10000

I 780 827 842 849 853 855 8578 8592 8.604 8.612
I 826 847 854 857 859 8608 8618 8.625 8.631 8.636
Inr 278 305 314 318 321 3224 3235 3243 3250 3.254
v 150 175 182 186 188 1896 1906 1913 1918 1922

In combination, the main theorems and the supplementary theorem seem to
fail for asymptotically 1.94 9 of all non-pleasant bases. Since we know (cf. the
comment to (4.5)) that these represent 50 % of all admissible bases, this means
an asymptotic failure of only 0.97% when the pleasant bases —covered by
Theorem 2.1 —are included. The asymptotic behaviour in this case is
illustrated in Fig. 1, where the percentage denominator is now given by the
number (4.1).

% A
1.0}

09%

08¢t

0.7+

n Y + d "

-+

200 400 | 600 800 1000 M

Fig. 1. Percentage of admissible bases A; with hy<H
where the conditions of Theorems 2.1 and 8.1-3 all fail.

We have already noted that most failures occur for f=1. The length of the
last interval is hy— 1, accumulating to a percentage denominator 3H (H —1)
for hy<H.

It turns out -that for a chosen (small) f, the asymptotic behaviour of the
covering percentage is much “slower” than in the case of all intervals
combined. Even with H <1000, it is difficult to evaluate the asymptotic
behaviour directly from a table.
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Inspired by (7.19), we may try to approximate the percentage by an
expression of the form

BlogH+C

A+ g

where the coefficients 4, B and C can be determined from three different
“observations”. This does, in fact, seem to give a fairly good estimate over a
large range of values H. Based on such considerations, the following
asymptotic results were obtained:

In combination, the main theorems and the supplementary theorem seem to
cover approximately 159 of all non-pleasant bases with f=1, versus 279 for
f=2. If we replace the supplementary theorem by Theorems 6.1-2 with v <2,
the percentage for f=1 is approximately doubled.

As already mentioned in the Introduction, the application of Rodseth’s
division algorithm (2.20) in Theorems 6.1-2 does not lead to strictly “explicit”
formulas for the h-range, since the number of necessary division steps cannot
be estimated a priori. One purpose of Theorems 8.1-3 is just to reduce the
number of (formal) division steps to at most two.

The same principle can of course be applied directly to the general Theorems
6.1-2. As above, we will not count the determination of f, r, s and q by (2.4) as a
division step.

Considering first Theorem 6.1 (for non-pleasant bases), the two first division
steps are then

Ay = (285—S53, § = (35, —S3 .
We have seen that the first step suffices, corresponding to v=1 (Theorem 7.1), if
a,—1 2 (s—q+1)q, .

When this condition is not satisfied, a simple application of (6.4) shows that we
have v=2 if

1
a-12 (5“‘1"‘1)(‘12"?)-

3
Turning next to Theorem 6.2, we saw in the proof of Lemma 7.2 that an

initial string of incomplete quotients g;=2 can be formally combined with the
first non-trivial division step (7.14):

a,—1 =qsr+f-1)-s, (ds=q,-1).
This step suffices, corresponding to v=f—1 (Theorem 7.2), if

a, 2 rq;.
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When this condition is not satisfied, the next division step

r+f=1=qp18,—5;4,

will suffice, corresponding to v=J, if

1
a, 2rlq,— )
2 <f dr+1

Table 3. Percentage of non-pleasant bases A5 with hy < H where the following
theorems fail:
I: Th. 6.1 (v=1,2). II: Th. 6.2 (v=f—1, f). III: I and II.

H= 100 200 300 400 500 600 700 800 900 1000

I 1987 2017 2029 20.35 2038 20.409 20427 20441 20453 20462
II 1931 1999 20.19 2029 20.35 20.388 20414 20433 20.447 20458
I 196 223 232 236 238 2397 2408 2415 2421 2426

Numerical results are given in Table 3. A comparison with Table 2 leads to
some interesting observations:

Using only one of Theorems 6.1-2, with two division steps, we get a much
lower asymptotic coverage (~79.5%) than with only one of the main theorems
(which, incidentally, justifies the adjective “main”). In combination, however,
Theorems 6.1-2 give a larger percentage (x~97.5%) than Theorems 8.1-2,
which need the auxiliary Theorem 8.3 to “take the lead” again. This indicates
less overlap between Theorems 6.1-2.

