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HYPERFINITE STOCHASTIC INTEGRATION III:
HYPERFINITE REPRESENTATIONS
OF STANDARD MARTINGALES

TOM L. LINDSTROM

Introduction.

In the second of the papers in this series [8], we showed that a stochastic
integral with respect to the right standard part °M* of an SL2-martingale M
could be obtained from a nonstandard stochastic integral with respect to M.
We did so in order to show that the standard and nonstandard theory for
stochastic integration are equivalent, and we shall now complete our
programme by showing that all (standard) L2-martingales can be represented
as right standard parts of SL2-martingales.

The argument is in two steps. If {Z, {#,}, u) is the stochastic basis of an L2-
martingale N, we first find a hyperfinite probability space {(£2,%, P), a family
{F}ier, of o-algebras on Q, and a measure-preserving g-homomorphism
0:{Q,F' ., L(P)) — (Z,F ,,p) which maps each &, onto #,. Each &, is a
sub-g-algebra of L(%,) for some ¥, %, and we find an L2-martingale N°: R,
x Q — R adapted to (€, {L(%,)},L(P)) such that each N{ is & -measurable,
and O[N?=a]=[N,=a] for all t € R, and all « € R. This L2-martingale N’ is
called a weak Loeb-space representation of N.

The second step is to construct an SL?-martingale M adapted to
(92,{%,},P), such that N®°=°M™*. This M is called a weak hyperfinite
representation of N. We shall prove that if X € A%(N), then we may find

Y e SL?(M) such that
o + ]
<JYdM> = (deN) .

This will complete our programme, since we may now obtain [ X dN from
[YdM.

We shall use the same conventions and terminology as in the two previous
papers; and we only remind the reader that we are working with polysaturated
models for nonstandard analysis (see Stroyan and Luxemburg [13]); the
saturation property will be used repeatedly in this paper.
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1. Weak Loeb-space representations of measure-spaces.

We want to represent arbitrary L?-martingales as the right standard parts of
SL*-martingales, and to do this we first represent the corresponding measure
spaces by hyperfinite Loeb-spaces.

DeriniTION 1. Let (Z, %, u)> be a propability space. By a weak Loeb-space
representation of (Z,%,u) we shall mean a hyperfinite probability space
{Q,9,P); a sub-c-algebra F' of L(¥%); and a measure-preserving o-
homomorphism 0:<{Q, &', L(P)) —» {Z,%#,u) which is onto %#. The
representation is called a strong Loeb-space representation if there is a partial
mapping @: Q — Z, such that ©® "!(4) € F' for all A € # and 0(O ' (4))=A
for all such A. Obviously, the domain of ® must have measure one.

Using the standard part map of the defining topology, Anderson proved in
[2] that all Radon-spaces have strong Loeb-space representations. We shall
prove that all probability spaces have weak Loeb-space representations. To do
this we need the following theorem which we take from Sikorski’s book [12,
pp. 144-145]:

PRroOPOSITION 2. Let Z and Z' be sets and let of and o/’ be c-algebras on Z
and Z' respectively. Let & be a generator set for o and let f: & — ' be a
mapping. Then f has an extension to s/ which is a a-homomorphism if and only
if for each countable family {A;};.N of elements from & :

N ¢4 = @ = () e/ (4) = B
where e: N — {1, —1}. '

We may now use Proposition 2 to prove

THEOREM 3. Each probability space has a weak Loeb-space representation.

Proor. Let (Z,#,u) be a probability space and let {(*Z,*%,*u> be its
nonstandard version. Let ¥ ={*F: Fe #}, and let & be the o-algebra
generated by &.

Define a mapping f: & — &% by f(*F)=F. We shall use Proposition 2 to
extend f to a o-homomorphism h: # — #. Since & is closed under
complements, it is enough to show that for each countable family {*F,}; N of
sets from & such that N,y *F;=, then N,y f(*F)=;.n F;=. But this is
easy since saturation and ;. *F,= & implies (), ¢, *F,= for some n € N.
Since *(N;¢, F)=N;<, *F,=, we have N, ., F,= and consequently N,y F;
=@. Hence f can be extended to a g-homomorphism h: F — #.

