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DIMENSION IN RINGS
WITH SOLVABLE ALGEBRAIC GROUP ACTION

ANDY R. MAGID

In [3], Fossum and Foxby have shown that a number of properties of a
graded commutative ring and its category of modules can be deduced from the
corresponding properties for graded ideals and graded modules. If the Z-
graded ring R=@® R; is an algebra over the field k, then the algebraic group G
=GL, (k) can be made to act on R: ¢ in G acts on R; by multiplication by t/,
and then a graded R-module is a simultaneous R and G-module. This suggests
that for a ring R on which an algebraic group G acts, various properties of R
can be deduced from the corresponding properties for simultaneous R and G
modules. We show in this paper that this is indeed the case when the algebraic
group G is linear and solvable.

We fix the following notation: k is an algebraically closed field and G is a
solvable linear algebraic group over k. A finite dimensional vector space V with
G-action is a G-module if the induced homomorphism G — GL(V) is a
homomorphism of algebraic groups over k. A vector space W with G-action is
a rational G-module if W is a union of finite dimensional G-modules in the
above sense. A *ring is a commutative Noetherian k-algebra which is a rational
G-module such that G acts by k-algebra automorphisms. A *module M over a
*ring R is an R-module and a rational G-module such that g(rm)=g(r)g(m) for
gin G, rin R, and m in M. A *homomorphism of *modules over a *ring R is
an R-module homomorphism preserving G-actions. A semi-invariant of weight
X in a rational G-module V is a non-zero vector v in V such that g(v)= X (g)v
for some algebraic character X: G — GL, (k) of G. Since G is solvable, every
non-zero rational G-module contains a semi-invariant. An *ideal of a *ring R
is an ideal which is a sub-*module. If P is a prime *ideal of the *ring R, *ht (P)
is the length of the longest saturated chain of prime *ideals ending with P, and
*dim R is the supremum of *ht (P) as P varies over prime *ideals of R. We call
a *ring R *simple if the only *ideals of R are 0 and R. If R is a *ring and S is a
multiplicatively closed set of semi-invariants in R, then S “!Ris a *ring and a
*module over R.

In these notations, the main results may be summarized as follows: our
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principal technical tool is the fact (Theorem 3) that a *simple *ring is regular
of dimension at most dim G. This implies that the Krull dimension of R, dim R,
is bounded by *dim R +dim G (Theorem 7), and that projective and injective
dimension of a *module can be bounded by considering Ext’s just ranging over
*modules (Theorem 8 and Corollary 11). Finally, we show that a *ring R is
regular (respectively Gorenstein) if all its localizations at *prime ideals are
(Corollaries 12 and 13).

We restrict attention only to solvable groups to guarantee that a non-zero
*ideal in a *ring contains a non-zero principal *ideal, which is necessary for
induction arguments. Our solvable groups are not necessarily reductive,
however, so semi-invariants in a *homomorphic image may not have semi-
invariant preimages. It is this fact which prevents a good notion of
“*localization”, which means that a number of the techniques of [3] cannot be
extended to our setting.

LEMMA 1. Let R be a *ring.

a) R is *simple if and only if every semi-invariant is a unit.

b) If R is a domain and S is the set of semi-invariants of R then S™'R is
*simple.

Proor. Part a) follows immediately from the fact that non-zero *ideals
contain non-zero principal *ideals. Then to establish b), we need to show that
every semi-invariant of S™'R is a unit. So let f/g in $”!R be semi-invariant of
weight o, where fe R and g € S, with g of weight B. For t in G,

a(t)f/g = t(f/g) = t(f)/t(g) = t(f)/B(f)g,

so t(f)=(af~!)(t)f and f is semi-invariant, so f/g is a unit in S™'R.

LEMMA 2. Let R be a *ring which is an affine domain and let S be the set of
semi-invariants of R. Then S™'R is a regular ring of dimension at most the
dimension of G.

Proor. We first bound the dimension of S™'R. We can regard R as the
coordinate ring of an affine variety ¥ with G-action. Let Q be a prime of S™'R
and let P=Q N R. Then ht (Q)=ht (P)and P N S= . The zero set Wof Pin V
is a closed subvariety with ht (P)=codim (W). Let I={fe R | f(G-W)=0}.
Then I is an *ideal of R contained in P. If I &0, then I contains an element of S.
Since P N S=F, =0, so G- Wis dense in V. Then G- W contains a non-empty
open subset U of V. We may assume U is G-stable. Moreover, V contains a G-
stable open subset U’ such that a geometric quotient U’/G exists [6]. Let U,
=UNU and let U;=U, N W. U, is open in W and closed in U,, and U,
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=G U,. Moreover, codimy U, =codim, W, so we may assume that G- W=V
and that the geometric quotient V/G exists. Let p: V— V/G be the quotient
map. The fibres of p are orbits and hence have dimension at most dim (G), so
dim (V/G)=dim V—dim G. Also, p: W — V/G is onto, so dim W =dim (V/G),
and hence

dimG = dim V—-dim W = codimy, (W) = ht (P).