9. Polynomial formulas.

The aim of this section is to express n,(A43) as a quadratic polynomial in h, at
least under certain conditions.

We first use Lemma 7.1. Substituting

1

N

h0+1] _hotp+2
S

a, = hy—q+3, a3 = qa,—s, l:
in (7.7), we get

qh(2,+F1(S,q,H)ho+Gx(S,q,#) )

—g+1
©.1) mo(ay) = ETLEH

assuming (7.1) to be satisfied. The functions F, and G, are rather complicated.
The simplest case is for s=gq, corresponding to the last (non-pleasant) basis in
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each interval (when (7.1) is automatically satisfied). In particular, we then get
integer coefficients in (9.1).
Similarly, Lemma 7.2 gives

__ Y
Cor+f-1

9.2 Mo (A3) g+ Fy(r, f,0)ho+ G, (1, f0)
assuming (7.3) to be satisfied. The simplest case is now for r=1, corresponding
to the first basis in each interval.

The above results are, of course, only alternative ways of writing Lemmas
7.1-2. More interesting is a completely different approach in the last interval
(f=1). We shall prove the following

THEOREM 9.1. In the last interval (4.8), put

9.3) h=g (modr), 0=Zpo<r.
Then
9.4) n,(1L,h+1,h+r+1) = h>+ A(r,0)h— B(r,0) ,

where the coefficients A and B are integer functions of r and g.

As before, we apply Theorem 2.3, but now not with any of the permutations
(6.1-2) of the Frobenius basis. We use instead one of the cases with a=a;—a,
=r, for instance

9.5) a=a;—a, =r,b=a3=h+r+1,c=a;—1 = h+r.
The congruence (2.18) then becomes
(9.6) (@+1)sg = ¢ (modr), 0 =5, <r.

So far, we will assume (¢+ 1,r)=1. We can exclude ¢=0 and ¢=r— 1, since
the Frobenius-dependent cases (5.5) already give polynomials of the form (9.4).

When s, is determined by (9.6), we apply the division algorithm (2.20), with
a=r. The numbers s; and P; are then functions of r and g only.

When v is determined by (2.22), we see from (9.5) and (2.23) that g(a, b,c)is a
linear polynomial in h, and substitution in (2.17) yields (9.4). It only remains to
show that for given v, the minimum of (2.23) is independent of h:

(h+r)Pv lf Pvésvi‘l,

min {(h+r+1)s,,,,(h+r)P,} = {(h+r+1)s £ Pos
v+1 v v+l *

The first case is trivial, and the second case follows from

$i S8 <1 = Sy < htr < (h+r+1)s,4y < (B+1)(s,4,+1).
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If (o +1,r)=d>1, then also (a, b)=d. We remove the common factor d of the
Frobenius basis elements a and b by means of formula (3.1) in [11], and then
proceed as above. This completes the proof of Theorem 9.1.

Both for small ¢ and for large g, it is possible to give explicit expressions for
the coefficients of (9.4). For ¢ <3 or ¢ =r—4, the results are shown in Table 4.

Table 4. Some general coefficients in Theorem 9.1.

0 A(r,0) B(r,0) Remark
0 2 rir—1)
1 [fii] (r—1) f]
2 2
2 L2r;—2:| (r—2)L§]+r
S (r——3)ri]+2r res
L 4 | 4
[3r—1 [r 4, r%3 (mod4
A e ('+4)LZ_+{7, r; imod4; rs
.3 [2r+27] r—{+{3’ r£1 (mod3)
L 3 1 3] 2, r=1 (mod3)
r—2 |:H_3:| r ﬂ —r+2
2 12 ]
r—1 2 (r—1?

The upper part of the table follows easily from (8.1-3). Using Theorem 6.2
with v=1 on the last interval (4.8), standard methods give the following similar
result: Let

h= —s (modr), 1<s <7

r=q;s;—S» 05 <s;.

< r
e s;—1]’

If
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then

(h+r)(h+4—5s,—q)—s, if s,>1,

m(Lh+Lhtr+1) = {(h+r)(h+3—sl—q2+sz)——s1 if s,<1.