Let us show that h is measure-preserving, that is, L(*u)(A4)=pu(h(A)) for
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Ae Z.1f A e ¥ this is obvious by definition of the Loeb-measure. Since v(A)
=u(h(A)) defines a measure on Z, it follows from Caratheodory’s Extension
Theorem (Royden [11, page 257]) that L(*p)(A)=u(h(A)) for all A € &, since
& is an algebra of sets.

We have thus constructed an internal probability space (*Z,*%, *u); a
sub-g-algebra & of L(*#); and a measure-preserving 6-homomorphism h:
— . It only remains to turn {*Z,*%,*u> into a hyperfinite probability
space:

For each finite set F,,. .., F, of elements of &, there is a finite partition £ of
*Z such that if P € 2 and PN *F,; %, then Pc< *F,. By saturation there exists
a hyperfinite partition 2 of *Z such that for each F € & if PN *F+J for a P
<@, then Pc*F. Let ~ be the equivalence relation generated by £, let Q
=*Z/~,and let t: *Z — Q be the quotient map. We may choose £ such that
the equivalence classes of & are elements of *#. Let ¥=n(*%#) and let P
=mn(*u), then (Q,%, P) is a hyperfinite probability space. Let #' be n(F), it
follows easily from the definitions of & and £ that &' < L(%). Define

0:F — F by =hon !,

Then {(Q2,%,P),#',0} is a weak Loeb-space representation of (Z, #, u, and
we have proved the theorem.

If {{Q,%,P),#',0} is a weak Loeb-space representation of (Z,#,u), we
have for each set F’ in %' a set 0(F') € & such that L(P)(F')=u(6(F"). On the
other hand, for each F € #, we have a non-empty subset 6~ '({F}) of &’
consisting of sets that are equal to L(P)-a.e. It is easy to prove that we have a
similar correspondence for random variables. If f: Q@ — R is & '-measurable,
then there exists a uniquely determined fy: Z — R such that for each a € R, 0[ f
>a]=[f,=a]. Conversely, if f: Z — R is #-measurable there is a nonempty
set of #'-measurable functions f? such that 0[ f®=a]=[f 2 a]. Two such s
are different only on a set which 6 maps on ¢, and which consequently has
measure zero. Since 0 is measure-preserving we have | f°dL(P)=] fdu and
if dL(p)={ fodu. If {f,} is a sequence of random variables on {Q, #’,L(P))
which converges a.e. to f, then {(f,),} converges a.e. to fo. If { f,} is a sequence of
random variables on (Z, #, u) that converges a.e. to f, then { f%} converges a.e.
to f°. We shall use these simple facts about f; and f° in the sequel.

2. Weak Loeb-space representations of martingales.

In this section we use the representation of measure spaces found in
Theorem 3, to represent arbitrary L-martingales by L2-martingales on Loeb-
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spaces. These are still real-valued martingales parameterized by R, but in the
next section we shall see how to replace them by hyperfinite martingales.

We first extend the notion of weak Loeb-space representations to stochastic
bases:

DErFINITION 4. By a weak Loeb-space representation for a stochastic basis
(Z,{# },u>, we mean a sequence {£2,{%},r,,P> of internal probability
spaces with 4,c ¥, for s<t; an increasing family {#},.r, u{o} Of o-algebras
on Q with #,cL(%,} for t € R, ; and a measure-preserving g-homomorphism
0: F, — F, such that 0 is surjective and for each t € R, U {oo}, the tuple
{{2,%,P), F,00 F;} is a weak Loeb-space representation for (Z, %, u).

Let M: R, xZ — R be an L?-martingale adapted to the stochastic basis
(Z{F ), p, and let {<Q,{%,},P),{F,},0} be a weak Loeb-space repre-
sentation of this basis. For each t € R, we may find a random variable M?: Q
— R such that {M?>a]=[M,=a] for all « € R, and [M? 2] € #,. Since 0 is
measure-preserving, the process M?: R, x Q — R defined by M?(t, w)= M?(w)
is an L?-martingale adapted to the stochastic basis {Q,{#},L(P))>.

