DIMENSION IN RINGS WITH SOLVABLE ALGEBRAIC GROUP ACTION

ANDY R. MAGID

In [3], Fossum and Foxby have shown that a number of properties of a graded commutative ring and its category of modules can be deduced from the corresponding properties for graded ideals and graded modules. If the Z-graded ring $R = \bigoplus R_i$ is an algebra over the field k, then the algebraic group $G = GL_1(k)$ can be made to act on R: t in G acts on R_i by multiplication by t^i , and then a graded R-module is a simultaneous R and G-module. This suggests that for a ring R on which an algebraic group G acts, various properties of R can be deduced from the corresponding properties for simultaneous R and G modules. We show in this paper that this is indeed the case when the algebraic group G is linear and solvable.

We fix the following notation: k is an algebraically closed field and G is a solvable linear algebraic group over k. A finite dimensional vector space V with G-action is a G-module if the induced homomorphism $G \to GL(V)$ is a homomorphism of algebraic groups over k. A vector space W with G-action is a rational G-module if W is a union of finite dimensional G-modules in the above sense. A *ring is a commutative Noetherian k-algebra which is a rational G-module such that G acts by k-algebra automorphisms. A *module M over a *ring R is an R-module and a rational G-module such that g(rm) = g(r)g(m) for g in G, r in R, and m in M. A *homomorphism of *modules over a *ring R is an R-module homomorphism preserving G-actions. A semi-invariant of weight X in a rational G-module V is a non-zero vector v in V such that g(v) = X(g)vfor some algebraic character $X: G \to GL_1(k)$ of G. Since G is solvable, every non-zero rational G-module contains a semi-invariant. An *ideal of a *ring R is an ideal which is a sub-*module. If P is a prime *ideal of the *ring R, *ht (P) is the length of the longest saturated chain of prime *ideals ending with P, and *dim R is the supremum of *ht (P) as P varies over prime *ideals of R. We call a *ring R *simple if the only *ideals of R are 0 and R. If R is a *ring and S is a multiplicatively closed set of semi-invariants in R, then $S^{-1}R$ is a *ring and a *module over R.

In these notations, the main results may be summarized as follows: our

Received June 18, 1979.

principal technical tool is the fact (Theorem 3) that a *simple *ring is regular of dimension at most dim G. This implies that the Krull dimension of R, dim R, is bounded by *dim R + dim G (Theorem 7), and that projective and injective dimension of a *module can be bounded by considering Ext's just ranging over *modules (Theorem 8 and Corollary 11). Finally, we show that a *ring R is regular (respectively Gorenstein) if all its localizations at *prime ideals are (Corollaries 12 and 13).

We restrict attention only to solvable groups to guarantee that a non-zero *ideal in a *ring contains a non-zero principal *ideal, which is necessary for induction arguments. Our solvable groups are not necessarily reductive, however, so semi-invariants in a *homomorphic image may not have semi-invariant preimages. It is this fact which prevents a good notion of "*localization", which means that a number of the techniques of [3] cannot be extended to our setting.

LEMMA 1. Let R be a *ring.

- a) R is *simple if and only if every semi-invariant is a unit.
- b) If R is a domain and S is the set of semi-invariants of R then $S^{-1}R$ is *simple.

PROOF. Part a) follows immediately from the fact that non-zero *ideals contain non-zero principal *ideals. Then to establish b), we need to show that every semi-invariant of $S^{-1}R$ is a unit. So let f/g in $S^{-1}R$ be semi-invariant of weight α , where $f \in R$ and $g \in S$, with g of weight β . For t in G,

$$\alpha(t)f/g = t(f/g) = t(f)/t(g) = t(f)/\beta(f)g,$$

so $t(f) = (\alpha \beta^{-1})(t) f$ and f is semi-invariant, so f/g is a unit in $S^{-1}R$.