To see that S™!R is regular, we note that since S™'R is a localization of an
affine algebra, the singular locus is closed in Spec (S~ 'R) [5, Thm. 73, p. 247].
Since the singular locus is G-stable, its defining radical ideal is an *ideal. By
Lemma 1(b), S™'R is *simple, so the singular locus is empty.

THEOREM 3. A simple *ring is a regular integral domain of dimension at most
the dimension of G.

Proor. Let R be a simple *ring. The minimal primes of R are *ideals and
hence R is a domain. Write R=dir lim R;, where R; are sub-*rings of R which
are affine, and let S; be the set of semi-invariants of R;, By Lemma 1(a),
S7'R;=R so R=dirlimS;'R;. Let T;=S; 'R, Suppose T,= T}, and let U
={P € Spec (T) I (T)p is T;—flat}. Then U is open and non-empty in
Spec (T;) by generic flatness [5, Lemma 1, p. 156] and U is clearly G-stable.
Then the defining radical ideal of the complement of U is an *ideal; since T; is
*simple by Lemma 1(b), the complement is empty and T; is T;-flat. Since R
=dirlim T,, and the inclusions T;<T; are flat morphisms, R is regular of

dimension at most dim G since each T; is.

We now turn to computations of heights of prime ideals in a *ring. We will
use the following construction:

LeMMA 4. Let P be a prime ideal of the *ring R. The sum *P of all the *ideals
contained in P is a prime *ideal.

ProoOF. P contains a minimal prime P, over *P. P is necessarily an *ideal
s0 Py=*P and hence *P is prime.

PROPOSITION 5. Let R be a *ring and let P be a prime ideal of R
a) Some ranking chain of P contains *P.
b) If P=*P, ht (P)= *ht (P).

Proor. We prove both parts simultaneously by induction on n=ht (P). If n
=0, then P = *P and both follow. To apply induction, we observe that if I is an
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*ideal contained in P, then, by Lemma 4, I < *P and (*P)/I =*(P/I). Now let
PycP,<... < P,=P be asaturated chain of length n=ht (P)>0. Then P, is a
minimal prime of R and hence an *ideal. Moreover, in R/P,, ht (P/P,)=ht (P).
If a) and b) hold for P/P, in R/P,, we can pull back the relevant primes to see
that a) and b) hold for P in R. Thus we may assume R is a domain. If *P =0, a)
holds. If not, P contains a semi-invariant x. Let I = Rx. I is an *ideal, and in the
ring R/I, ht (P/I)=n—1 [4, Thm. 155, p. 113]. Let 0, £0,<...£Q,=P/I be
a ranking chain for P/I in R/I. By induction for part a), some Q;=*(P/I). If Q;
is the inverse image of Q, in R, then 0= Q) < ... €@, =P is a ranking chain for
P in R, and Q;=*P. By induction for part b), we may assume each Q; is an
*ideal. With Q; as inverse images, then, 0 Q' < ... £Q, =P is a ranking chain
for P composed of *ideals. Thus ht (P)= *ht (P).

COROLLARY 6. Let R be a *ring and let P be a prime ideal of R. Then ht(P)
= *ht (*P)+ht (P/*P).

Proor. Let n=ht(P)and let P, P, < ... < P,=P be a ranking chain for P.
For each i, we have ht(P)=ht(P,)+ht (P/P,). By Proposition 5 a), *P= P, for
some i, and by Proposition 5 b), ht (* P)= *ht (*P).

Using Theorem 3, we can bound the term ht(P/P*) of Corollary 6, and
hence determine the relation between dimension and *dimension for a *ring.

THEOREM 7. Let R be a *ring and P a prime ideal of R.

a) ht(P)< *ht(*P)+dimG.

b) dimR £ *dim R+dim G.

c) ht(P)=*ht(*P)+n, where n is the minimal number of generators of
PRp/*PRp in Rp/*PRp.