DEerFINITION 5. Let M: R, xZ — R be an L2-martingale adapted to the
stochastic basis (Z, {#,},u), and let {<Q,{%,}, P),{#,},0} be a weak Loeb-
space representation of (Z,{#,}, u). Then {(2,{%,}, P),{#,},0, M®} is a weak
Loeb-space representation of M if M® is an L2-martingale with respect to
(Q{L&)}, L(P).

Notice that the martingale M° in Definition 5 is required to be adapted to
the basis {(©,{L(%,},L(P)) and not only to {(Q,{#;}, L(P))>. We shall need
this to be able to replace M? by a hyperfinite martingale adapted to an
extension of {Q,{¥,}, P). But by this requirement it is no longer obvious that
M has a weak Loeb-space representation ; however, we shall prove in Theorem
7 that it does have one.

Let us make the connection to the setting of [8]: Let {#,},. - be an extension
of {#}.r, to an increasing sequence of internal algebras indexed by a
hyperfinite time-line 7. From [8, Lemma 5 and Lemma 6], we see that

*, = () olL&)UN)
for each sequence {s,} of elements from T such that {°s,} decreases strictly to .
This tells us that the family {J#,} does not change if we pass to a sub-line, and
that it is uniquely determined by the original family {%,},.x, and does not
depend on the extension {4,},.r-
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LEMMA 6. Let M: R, xZ — R be a right-continuous L*-martingale with a
weak Loeb-space representation {(Q,{%9,}, P),{#},0, M®}. Then M® is an L?-
martingale adapted to {Q,{#,}, L(P)).

Proor. Let A € &, then by [8, Lemma 6] there exists a B such that
Be L(%;4,,,) for all ne N and L(P)(A4B)=0. For t>s we get:

J (M7 — M3)dL(P) j (M{ —My)dL(P) =j lim (M — Mg, ,,)dL(P)
A B

B n—oo

= lim j (M?— M2, ,,)dL(P) = 0,
n-o0 JB

where we have used M?, ,, — M? since M is right-continuous, and the usual

combination of Doob’s inequality and Lebesgue’s Convergence Theorem to get

the limit outside the integral.

We now prove

THEOREM 7. If M is an L2-martingale, then M has a weak Loeb-space
representation.

Proor. Let {Z,{#,},n) be the stochastic basis of M. If & _ is finite, the
result is obvious and we hence assume that & _ is infinite.

For each t e R, U{oo} let &, be the o-algebra generated by the sets
{*F : F € #,}. In the proof of Theorem 3 we saw that for each ¢t there exists a
measure-preserving g-homomorphism h,: &, — #,, such that h(*F)=F for
all Fe #,. If t>s, it is clear that h,| #,=h, since they agree on the generator
set {*F : F € #,}. Hence all h, are obtainable from h, and we shall write h
for h.

For each t € R, we may find an #,-measurable random variable M;:
*Z — R such that h[M,2a]=h[M,2a]=[M,=a] for all a«e€R. Since
F,cL(*#) we may find an internal K,:*Z— R such that
K, € SL*(*Z,*#,*u) and °K,=M, L(*p)-ae. for all t e R,.

For all s,te R,, s<t,and all 4 € ﬁsﬂ *# ., we have:

0= J (K, —K)d*u
A

L CK,—°K)dL(*p)

J (M;—M)dL(*p)
A

j (M,—Mg@. =0.
h(A)

Let now B,,B,,...,B, be a finite family of sets from #_,, and let
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{1yt Dse o s {Sm bty be a finite set of pairs {s; ;> € R% such that s;<t;. Then
there exists a finite partition 2 of *Z such that if P € # and PN *B,; % for
some i € {1,...,n}, then Pc *B;; and if A4 is in the algebra generated by 2, and
Ae*F, for some i€ {1, ..,m}, then

1
<

—_ * —_—
\J‘A (Kt‘ Ks;)d "l = *Cal‘d (g)

where *card () denotes the internal cardinality of 2. To see that this
statement is true, take £ to be the partition generated by B,,...,B,, and use
the inequality we proved above.