By means of this, it is easy to prove the apparent symmetry of Table 4, both
for A(r,0) and the excluded values of r. The verification of the expressions for
B(r,p) in the lower part is also straightforward but slightly tedious.

Extending the table towards the middle, stronger conditions on r will result.
As it is, the two conditions 7% 5 can be circumvented, since the combination g
=3, r=5is covered by p=r—2, and g=r—4, r=5 by g=1.

The cases with r <20 not covered by Table 4 are given in Table 5.

Table 5. Pairs (A, B) of coefficients of n,(1,h+1,h+r+1)=h*+Ah—B, h=¢ (modr).
1813 92

9] 6 3 19 |14 100 |14 100

10| 6 426 45 2014 127]14 124[14 125

1|8 367 s0[8 37 r

28 527 6|7 6] 8 si ol B 14 15

139 5719 55/ 8 72| 9 6] 9 54

1410 62|10 59| 8 86| 8 91|10 60[10 6l

15(10 78|10 80|10 78| 9 98|10 80|10 78|10 80

1611 84|11 86|12 68| 9 114| 9 120(12 69|11 82|11 84

17(12 90|12 92|12 89|12 88|10 128 |12 91|12 89|12 91[12 88

18 [13 96|12 11112 114|13 94|10 146 |10 153 |13 94|12 111 |12 114

1914 10214 99|13 12114 98|13 117 |11 16213 120|14 100 |13 116

2014 124]14 125|14 128|14 125]14 12411 182|11 190|14 125|14 124

’e 4 5 6 7 8 9 10 11 12

10. Some inequalities for n,(A4,).
With k=3, Theorem 3.1 states that

ny(Ay) 2 (h+1la,—a; = ny,,1(4;) = ny(4;)+a, .

It follows from Theorem 2.2 that the latter statement is always valid (for h
= h,), but we cannot reverse the implication. On the other hand, overwhelming
numerical evidence indicates that we always have

(10.1) m(dy) 2 (h+Day—as, hzh,

for a non-pleasant and non-dependent basis A,. The main purpose of the present
section is to prove this result. The proof caused considerable difficulties.

We noted in connection with Theorem 3.1 that if (10.1) holds for h=hs, it
will hold for all h = hg. It therefore suffices to prove (10.1) for h=hy=a,+f—2.
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Let us first discuss the exceptions to (10.1). For a pleasant basis A,, it follows
from (2.11) that (10.1) fails for h=h, if

2a3—(r+2) < (ho+1)a,—ay,
which with fa, =a; —r may be written as

2ay < ai—a,+2.

The first pleasant bases A, satisfying this condition are given by

a5 5 6 6 7 1 7T 71 8..
a; |9 10 11 12 13 14 19 20 15...

The number of possible a; is a non-decreasing function of a,.
Next, we consider the Frobenius-dependent bases A,, as given by the two
forms (5.8). It is easily verified that in both cases, (10.1) fails if and only if

rzp+3.

Disregarding these exceptions, we shall in fact prove a stronger inequality
than (10.1):

THeEOREM 10.1. For a non-pleasant and non-dependent basis A, we always
have (for h=hg)

(10.2) ny(A;) > ha,
(10.3) n,(4s) 2 (h+4a,—2a; ,
with equality only in the cases

a, = h+1, ay = h+5.

In the last interval (f=1), a;<2a,, and (10.2) follows from the stronger
(10.3). In the remaining intervals, a, > 2a,, and (10.3) then follows from (10.2).
In both cases, we always have

(10.4) n,(4;) > (h+2)a,—a;,

which is stronger than (10.1).
It is in fact possible to strengthen the result even more, but the proof then
becomes very complicated. On the other hand, it is not much simpler to prove

only (10.1)— our main object — than to prove the full Theorem 10.1.

We need two lemmas:

Math. Scand. 47 — 5
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LemMA 10.1. For a non-pleasant basis A5, we have

s—q+1

(10.5) ny(43) 2 ray+2a;—r—2.

LemMma 10.2. For any basis A,, we have

(10.6) Muo(A3) Z - (@, —1)(a;—1)—(r—2a;-2.