Proor. Let R=R/*P, let § be the set of semi-invariants in R and let T
=87!R. Since *(P/*P)=0, (P/*P) N §=0. Thus ht (P/*P)=ht(P/*PT). By
Lemma 1 b) T is simple and by Theorem 3, T is regular of dimension at most
dim G. Since dim T <dim G, ht (P/*P)<dim G, and parts a) and b) follow from
Corollary 6. Next, we let Q=P/*PT. Since T is regular, ht(Q)=ht(QTp)=n,
where n is the minimal number of generators of QT,. But Ty=Rp/*PRp and
QTy=PRp/*PRp 5o c) follows.

We next turn to calculations of homological dimension.

DErFINITION. Let R be a *ring and M a *module. The *projective dimension
of M is the least integer n such that Exth(M,N)=0 for all i>n and all
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*modules N and is denoted *pdgzM. The *injective dimension of M is the least
integer n such that Exth (N,M)=0 for all i>n and all *modules N and is
denoted *idgM. The global *dimension of R is the least integer n such that
Exti (P,Q)=0 for all i>n and all *modules P and Q, and is denoted *gl dim R.

We have the obvious inequalities *pdgM <pdgxM, *idgM <idgM and
*gldimR<gldimR. We next establish upper bounds for the relevant
dimensions.

THEOREM 8. Let R be a *ring and M a *module. Then *pdgM =pdgM.

Proor. We observe that if V is a rational G-module, then R®,V is an R-
projective *module. If M is a *module, then we can regard M as a rational G-
module, and then the natural surjection R® M — M is a *homomorphism of
*modules. By standard dimension shift arguments, it thus suffices to prove the
theorem in case *pdgM =0. Let K be the kernel of ® M — M. Then in the
exact sequence

Hompg (M, R® M) — Hompg (M, M) — Extg(M,K),
the last term is zero since K is a *module and *pdyM =0, so M is a direct
summand of R®,M and hence is projective so pdgM =0.

THEOREM 9. Let R be a *ring. Then *gldim R <gldim R < *gldim R +dim G.

Proor. We recall that
gldimR = sup{pdg(R/M)| M a maximal ideal} .

Let M be a maximal ideal of R, let S be the set of semi-invariants in R/*M, and
let T=S"'(R/*M). Then R/M can be regarded as a T-module, and hence
pdr(R/M)<pd(R/M)+pdg(T). By Lemma 1 and Theorem 3, T is regular of
dimension at most dim G, so pdr(R/M)<dim G, and since T is a *module,
pdr(T)=*pdg(T) by Theorem 8. Thus

pdr(R/M) £ dim G+ *pdg(T) £ dimG+ *gldim G,

and the upper bound obtains. The lower bound was previously noted.

To compute injective dimension, we need a result on the Bass numbers
defined in [1, p. 11].

ProrosiTiON 10. Let R be a *ring, M an R-module, and P a prime ideal of R.
Suppose u;(*P,M)=0 for i>r. Then p,(P,M)=0 for i>r+dimG.



26 ANDY R. MAGID

Proor. By assumption, Ext} (R/*P, M)=0 for g<r. Let T=Rp/*PRp. Then
Extk, (T,Mp)=0 if g>r. If § is the set of semi-invariants in R/*P, SN P/*P
= ¥ so Tis a localization of S™!(R/*P), and hence T is regular of dimension at
most dim G by Lemma 2. Since y;(P, M)=pu,(PRp, Mp), we may replace R by
Rp, and extend P, *P, and M to Rp. By [2, p. 348] there is a spectral sequence
Ext% (R/P, Extg (T, M) = Extk (R/P, M)). Now Ext} (+,-)=0 for p>dim G and
Ext} (T, M)=0 for g>r, so in the spectral sequence E5?=0 for p+qg>
r+dim G. Thus Extk (R/P,M)=0 for n>r+dimG, so pu;(P,M)=0 for i>
r+dimG.

CoROLLARY 11. Let R be a *ring and M a *module. Then *idg (M)<idg (M)
<*idg(M)+dimG.

Proor. The first inequality is clear. For the second, we need to show that
w(P,M)=0 for all i=*idg(M)+dimG for every prime ideal P of R. By
assumption, u;(*P,M)=0 for i>*idg(M), so the result follows from
Proposition 10.

COROLLARY 12. Let R be a *ring. Suppose Rp is regular for every prime *ideal
P of R. Then R is regular.

Proor. Let M be an R module, P a prime ideal of R, and Q< P a prime.
Then by hypothesis y;(*Q, M)=0 for i>ht(*Q). By Proposition 10, u,(Q, M)

=0 for i>ht(*Q)+dim G, so by Theorem 7, u;(Q, M)=0 for i>ht(Q). Thus
1;(Q, M)=0 for i>ht(P). It follows that idRPM p is finite, so Rp is regular.