By polysaturation there then exists a hyperfinite partition 2 of *Z such that
for each Be ¥ if Pe # and PN*B+(, then P<*B; and if 4 is in the
intersection of the internal algebra generated by £, and *& , then for all t>s

<1
= *card 2

J (K,—K)d*u
A

Since ¥, is infinite, *card (%) € *N\N. Let &/ be the internal algebra
generated by 2, and for each t € R, define

G, = o N*F,.

By definition of 2, we have *B e o for all Be %, and consequently &,
cL(%).

If ~ is the equivalence relation induced by 2, let n: ¥*Z — *Z/~ be the
quotient map. We write Q for *Z/~ ; %, for n(%,); and P for n(*u). We also put
F,=n(¥F,) for t e R, U{oo}, and let 6=hon ™',

Then {(Q,{%},P),{#,,0} is a weak Loeb-space representation of
(Z,{#},n). We must prove that M? is a martingale with respect to the basis
(2,L(S),L(P):

If A € L(%,), then there exists B € ¥, such that L(P)(A4B)=0. For t>s we
have

ogU (M?—M:’)dL(P)l=| f (M:’—M;’)dL(P)‘
A B

f (M;—M)dL(*u)
n”'(B)

J K, —°K)dL(*p)
n~'(B)

° 1
= (o) =

since 7~ !(B) € & N*%,. But this proves that M’ is an Lz-mértingale with
respect to the stochastic basis (Q,L(%,), L(P)), and hence the theorem.

o
J (Kr_Ks)d*”
n~'(B)
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If X is a predictable process with respect to {Z, {#,}, 1), then we can find a
predictable version of X’ and if X is predictable with respect to
(Q, {9’} L(P)), then X, is predictable. If X € A2(M), then X° € 42(M®) and
forreR,:

j X2dmy, = _[ X% dmyp .
[0,r1xZ [0,r1xQ

We need these simple facts to prove the following commutation rules for § and
stochastic integrals:

PRrOPOSITION 8. Let M be a right-continuous L>-martingale. If X € A*(M),
then X° € A*(M) and ([ X dM)’=[ X°dM°.

If Y is predictable with respect to {Q,{%,},L(P)) and Ye A*(M®), then
Y, € A*(M) and [ YdM®= ([ Y,dM)’.

ProoF. Since M is right-continuous, lim,_  M°(t+r,)=M’(t) for each
sequence {r,} decreasing to zero, and thus stochastic integration with respect
to M? is well-defined.

Assume first that X is of the form X =1, ;xr where F € # . Then X°=1
«F» Where F' € 071 (F)N #., and we have

r

0
j XdM® = 1. (M!,,—M%,) = (J XdM) .
0 V]
By linearity the assertion holds for all X of the form

X = Zai1<s,.,:,.]xp,., FeF

If X is an arbitrary element of A%(M), there exists a sequence {X,} of elements
of the above form such that

lim (L’)(I X,,dM> - j XdM forall reR,
0

n— oo 0

r r r ]
lim (LZ)( j Xf,dM") = lim (L2)< J X,,dM)g = (J XdM) .
n—*o0o 0 n- oo 0 0

Moreover, the elements {X,} are chosen such that

Thus

lim j (X =Xdmy =0,
[0,r1xZ

n—o00

but since

Math. Scand. 46 — 21
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f (X—X,,)zde == f (X"—X,’;)’dea
[0,r]x2 [0,r1xQ

we also have

lim I (X=X%dmyp = 0.

n—oo J[0,r]xQ

But then [ X°dM°=Ilim (L% X%dM® and hence [, X°dM°=([5X dM)’.
The second part follows immediately from the first since (Yp)!=Y.

We have similar results for local L-martingales:
Let #/=(F)* =M,,,#.. Then the following result was proved in [6]:

PRrOPOSITION 9. Let M: R, x Z — R be a right continuous local L*-martingale
adapted to the basis {Z,{F,}, 1), and let X € A(M). There exist a weak Loeb-
space representation {{2,{%}, P),{#.},0} of (Z,{# .}, u) and a version of M°
which is a local L*-martingale with respect to {Q,{#,}, L(P)), and such that
X% € A(M®). The localizing sequence of stopping times for X° and M°® will be
adapted to {Q,{F,},L(P)), and each M! is F-measurable. Moreover,

(o) - o

Some extension of the algebras &, (like #7) is necessary since the stopping
times will not be adapted to {#;}. We need not, however, use the whole of #/’;
it is enough to add its null-sets to &,.