,
+f~1

To prove Lemma 10.1, we use Lemma 7.1, and assume so far that the
condition (7.1) is satisfied. Substituting

ho+11 [ho+24+p p+l _ho+2+p
s B s s B s

1

in (7.7), the right hand side will represent linear functions du + e of u in each of
the two cases

s—q+1
s

ugs—q+1=m,d >0

as

s—q+1

s—q+1 2 pu

m, d = a, —(a;—1) < 0.

In both cases, the linear functions thus attain their (common) minimum for u
=s—q+ 1. This minimum is just the right hand side of the inequality (10.5)
(which is consequently sharp).

Note that the condition (7.1) of Theorem 7.1 does not enter into Lemma 10.1
after all, for the following reason: Since A, is non-pleasant, we only know that
v=1 in Theorem 6.1, while the formula (7.7) corresponds to the possibly too
small value v=1. However, it follows from the method of Rodseth [9] that if
we use a too small v, <v in (2.23), the resulting value of g becomes too large. By
(2.17), the calculated value of n, is then consequently too small, and Lemma
10.1 holds a fortiori for v>1.

In exactly the same manner, Lemma 10.2 follows from Lemma 7.2.

To prove Theorem 10.1, we first assume f> 1, when it suffices to establish the
inequality (10.2). We may confine ourselves to the interval r € [1,a, —f—1] for
non-pleasant bases, cf. (4.3). The middle of this interval (possibly fractional) is

T = l(az‘f)-

Let the right hand sides of (10.5) and (10.6) be denoted by R, and R,,
respectively. We shall show that
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(10.7) R, > hya, forr,<r <a,—f-1
(10.8) R, > hya, for1 Zr<r,.
Substituting

s=a,-r, q=f+1, hy = a,+f-2, a5 = fa,+r,

both sides of (10.7-8) can be expressed as functions of r, with coefficients
depending on a, and f. Considering first (10.8), we form the difference

f(f=1(a,—1)?
r+f—1

—r*={(f=Da;—ljr+ (f= a3 — (f=2)(a,~ 1) .

Ry—hoa, = F(r) = —

Since

A )(02 )
(r+f-1)

F(r) is a concave function, and in particular

F'(r) = S 2<o,

F(r) 2 min{F(1),F(r,)} for 1 S=r <r

Then (10.8) will follow if we can show that both arguments of the minimum
are positive.
The first argument is simple, since F(1)=a, —1>0. The second argument is
much more complicated:
(@y—f=2{(2f=3)a,—f} +4(a, —2)’ +4fa,
4(a2 +f-2) ’
For f=1, the factor in curly brackets is negative, and the proof fails. For /> 1,

however, we clearly get a positive expression, and (10.8) holds.
Turning to (10.7), we similarly form

f(f+1as

a,—r

+r2 4+ (fay+f+r—a3+ (f2+2f+2)a, -2

F(r,) =

Ry—hoa, = G(r) = —

The function G(r) is not necessarily concave, but it is simple to show (using
G'(r,)>0) that

G() 2 min{G(r,),Gla,—f~1)} for r, < r < ay—f—1
Here G(a,—f—1)=a,—2>0 (since a,>?2 for a non-pleasant basis), and

(@, —f-2*{2f=3)a, —f—=2} +4(/=D(a, ++2) +16
4(a; +/)

Gir,) =
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is positive for f> 1. This completes the proof of (10.7) and thus of (10.2) in all
intervals but the last one.

When f=1, we must prove the inequality (10.3). The above method then
fails, and we resort to Vitek’s bound (5.7).— Incidentally, his general bound
(2.25) is not strong enough to prove (10.1) in most cases with f>1.

By (5.7) (which assumes non-dependent bases), it suffices to show that
(h— [%])(h+r—— +2h = (h+4)a,—2a; = (h+4)h+1)-2(h+r+1).

For r odd, this may be written as
(r=3)(h—r+3)+4 20,

which is always satisfied with strict inequality (since r=1 gives a Frobenius-
dependent basis).
For r even, we similarly get

r—=4(h—-r+1) =2 0,

which holds with strict inequality if r > 4. Since r=2 gives a dependent basis, it
only remains to examine the case r =4. It turns out that we then get equality in
(10.3), since

ny(L,h+1,h+5) = h*+3h—6

follows from Table 4 with r=4, 9=1,2 (and the cases ¢=0,3 give dependent
bases). This completes the proof of (10.3) and thus of Theorem 10.1.