LEMMA 2. Let R be a *ring which is an affine domain and let S be the set of semi-invariants of R. Then $S^{-1}R$ is a regular ring of dimension at most the dimension of G.

PROOF. We first bound the dimension of $S^{-1}R$. We can regard R as the coordinate ring of an affine variety V with G-action. Let Q be a prime of $S^{-1}R$ and let $P = Q \cap R$. Then ht $(Q) = \operatorname{ht}(P)$ and $P \cap S = \emptyset$. The zero set W of P in V is a closed subvariety with ht $(P) = \operatorname{codim}(W)$. Let $I = \{f \in R \mid f(G \cdot W) = 0\}$. Then I is an *ideal of R contained in P. If $I \neq 0$, then I contains an element of S. Since $P \cap S = \emptyset$, I = 0, so $G \cdot W$ is dense in V. Then $G \cdot W$ contains a non-empty open subset U of V. We may assume U is G-stable. Moreover, V contains a G-stable open subset U' such that a geometric quotient U'/G exists [6]. Let $U_0 = U \cap U'$ and let $U_1 = U_0 \cap W$. U_1 is open in W and closed in U_0 , and U_0

 $=G \cdot U_1$. Moreover, $\operatorname{codim}_{U_0} U_1 = \operatorname{codim}_V W$, so we may assume that $G \cdot W = V$ and that the geometric quotient V/G exists. Let $p \colon V \to V/G$ be the quotient map. The fibres of p are orbits and hence have dimension at most dim (G), so dim $(V/G) \ge \dim V - \dim G$. Also, $p \colon W \to V/G$ is onto, so dim $W \ge \dim (V/G)$, and hence

$$\dim G \ge \dim V - \dim W = \operatorname{codim}_V(W) = \operatorname{ht}(P)$$
.

To see that $S^{-1}R$ is regular, we note that since $S^{-1}R$ is a localization of an affine algebra, the singular locus is closed in Spec $(S^{-1}R)$ [5, Thm. 73, p. 247]. Since the singular locus is G-stable, its defining radical ideal is an *ideal. By Lemma 1(b), $S^{-1}R$ is *simple, so the singular locus is empty.

THEOREM 3. A simple *ring is a regular integral domain of dimension at most the dimension of G.

PROOF. Let R be a simple *ring. The minimal primes of R are *ideals and hence R is a domain. Write $R = \operatorname{dir} \lim R_i$, where R_i are sub-*rings of R which are affine, and let S_i be the set of semi-invariants of R_i . By Lemma 1(a), $S_i^{-1}R_i \subseteq R$ so $R = \operatorname{dir} \lim S_i^{-1}R_i$. Let $T_i = S_i^{-1}R_i$. Suppose $T_i \subseteq T_j$, and let $U = \{P \in \operatorname{Spec}(T_i) \mid (T_j)_P \text{ is } T_i - \operatorname{flat}\}$. Then U is open and non-empty in $\operatorname{Spec}(T_i)$ by generic flatness [5, Lemma 1, p. 156] and U is clearly G-stable. Then the defining radical ideal of the complement of U is an *ideal; since T_i is *simple by Lemma 1(b), the complement is empty and T_j is T_i -flat. Since $R = \operatorname{dir} \lim T_i$, and the inclusions $T_i \subseteq T_j$ are flat morphisms, R is regular of dimension at most dim G since each T_i is.

We now turn to computations of heights of prime ideals in a *ring. We will use the following construction:

Lemma 4. Let P be a prime ideal of the *ring R. The sum *P of all the *ideals contained in P is a prime *ideal.

PROOF. P contains a minimal prime P_0 over *P. P_0 is necessarily an *ideal so $P_0 = P$ and hence *P is prime.

PROPOSITION 5. Let R be a *ring and let P be a prime ideal of R

- a) Some ranking chain of P contains *P.
- b) If P = P, ht (P) = tht (P).