CoROLLARY 13. Let R be a *ring. Suppose Rp is Gorenstein for every prime
*ideal P of R. Then R is Gorenstein.

Proor. The argument of Corollary 12 shows that for any prime P of R,
idg Rp is finite, so R is Gorenstein.

To establish the analogue of Corollaries 12 and 13 for the Cohen—Macaulay
property, we need a stronger version of Proposition 10, which holds when the
module M of that proposition is a *module. This, in turn, requires the
following preliminary results.

LeEMMA 14. Let R be a *simple *ring. Then every finitely generated *module is
free as an R-module.

Proor. Since every finitely-generated *module has a composition series in
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which the factors are cyclic and generated by semi-invariants, it suffices to
prove the lemma for modules of this type. Thus let M be a *module generated
by the semi-invariant m of weight o. Let R(a) be R, as an R-module, but with G-
action g-r=o(g)g(r). Then R(o) is a *module, and R(x) - M by r— rmis a
surjective *homomorphism. If R(x) is *simple, then M is R-free. But
R(@)®gR(2™") — R by a®b > ab is an *isomorphism, and it follows that
R(a) is *simple since R is.

LemMA 15. Let A be a commutative ring, I an ideal of A, and M an A-module
such that Exty (A/I, M) is a free A/I-module for all i, and Ext'y (A/I, M)=0 for
i<d. Let x be a non-zero divisor in A/I, and let 1 =1+ Ax. Then Ext'y (A/I', M)
is a free A/I'-module for all i and Ext'y (A/I',M)=0 for i<d.

Proor. The exact sequence 0 — A/l *> A/l — A/I' — 0 yields the long
exact sequence

Exti, (4/I, M) — Exti, (4/I, M) — Ext,, (A/I', M)
— Exti ! (4/1, M) — Extit! (A4/1, M),

where the first and last maps are multiplication by x. Since Ext’ (4/I, M) and
Exti;f1(A/I, M) are A/I-free, we have a short exact sequence 0 — Exti, (4/I, M)
*» Ext; (A/I, M) — Extiy (4/I, M) —» 0 for each i=0. This shows that
Exti,(A/I', M) has the asserted properties.

THEOREM 16. Let R be a *ring, M a finitely generated *module, and P a prime
ideal of R. Let s=ht(P)—ht(*P). Suppose u,(*P, M)=0 for i<r. Then y,(P, M)
=0 for i<r+s.

Proof. Let S be the set of semi-invariants in R/*P and let B=S"'(R/*P).
Then B is *simple, and Ext (B, M) is a B-*module, so Ext} (B, M) is a free B-
module by Lemma 14, and hence remains free when we further localize at P.
Replace R by Rp and extend P, *P, and M to Rp. Let T=R/*P. Then
Ext% (T, M) is a free T-module and, as in Proposition 10, we have a spectral
sequence Ext} (R/P, Extk (T, M)) = Extk (R/P,M). Since T is regular,
Ext? (R/P, T)=0 for p+dim (T) by [1, Prop. 3.6, p. 14]. By Corollary 6,
dim (T)=ht (P/*P)=s. Thus the above spectral sequence collapses and we have
Exty (R/P, Extk (T, M))=Extx 4 (R/P,M). Thus  p,(*P,M)=0  implies
Hs+4(P,M)=0 for all q. In particular, if u;(*P, M)=0 for i<r, u;(P,M)=0 for
s<i<r+s. Since T is regular local, P/*P is generated by a T-sequence
Xg,...,X. Let Ij=*P+Rx;+...+Rx; so I,=*P and Isz-'-P. Now
Exti (R/1,, M)=Extk(T, M) is a free R/I,-module for all i, and Extk(R/Io, M)
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=0 for i<r by hypothesié. By induction and Lemma 15, Extk(R/I,, M)
=Extk(R/P,M)=0 for i<s, so u;(P, M)=0 for i<s, also.

CoroLLARY 17. Let R be a *ring, and suppose Rp is Cohen—Macaulay for
every prime *ideal P of R. Then R is Cohen—Macaulay.

Proor. Let P be a prime ideal of R, and let Q= *P. By assumption, Ry is
Cohen-Macaulay, so by [1, 3.7, p. 14], 1;(Q,R)=0 for all i<ht(Q). By
Theorem 16, p;(P,R)=0 for i<ht(Q)+ (ht (P)—ht(Q))=ht(P); by [1, 3.7, p.
14] again, Rp is Cohen—Macaulay. This holds for all P, so R is Cohen—
Macaulay.
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