3. L2-martingales as right standard parts.

In the last section we saw how we could replace a given martingale by a
martingale adapted to a basis of Loeb-algebras having the same properties of
stochastic integration. In this section we shall go one step further by showing
that each martingale of the latter type may be considered as the right standard
part of a hyperfinite martingale.

Before proceeding, the reader should recall the comments on the family
{Q,{%,}, P) preceding Lemma 6.

THEOREM 10. Let {Q,{% },.r,,P)> be an increasing family of hyperfinite
probability spaces. Let N: R, xQ — R be an L%-martingale with respect to
(Q,{#,},L(P)) and assume that N, is o(L(%,)U A")-measurable. Assume
further that for each t € R, and each sequence {t,},.n decreasing to t we have
N(t,) = N(t) L(P)-a.e.



HYPERFINITE STOCHASTIC INTEGRATION II1. 323

Then there exist a hyperfinite time-line T, an internal basis {Q,{%,},.1,P)
extending <2,{%},cr,, P>, and an SL*-martingale M: Tx Q — *R adapted to
{2,{%},c1,P) such that for each t € R,

°M*(t,w) = N(t,w) for L(P)-almost all w .

Moreover, we may take M to be well-behaved, S-right-continuous at 0, and
such that for all t € R,

°[M]*(t,w) = [N](t,w) for L(P)-almost all w .

Proor. By saturation we may extend the family {%,},.r, to an increasing
internal family {%,},.s, where S is a hyperfinite time-line.

For each t € R, the random variable N,: Q — R is J#,-measurable and
thus it is o(L(%,) U ./)-measurable for all s>t, s € R,. Consequently there is
an L® e SL*(2,%,,P) such that °L®" =N, L(P)-ae. We may extend the
sequence {L{'*1/™} _\ by saturation to an internal sequence {L{'*!'/"} _ ne *
N\ N, where L{ "'/ is & ;+7;-measurable (recll that 7 is the least element in
S larger than r). There must be an internal initial segment {L{'* "}, _, such
that

ILE - LE D), < 1y,

for all y<¢&. By construction ¢ must be infinite and it follows that °L{*!'9 =N,
L(Py-ae.; L{*'9 € SL*(,% 517, P) and t+1/¢~t.

We denote (t+1/&) by t and choose 0=0; this is possible since we have
assumed that N, is o(L(%,)U 4#")-measurable.

Given a finite set S={t,,...,t,} of such elements we show how to turn the
process L“‘) into an SLz-martmgale with respect to the basis {Q,{%,},cs, P);
i.e. we construct an SLZ-martmgale M: S xQ — R adapted to {Q,{%,} s, P)
such that

ISM(#)—L{#|,~0 for each f € §:

Assume that £, <f,<...<t,; we define SM(i))= L“" If we have constructed
SM(t ) for j<i, we defme M(t,H) in the following way: For each w € Q, let

[wli=N{Ae%;: wed},

and define B by:

B={ye*N: P{w

Then B is an internal set and we prove that Nc B:
Assume n € N, but n ¢ B: Then either

: J (L}fl*.')—gM(fi))dP\>1/7P([w];)}<1/}’} .
[w)i




324 TOM L. LINDSTROM

P{w: f (L,(f;‘>-§M(?,.))dP>1/nP([w],.)} > 1)2n
[w)i
or
P{w : f (L) —SM(5)) dP < -—l/nP([w]i)} > 1/2n.
[w]);