PROOF. We prove both parts simultaneously by induction on n = ht(P). If n = 0, then P = P and both follow. To apply induction, we observe that if I is an

*ideal contained in P, then, by Lemma 4, $I \subseteq P$ and P/I = P/I. Now let $P_0 \subseteq P_1 \subseteq \ldots \subseteq P_n = P$ be a saturated chain of length n = ht P/I = P/I. Now let $P_0 \subseteq P_1 \subseteq \ldots \subseteq P_n = P$ be a saturated chain of length P/I = P/I. Then P/I = P/I is a minimal prime of P/I = P/I and hence an *ideal. Moreover, in P/I = P/I has the relevant primes to see that a) and b) hold for P/I = P/I, we can pull back the relevant primes to see that a) and b) hold for P/I = P/I has a semi-invariant P/I = P/I. If P/I = P/I is an *ideal, and in the ring P/I = P/I has invariant P/I = P/I. By induction for part a), some P/I = P/I be a ranking chain for P/I = P/I. By induction for part a), some P/I = P/I. If P/I = P/I is the inverse image of P/I = P/I has induction for part b), we may assume each P/I = P/I is an *ideal. With P/I = P/I has inverse images, then, P/I = P/I has a ranking chain for P/I = P/I composed of *ideals. Thus ht P/I = P/I has the inverse images of *ideals. Thus ht P/I = P/I has a ranking chain for P/I = P/I composed of *ideals. Thus ht P/I = P/I has the inverse images, then, P/I = P/I has a ranking chain for P/I = P/I composed of *ideals. Thus ht P/I = P/I has the inverse images, then, P/I = P/I has a ranking chain for P/I = P/I.

COROLLARY 6. Let R be a *ring and let P be a prime ideal of R. Then ht(P) = ht(P) + ht(P/P).

PROOF. Let n = ht(P) and let $P_0 \subseteq P_1 \subseteq ... \subseteq P_n = P$ be a ranking chain for P. For each i, we have $\text{ht}(P) = \text{ht}(P_i) + \text{ht}(P/P_i)$. By Proposition 5 a), $*P = P_i$ for some i, and by Proposition 5 b), ht(*P) = *ht(*P).

Using Theorem 3, we can bound the term $ht(P/P^*)$ of Corollary 6, and hence determine the relation between dimension and *dimension for a *ring.

THEOREM 7. Let R be a *ring and P a prime ideal of R.

- a) $ht(P) \leq *ht(*P) + \dim G$.
- b) $\dim R \leq *\dim R + \dim G$.
- c) ht(P) = *ht(*P) + n, where n is the minimal number of generators of $PR_P/*PR_P$ in $R_P/*PR_P$.

PROOF. Let $\overline{R}=R/*P$, let \overline{S} be the set of semi-invariants in \overline{R} and let $T=\overline{S}^{-1}\overline{R}$. Since *(P/*P)=0, $(P/*P)\cap \overline{S}=0$. Thus $\operatorname{ht}(P/*P)=\operatorname{ht}(P/*PT)$. By Lemma 1 b) T is simple and by Theorem 3, T is regular of dimension at most dim G. Since dim $T \leq \dim G$, $\operatorname{ht}(P/*P) \leq \dim G$, and parts a) and b) follow from Corollary 6. Next, we let Q=P/*PT. Since T is regular, $\operatorname{ht}(Q)=\operatorname{ht}(QT_Q)=n$, where n is the minimal number of generators of QT_Q . But $T_Q=R_P/*PR_P$ and $QT_Q=PR_P/*PR_P$ so c) follows.

We next turn to calculations of homological dimension.

DEFINITION. Let R be a *ring and M a *module. The *projective dimension of M is the least integer n such that $\operatorname{Ext}_R^i(M,N)=0$ for all i>n and all

*modules N and is denoted *pd_RM. The *injective dimension of M is the least integer n such that $\operatorname{Ext}_R^i(N,M)=0$ for all i>n and all *modules N and is denoted *id_RM. The global *dimension of R is the least integer n such that $\operatorname{Ext}_R^i(P,Q)=0$ for all i>n and all *modules P and Q, and is denoted *gl dim R.