We mention that Vitek’s bound (5.7) may also be used to extend Theorem
10.1 with

f=1=n(43) 2 (h—a, +a;,
with equality only in the cases
hodd, a, = h+1, a; = 2h.

This result is stronger than (10.3) if 3a;> 5a,, that is, in the last third of the last
interval.

We conclude this section with some inequalities of a completely different
kind. If we perform the division
(10.9) n(A3) = naz—9, 0= 9 <ay,
it is easily seen that we can have §=0 only in the case

(10.10) ny(Lh+1,h+2) = h(h+2) = haj .
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We have n=39 in the pleasant case r=0, where by (2.11)
(10.11) n,(1,a,, fay) = 2a;—2.

In all other cases, numerical evidence indicates that always 3>#, and we
shall prove this below.— My interest for this problem was promted by Salié’s
paper [10], where he discusses at length some cases satisfying the condition
I>n.

We shall prove the following

THEOREM 10.2. In the notation (10.9), we have

(10.12) 9 >n,
except in the cases (10.10-11). We also have
(10.13) 3=r+2,

except in the case (10.10).

We note that (10.13) holds also if h, is replaced by h in (10.9), because of
(2.14). There is equality in (10.13) in all pleasant cases (by (2.11)), but also in
many non-pleasant cases.

To prove (10.12), we use Theorem 6.2. By (6.6), we may express P, and P, ,
by Q, and Q, ., ,. We also use h=h,=a, +f—2. Substitution in (6.8) then gives

1) s,41>0,:  m,(43)=na3—3,, where
M = a+f+1-5,+0,—Qus1, ) = a+2—5,+5,41+Q,—Qusy .
2) 5,41 = Q1 nyp(A3)=nya3—9,, where
My = @y +f+1=5,+5,01—Qpr1, 92 = a3 +2+5,11 =04y -

We must show that n; and 9;, i=1,2, may be used as n and 3 of (10.9), or in
other words, that 0<9;<a;. The first inequality follows from 9;>#,, to be
established later. To show that 9;<a;, we use the conditions (6.7), but now
with

(10'14) Sy > Qv’ Sp+1 é Qu+1 .

We have excluded the possibility s,=Q,, which by (7.15) corresponds to the
exception (10.11), for r=0.

In case 1 above, it follows from (10.14) that 3, <a, +1<as;, since ay=a,+1
gives the exception (10.10).

In case 2, we only get 9, <a,+2, and the case a; =a, +2 must be considered
separately. With f=1, r=2, we have a dependent basis, and it follows easily
from (5.5) that 9># both for h even and h odd.
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In the remaining cases, we have now shown that 9,<a,, i=1,2, and must
finally prove that 3;,>#n,. From the comments to (7.15), it follows that v>f—1,
hence Q,2Q,_,=f—1. We conclude that

1) Sv+1>Qv=>sv+1>f—l¢>91>nl'
2) s, >Q,=s, >f-1<9,>n,.

This completes the proof of (10.12). It is rather unsatisfactory to involve a
“deep” result like Theorem 6.2 in the proof of such a simple inequality.

We finally turn to (10.13), which now follows very simply from (10.12). We
form

(10.15)  ny (A3)+1 = naz—9+1 = (r—=9+1) 1+fa,+(n—1a; .

Considered as a representation by the basis 43, the sum of the coefficients does
not exceed hy=a,+f—2 if and only if

r<a,+9-n-2.

Since r < a,, this condition is satisfied because of (10.12). But n, (4;)+ 1 has by
definition no representation in at most hy addends, and thus (10.15) must be an
“illegal” representation. The only possibility for this is a negative constant
term, r— 9+ 1 <0, which is just (10.13).

It is also possible to give a nontrivial upper bound for 9:

THeoreM 10.3. In the notation (10.9), we always have

(10.16) < n+r<ay.

The proof runs as for (10.12), by means of the formulas for n; and 9, in the
cases 1 and 2. The first inequality follows from

Sovr < Sy S Spoy =r4f-1,
cf. (7.15). The second inequality of (10.16) follows from
Sy > Qv’ Sy > Sp+15 Qv+l g Qf ;fg

where the final inequality is strict for a non-pleasant basis A;. The pleasant
case a;=2a,—1 must be treated\separately.
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