Assume the first; the argument in the second case is similar. The set

C= {w : J (L0 - SM(t,))dP>1/nP[w]}
[w)i
is in %; and P(C)21/2n. We have

1/2n* < f (L) ~SM () dP —f (°L{D—SM (£)) dL (P)
C

l+l

= L (N;,,,—Ny)dL(P) = 0,
which is impossible. Hence N< B, and since B is internal we may find an

infinite y € B.
Let D be the set of internal measure less than 1/y such that

2 1/yPlw]; for we D ;

f (L&) —SM (2))dP
[w):

then D € 4;. For w € D, we define sM(f,-H)=§M(f,-). For w € Q\ D, let
M1, 0) = Lf(@) - f (L) ="M @)dP/PLw]
It follows immediately that for each w € ,
f . (M) -SM@E)dP = 0,

and hence M is a martingale. Since M (t) SL’(Q,%‘,, P) by induction
hypothesis, we have

j SM(t,,,)?dP = J SM(G)?dP ~ 0.
D D
We also have

J M) - Lin2dP < 147,
Q\D
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and thus SM(,,,) € SL*(2,%; , , P). Since obviously

°§M(ti+1) = oLt(,ti*,') = N,,, ae,

we have constructed the martingale M by induction.

We now turn to the next step of the proof: So far we have only constructed
approximating martingales on finite time-lines, we must extend this to
hyperfinite time-lines: Let {q,},.n be an enumeration of the non-negative
rationals, and let §,={g,,. . .,q,}. We may extend the sequence {S,},.n to an
increasing internal sequence {S,},<, of hyperfinite subsets of S, and the
sequence {§~M Jnen to a sequence of internal martingales adapted to
(2% s, P.

If m,n € N, m<n, then for all §,, k<m, we have:

15:M (@) —5-M @)l < 1m.
By saturation there exists an infinite n such that

I5-M (G —5M@Gll, < 1/n

for all ne N, k=n. It follows that gvM(c}k) € SL*(2,%;,P) and °§~M(¢ik)
=N(q,), L(P)-a.e., for q, € Q.

Using this and the assumption that N is right continuous we have °(S'vM)’r
=N ae. "M is right continuous at 0, since 0=0. -
By letting T be a suitable sub-line of §,,, we can make the restriction of "M

to T well-behaved by [8, Theorem 23]. Let M be this restriction, then by [8,
Theorem 21] °[M]* =[N]. This proves the theorem.

The assumption that N, is o(L(%,) U .A4")-measurable was made in Theorem
10 to ensure us that we could choose M right-continuous at 0. We saw in [8,
Theorem 17] that this was a necessary condition when we compared stochastic
integration with respect to M with stochastic integration with respect to °M*.

Using Theorem 10 one may prove the following analogous statement for
local L2-martingales:

THeoREM 11. Let {2,{%,},.r,, P> be an increasing sequence of hyperfinite
probability spaces. Let N:R, xQ — R be a right continuous local L>-
martingale with respect to {Q,{# .}, L(P)), such that N, is a(L(%,)U.A)-
measurable. Then there exists a local SL*-martingale M: Tx Q — *R adapted
to an extension {2,{%}ic1, P> of {,{%}1er,» P> such that for all te R, :

°M*(t,w) = N(t,w) for L(P)-almost all w .
Moreover, we may assume M to be right continuous at O and such that for all

reR.: [M]* (t,) = [N](t,) .
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I don’t know if we can make the martingale M in Theorem 11 well-behaved;
application of [8, Theorem 23] as in the proof of Theorem 10 is not possible
since the restriction may fail to be a local SL2-martingale (see [8, Example 10
and the comments following the proof of Theorem 23]). The equality °[M]*
=[N7] can be proved directly without using [8, Theorem 21].

4. Hyperfinite representation of martingales.

Time has come to gather our results. In Section 2 we found a representation
of arbitrary L?-martingales as L?-martingales on Loeb-spaces, and in the last
section we saw how we could represent martingales of the latter type as right
standard parts of SL2-martingales. From [8, Theorem 17] we know the
relationship between stochastic integration with respect to an SL>-martingale
and stochastic integration with respect to its right standard part. The following
definition seems natural:

DEerINITION 12. By a weak hyperfinite representation of a martingale N we
mean a weak Loeb-space representation {{Q,{%,},P),{#;},0,N°} and a
hyperfinite martingale M adapted to some extension <,{%},..P) of
(Q,{%}\cr,, P) such that °M™ is equivalent to N°.