We have the obvious inequalities $*pd_RM \le pd_RM$, $*id_RM \le id_RM$ and $*gl \dim R \le gl \dim R$. We next establish upper bounds for the relevant dimensions.

THEOREM 8. Let R be a *ring and M a *module. Then * $pd_RM = pd_RM$.

PROOF. We observe that if V is a rational G-module, then $R \otimes_k V$ is an R-projective *module. If M is a *module, then we can regard M as a rational G-module, and then the natural surjection $R \otimes_k M \to M$ is a *homomorphism of *modules. By standard dimension shift arguments, it thus suffices to prove the theorem in case *pd_RM = 0. Let K be the kernel of $\otimes_k M \to M$. Then in the exact sequence

$$\operatorname{Hom}_R(M, R \otimes_k M) \to \operatorname{Hom}_R(M, M) \to \operatorname{Ext}^1_R(M, K)$$
,

the last term is zero since K is a *module and *pd_RM = 0, so M is a direct summand of $R \otimes_k M$ and hence is projective so $pd_R M = 0$.

Theorem 9. Let R be a *ring. Then *gl dim $R \leq \text{gl dim } R \leq \text{*gl dim } R + \text{dim } G$.

PROOF. We recall that

$$gl \dim R = \sup \{ pd_R(R/M) \mid M \text{ a maximal ideal} \}.$$

Let M be a maximal ideal of R, let S be the set of semi-invariants in R/*M, and let $T=S^{-1}(R/*M)$. Then R/M can be regarded as a T-module, and hence $\operatorname{pd}_R(R/M) \leq \operatorname{pd}_T(R/M) + \operatorname{pd}_R(T)$. By Lemma 1 and Theorem 3, T is regular of dimension at most dim G, so $\operatorname{pd}_T(R/M) \leq \dim G$, and since T is a *module, $\operatorname{pd}_R(T) = \operatorname{*pd}_R(T)$ by Theorem 8. Thus

$$\operatorname{pd}_{R}(R/M) \leq \dim G + \operatorname{*pd}_{R}(T) \leq \dim G + \operatorname{*gl} \dim G$$
,

and the upper bound obtains. The lower bound was previously noted.

To compute injective dimension, we need a result on the Bass numbers defined in [1, p. 11].

PROPOSITION 10. Let R be a *ring, M an R-module, and P a prime ideal of R. Suppose $\mu_i(*P, M) = 0$ for i > r. Then $\mu_i(P, M) = 0$ for $i > r + \dim G$.

PROOF. By assumption, $\operatorname{Ext}_R^q(R/^*P,M)=0$ for q < r. Let $T=R_P/^*PR_P$. Then $\operatorname{Ext}_{R_P}^q(T,M_P)=0$ if q > r. If S is the set of semi-invariants in $R/^*P$, $S \cap P/^*P=\emptyset$ so T is a localization of $S^{-1}(R/^*P)$, and hence T is regular of dimension at most dim G by Lemma 2. Since $\mu_i(P,M)=\mu_i(PR_P,M_P)$, we may replace R by R_P , and extend P, P, and P to P. By [2, p. 348] there is a spectral sequence $\operatorname{Ext}_T^p(R/P,\operatorname{Ext}_R^q(T,M)\Rightarrow\operatorname{Ext}_R^n(R/P,M)$). Now $\operatorname{Ext}_T^p(\cdot,\cdot)=0$ for P0 for P1 dim P2 and P3 and P4 dim P5. Thus $\operatorname{Ext}_R^n(R/P,M)=0$ for P7 for P8 for P9 for P9

COROLLARY 11. Let R be a *ring and M a *module. Then * $\mathrm{id}_R(M) \leq \mathrm{id}_R(M)$ $\leq *\mathrm{id}_R(M) + \dim G$.

PROOF. The first inequality is clear. For the second, we need to show that $\mu_i(P, M) = 0$ for all $i \ge * \mathrm{id}_R(M) + \dim G$ for every prime ideal P of R. By assumption, $\mu_i(*P, M) = 0$ for $i > * \mathrm{id}_R(M)$, so the result follows from Proposition 10.

COROLLARY 12. Let R be a *ring. Suppose R_P is regular for every prime *ideal P of R. Then R is regular.

PROOF. Let M be an R module, P a prime ideal of R, and $Q \subseteq P$ a prime. Then by hypothesis $\mu_i(^*Q, M) = 0$ for $i > \text{ht}(^*Q)$. By Proposition 10, $\mu_i(Q, M) = 0$ for $i > \text{ht}(^*Q) + \dim G$, so by Theorem 7, $\mu_i(Q, M) = 0$ for i > ht(Q). Thus $\mu_i(Q, M) = 0$ for i > ht(P). It follows that $\text{id}_{R_P}M_P$ is finite, so R_P is regular.

COROLLARY 13. Let R be a *ring. Suppose R_P is Gorenstein for every prime *ideal P of R. Then R is Gorenstein.

PROOF. The argument of Corollary 12 shows that for any prime P of R, $id_{R_D}R_P$ is finite, so R is Gorenstein.

To establish the analogue of Corollaries 12 and 13 for the Cohen-Macaulay property, we need a stronger version of Proposition 10, which holds when the module M of that proposition is a *module. This, in turn, requires the following preliminary results.

LEMMA 14. Let R be a *simple *ring. Then every finitely generated *module is free as an R-module.

PROOF. Since every finitely-generated *module has a composition series in

which the factors are cyclic and generated by semi-invariants, it suffices to prove the lemma for modules of this type. Thus let M be a *module generated by the semi-invariant m of weight α . Let $R(\alpha)$ be R, as an R-module, but with G-action $g \cdot r = \alpha(g)g(r)$. Then $R(\alpha)$ is a *module, and $R(\alpha) \to M$ by $r \mapsto rm$ is a surjective *homomorphism. If $R(\alpha)$ is *simple, then M is R-free. But $R(\alpha) \otimes_R R(\alpha^{-1}) \to R$ by $a \otimes b \mapsto ab$ is an *isomorphism, and it follows that $R(\alpha)$ is *simple since R is.

LEMMA 15. Let A be a commutative ring, I an ideal of A, and M an A-module such that $\operatorname{Ext}_A^i(A/I,M)$ is a free A/I-module for all i, and $\operatorname{Ext}_A^i(A/I,M)=0$ for i < d. Let x be a non-zero divisor in A/I, and let I = I + Ax. Then $\operatorname{Ext}_A^i(A/I',M)$ is a free A/I'-module for all i and $\operatorname{Ext}_A^i(A/I',M)=0$ for i < d.

PROOF. The exact sequence $0 \to A/I \xrightarrow{x} A/I \to A/I' \to 0$ yields the long exact sequence

$$\operatorname{Ext}_{A}^{i}(A/I, M) \to \operatorname{Ext}_{A}^{i}(A/I, M) \to \operatorname{Ext}_{A}^{i}(A/I', M)$$
$$\to \operatorname{Ext}_{A}^{i+1}(A/I, M) \to \operatorname{Ext}_{A}^{i+1}(A/I, M),$$

where the first and last maps are multiplication by x. Since $\operatorname{Ext}_A^i(A/I, M)$ and $\operatorname{Ext}_A^{i+1}(A/I, M)$ are A/I-free, we have a short exact sequence $0 \to \operatorname{Ext}_A^i(A/I, M)$ $\xrightarrow{x} \operatorname{Ext}_A^i(A/I, M) \to \operatorname{Ext}_A^i(A/I, M) \to 0$ for each $i \ge 0$. This shows that $\operatorname{Ext}_A^i(A/I', M)$ has the asserted properties.