Combining the results mentioned above, we get:

THEOREM 13. Let N be a right continuous L?-martingale. Then N has a weak
hyperfinite representation M which is a well-behaved SL2>-martingale S-right
continuous at 0, such that °[M]* =[N1°. If X € A%(N) then there exists a
Ye SL*(M) such that [ YdM is a hyperfinite representation of | X dN.

Proor. By Theorem 7, N has a weak Loeb-space representation
{{2,{%,}, P>, {#,},0,N°}. By Lemma 6, N’ satisfies the conditions of Theorem
10, and by that theorem we obtain a weak hyperfinite representation M of N,
which is well-behaved, S-right continuous at 0, and such that °[M]* =[N?]
=[N7]".

If X € A*(N), then X° € A*(N®) and ([ X dN)’=[ X?dN® by Proposition 8.
By [8, Lemma 15 and Theorem 17], X? has a 2-lifting Y with respect to M such

et ([ram) = [xeem: = [xeanw = ([xan).

Thus [YdM is a hyperfinite representation of [ X dN, and the theorem is
proved.
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Using [8, Corollary 18] and Theorem 11, one may prove the corresponding
result for local L2-martingales:

THEOREM 14. Let N be a right continuous local L?-martingale and let
X € A(N). Then there exists a weak hyperfinite representation M of N which is a
local SL?-martingale, S-right continuous at 0, and with °[M]* =[N]°. Moreover,
there is a Y € SL(M) such that | Y dM is a hyperfinite representations of [ X dN.

Our purpose in this paper has been to show that everything that can be done
by the standard theory of stochastic integration, can also be done by the
nonstandard theory. Theorems 13 and 14 show this, since by using them we
can define stochastic integration with respect to any right-continuous local L2-
martingale from the nonstandard stochastic integral with respect to a closely
related local SL?-martingale. Thus by using nonstandard methods we do not
condemn our theory to less generality than what we could obtain by sticking
to the standard methods.

5. The transformationformula revisited.

As an application of the theory for weak hyperfinite representations, we shall
use the nonstandard version of the transformationformula ([7, Theorem 22])
to prove the standard version. Let us first prove it for the right standard part
°M™ of a well-behaved SL2-martingale M which is S-right continuous in 0 and
such that °\[M]* =[°M™*], and then use Theorem 13 to prove it in general: If
¢@: R — R is in €%(R), we get from [7, Theorem 22]:

O(M* (0)—@CM*(0) = lim °(*o(M(1+1/n) - *¢(Mo))
o t+1/n t+1/n
= lim <f *(p’(M)dM+%I *@" (M)d[M]
n=00 0 0

+ Y C(*oM)—*o(M,)—*¢' (M) (M~ M,-)

sSt+1/n
—%*tp”(Ms-)(M,—Ms-)z)) .
By [8, Lemma 20], *¢'(M) is a lifting of ¢'(°M~) (where °M~ is the left

standard part of M), and consequently

oft+1/n t
lim j *o' (M)dM =J @' CM7)d°M* .
0o

n— oo 0

Using that M is well-behaved, S-right continuous at 0 and such that °[M]*
=[°M™], it is not difficult to see that
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o t+1/n t
lim f *o"(M)d[M] = J @' CM7)d[M]" .
n— oo 0 0

Since M is well-behaved, the jumps of °M* are exactly the noninfinitesimal
jumps of M, and hence

lim ) °(*¢(M)—*o(M,-)—*¢'(M,-)(M,—M,-)

n=oo s<t+1/n
—3*0" (M,-)(M,— M,-)?)
=Y (9CM)— (M) —¢' CM]) M} —°M])

st
—30"CM)CM M )).
Combining these results we have:

t t

o' CMT)dEM* +3 f @' (CM7)d[*M™]

0

P(CM* (1) —@(*M*(0)) = j

0

+ 2 (@CM)—oCM)— ¢ CMT)CM] —° M) —5¢" M) (M —°M[)?)

ssSt

which is the transformationformula for °M*.

Let now N be a right-continuous L2-martingale with left limits. To prove the
transformationformula for N, we find a weak hyperfinite representation M of
N as in Theorem 13. If N~ denotes the left limit of N, N~ is predictable, and
we know from Theorem 13 that ([, ¢'CM")d°M*), = [, ¢'(N")dN.