THEOREM 16. Let R be a *ring, M a finitely generated *module, and P a prime ideal of R. Let s = ht(P) - ht(*P). Suppose $\mu_i(*P, M) = 0$ for i < r. Then $\mu_i(P, M) = 0$ for i < r + s.

PROOF. Let S be the set of semi-invariants in R/*P and let $B = S^{-1}(R/*P)$. Then B is *simple, and $\operatorname{Ext}_R^q(B,M)$ is a B-*module, so $\operatorname{Ext}_R^q(B,M)$ is a free B-module by Lemma 14, and hence remains free when we further localize at P. Replace R by R_P and extend P, *P, and M to R_P . Let T = R/*P. Then $\operatorname{Ext}_R^q(T,M)$ is a free T-module and, as in Proposition 10, we have a spectral sequence $\operatorname{Ext}_T^p(R/P,\operatorname{Ext}_R^q(T,M))\Rightarrow\operatorname{Ext}_R^n(R/P,M)$. Since T is regular, $\operatorname{Ext}_T^p(R/P,T)=0$ for $p \neq \dim(T)$ by [1, Prop. 3.6, p. 14]. By Corollary 6, $\dim(T)=\operatorname{ht}(P/*P)=s$. Thus the above spectral sequence collapses and we have $\operatorname{Ext}_T^r(R/P,\operatorname{Ext}_R^q(T,M))=\operatorname{Ext}_R^{s+q}(R/P,M)$. Thus $\mu_q(*P,M)=0$ implies $\mu_{s+q}(P,M)=0$ for all q. In particular, if $\mu_i(*P,M)=0$ for i < r, $\mu_i(P,M)=0$ for $s \leq i < r + s$. Since T is regular local, P/*P is generated by a T-sequence x_1,\ldots,x_s . Let $I_j=*P+Rx_1+\ldots+Rx_j$, so $I_0=*P$ and $I_s=P$. Now $\operatorname{Ext}_R^i(R/I_0,M)=\operatorname{Ext}_R^i(T,M)$ is a free R/I_0 -module for all i, and $\operatorname{Ext}_R^i(R/I_0,M)$

=0 for i < r by hypothesis. By induction and Lemma 15, $\operatorname{Ext}_{R}^{i}(R/I_{s}, M)$ = $\operatorname{Ext}_{R}^{i}(R/P, M)$ =0 for i < s, so $\mu_{i}(P, M)$ =0 for i < s, also.

COROLLARY 17. Let R be a *ring, and suppose R_P is Cohen-Macaulay for every prime *ideal P of R. Then R is Cohen-Macaulay.

PROOF. Let P be a prime ideal of R, and let Q = P. By assumption, R_Q is Cohen-Macaulay, so by [1, 3.7, p. 14], $\mu_i(Q, R) = 0$ for all i < ht(Q). By Theorem 16, $\mu_i(P, R) = 0$ for i < ht(Q) + (ht(P) - ht(Q)) = ht(P); by [1, 3.7, p. 14] again, R_P is Cohen-Macaulay. This holds for all P, so R is Cohen-Macaulay.

REFERENCES

- 1. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-23.
- H. Cartan and S. Eilenberg, Homological Algebra (Princeton Mathematical Series 19), Princeton University Press, Princeton, New Jersey, 1956.
- 3. R. Fossum and H. B. Foxby, The category of graded modules, Math. Scand. 35 (1974), 288-300.
- 4. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- 5. H. Matsumura, Commutative Algebra, W. A. Benjamin, Inc., New York, 1970.
- 6. M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil Ci. 35 (1962), 487-489.

UNIVERSITY OF OKLAHOMA 601 ELM, RM. 421 NORMAN, OK 73019 USA