It is easy to see that ([, ¢ (°M ~)d[°M*]),=[, ¢" (N ") d[N] by approximat-
ing ¢”(°M ™) by the predictable processes

X, = Y lapks12m9” CMgy)
K20
and ¢”(N7) by the processes
Y, = Y Lgi+1299” Nigp) :
k=0

Since ¢ (°M ") is left-continuous, X, — ¢"”(°M ™) everywhere, and similarly

Y, — ¢"(N7). Now
(lim f X,,d[°M+]) = lim (f X,,d[°M+]>
n—+oo JoO (] n—*oo 0 [}

<J‘l (p/r(oM—)d[oM+])
] ]
lim ( j ‘ Y,,d[N]) = j @' (N7)d[N] .
0

n- o0 0
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It remains to show that

(Z (@CM)—o(CM)—¢' CM)CMS —°M[)—3¢" CMJ)CM/ —°Ms')2)>0

sSt

= Y (@(N)—@(N,)—¢'(NJ)(N,—N;)=1¢" (N])(N,—N;)) .

ssSt

This we shall leave to the reader, only warning him that it includes checking of
some rather irritating details. Hence we have proved:

THeOREM 15. (The transformationformula). Let N be a right continuous local
L2-martingale with left limits, and let ¢: R — R be in €*(R). Then for allt € R , :

t

@(N)—o(No) = L <P’(N_)dN+%'[ ¢"(N7)d[N]+

0

+Y (@(N)=@(N)= @' (NJ)N,—N;)=3¢"(NJ)(N,—N7)))  ae;

sSt

and where the sum is absolutely convergent.

CoRroLLARY 16. (Itd0’s formula). Let N be a continuous local L*-martingale,
and let ¢: R — R be in €*(R). Then:

¢(N)=o@(No) = j ¢’(N)dN+%j ¢"(N)d[N] .
0

0

We may now prove the result we used in the proof of [8, Theorem 21]:

COROLLARY 17. Let N be a right continuous local L*-martingale with left limits.
Then for t e R :

[N1() = N()>-N(0)*-2 ‘r N7 dN ae..

0

Proor. Apply Theorem 15 with ¢: x — x?%:

t t
N?—Ng=f 2N‘dN+%f 2d[NT+ . (N2—N;?=2N; (N,~N;)
V] o sst
—}2AN,-NJ)).

Performing the multiplications in each term inside the sum we get zero, and
hence we are left with N2—NZ=2[4 N~ dN+[N](t), which proves the
corollary.
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Notice that the proof we have given of Corollary 17 is circular; we used
Corollary 17 to prove [8, Theorem 21] which we used to prove Theorem 10
which we used to prove Theorem 13 which we used to prove Theorem 15 and
hence Corollary 17. This also makes the proof of the transformationformula
circular, since Métivier used this formula to prove Corollary 17. Luckily, it is
not difficult to avoid this circularity since we can prove Theorem 10 without
using [8, Theorem 21]:

The argument would proceed as in the proof we have given up to the use of
[8, Theorem 21]; we thus have a well-behaved SL2-martingale M which is S-
continuous at 0, such that °M * = N. Using the definition of [N] as the L!-limit
of X, er (N(t;+1)—N(t))? as the partition n gets finer, it is easy to find a
restriction M of M to a subline such that °{M]* =[N]. This martingale M
would then satisfy Theorem 10.

As we have now proved Corollary 17 (and [8, Theorem 21]), the theory
developed in these three papers should be reasonably self-contained. In
addition to some simple facts about the paths of real-valued martingales, we
have only used the most basic results from the standard theory for stochastic
integration. We have therefore developed by purely nonstandard methods a
theory for stochastic integration just as powerful as the standard theory. One
may also hope that the discreteness of the hyperfinite timeline and the
simplicity of the nonstandard definition of the stochastic integral will make the
hyperfinite theory easier and more intuitive to work with; some evidence of this
may already be seen in Keisler’s theory for stochastic differential equations

[5].

NOTE ADDED IN PROOF. Some of the results of this paper have been obtained
independently by D. N. Hoover and E. Perkins.
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