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HYPERFINITE STOCHASTIC INTEGRATION I:
THE NONSTANDARD THEORY

TOM L. LINDSTROM

Introduction.

For a number of years nonstandard measure theory was in a somewhat
problematic state. Although many interesting papers appeared (e.g. Bernstein
and Wattenberg [5], Loeb [14], [15] and Bernstein and Loeb [4]), the theory
suffered from the fact that nonstandard measures refuse to be countably
additive. This made application to and comparison with standard measure-
and probability-theory difficult.

Many of these difficulties were resolved when Peter A. Loeb in [16] showed
how to turn *-measures into real-valued, countably additive measures. This
opened the way for the use of nonstandard constructions in probability theory,
and Loeb himself gave the first example by constructing a Poisson process.
Shortly afterwards R. M. Anderson [1] used Loeb’s technique to make a
nonstandard construction of a Brownian motion in a very simple and
attractive way. Anderson also gave a nonstandard treatment of stochastic
integration with respect to this Brownian motion process, and this theory was
used by H. J. Keisler in [10] to obtain new results on stochastic differential
equations.

Keisler [9] (see also Hoover [7]) based his hyperfinite model theory on the
Loeb-measure, and A. E. Hurd [8] used it in analyzing equilibrium states in
statistical mechanics. In his thesis [2], Anderson further developed the theory
of Loeb-spaces, found a representation of Radon-spaces as inverse images of
hyperfinite Loeb-spaces, and gave applications to economics. This list does by
no means exhaust the applications of the Loeb-measure, but it should be long
and varied enough to indicate the fruitfulness of the idea.

In this paper we shall carry on the work on nonstandard stochastic
integration begun by Anderson in [1]. Let us first give a short sketch of
standard stochastic integration. The problem is simply to give a precise
meaning to the heuristic formula [ X dM where X, M: R, x Q — R are suitable
processes on a proabability space Q. This is nontrivial since “typical” examples
of M (e.g. Brownian motions) have paths of unbounded variation, and the
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integral [ X dM thus can not be defined by pathwise Stieltjes integration.
However, it was realized by N. Wiener and K. It6 that in the Brownian motion
case the integral { X dM can be defined as an L?-limit, and this has later been
extended to more general classes of processes M (so called local L32-
martingales; see Meyer [20] or Meétivier [18] for expositions.)

We now turn to Anderson’s work: Let n € *N\ N, and let T={k/n : ke *
N, k<n?}. Anderson constructed a hyperfinite *-probability space 2 and an
internal process x: Tx 2 — *R—which in fact was nothing but a hyperfinite
random walk—such that the process f: R, xQ — R defined by B(t,w)
=°%(t, ), was a Brownian motion (here ¢ is the least element of T larger than t.
For a definition of Anderson’s process, see Example 1 below). If Y: Tx Q
— *R is an internal process, he defined the stochastic integral | Ydy to be the
process

k-1
(k/n, ) — z Y (i/n, w)(x (i + 1/n, 0) = x(i/n, 0));

i.e. as a pathwise “Stieltjes integral”. Anderson was now able to show that
given a process X such that [ X dB was defined by the standard theory, he
could find an internal process Y (called a 2-lifting of X) such that °[{—, Ydy
=(6 X dp. Thus he could do by nonstandard methods what had proved
impossible by standard ones; to write the stochastic integral as a pathwise
Stieltjes integral. This intuitive definition of the stochastic integral enabled him
to give a simple proof of It6’s Lemma. The work by Keisler [10] on stochastic
differential equations has later confirmed the importance of this approach to
stochastic integration.

The purpose of this paper is to generalize Anderson’s theory about y to a
larger class of hyperfinite processes (called local A2-martingales), and to prove
theorems on the structure of these processes. We shall prove that the paths are
finite and have S-right- and S-left-limits a.e.; and characterize those processes
which have S-continuous paths a.e. We then define stochastic integrals | X dM
with respect to such martingales as sums Y. X (¢,)(M(¢;,,)— M(t)), and prove
that if M is S-continuous and X is reasonably nice, then j'X dM is S-
continuous. Nonstandard versions of the Transformationformula and Itd’s
formula are proved; and we finally obtain a Doob—Meyer decomposition of
hyperfinite processes.

In anoiher paper [12], we shall show that from this nonstandard theory for
stochastic integration with respect to such hyperfinite martingales, we may
obtain the standard theory for stochastic integration with respect to “the
standard parts” of the martingales. This extends the results of Anderson [1].

In a third paper [13], we shall show that all standard local L2-martingales
can—in a suitable sense — be represented as “the standard parts” of local A2-
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martingales; and we shall argue that this combined with the results in [12]
shows that anything that can be done by the standard theory for stochastic
integration, can be done by the nonstandard theory. The hope is— of course —
that the nonstandard theory will be simpler and more intuitive to work with.

This and the subsequent papers are based on a common previous version,
the [11] of the references. That version is at times a little more comprehensive
and contains some additional material.

Our main references will be Métivier [18] on stochastic integration, and
Stroyan and Luxemburg [23] on nonstandard analysis.

AckNOWLEDGEMENT. This paper and the other two mentioned above
constitue my cand.real-thesis written at the University of Oslo under the
supervision of Professor Jens Erik Fenstad. It is a pleasure to thank Professor
Fenstad for all his encouragement and good advice; and I would like to extend
my thanks to all the members of the seminar on nonstandard analysis in Oslo
during the last years.

This work has earlier been published in the Preprint Series of the Institute of
Mathematics, University of Oslo.

1. Setting.

We shall work with polysaturated models for nonstandard analysis. That is
we begin with a set K large enough to include all the standard entities we shall
need (e.g. the real numbers R, the relevant measure spaces), and we construct
the superstructure V(K) over K. We then take *V(K) to be a card (V(K))-
saturated nonstandard model of V(K). This will be our polysaturated model.
For a proof of the existence of such models and a survey of their properties,
see Stroyan and Luxemburg [23], sections 7.4-7.6.

Let {Q,9,P) be a *-measure space. We may define a finitely additive
measure °P on the algebra 4 by °P(A4)=st (P(A)) for all A € 4. Peter A. Loeb
proved in [16] that °P satisfies the conditions of Carathéodory’s Extension
Theorem (Royden [22, page 257]), and that °P thus may be extended to a
measure on the g-algebra (%) generated by %. The completion of this measure
we denote by L(P) and call the Loeb-measure of P. The o-algebra ¢(¥) is called
the Borel-algebra of % and its completion L(%) with respect to L(P) is called the
Loeb-algebra of 4. The measure space {2, L(%), L(P)) is called the Loeb-space
of {Q,%,P). When °P(Q) is finite, it follows from the uniqueness part of
Carathéodory’s Theorem that L(P) is uniquely determined by P; C. Ward
Henson has proved that this still holds when °P(Q)=o00 ([24]). If Q is *-finite
and P(Q)=1, {(2,%, P) is called a hyperfinite probability space.

The measure- and integration-theory of Loeb-spaces were developed in
Loeb [16] and Anderson [1]. Expositions are given in Loeb [17] and (without
proofs) in Keisler [10].
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2. Hyperfinite processes.

We now define the basic concepts in the theory of hyperfinite processes:

A hyperfinite time-line is a hyperfinite subset of T of *R , such that 0 € T and
for each a € R, thereis a t € T such that t~a. If S and T are hyperfinite time-
lines with S= T, we call S a subline of T.

By a hyperfinite stochastic process X we mean an internal mapping X: T
x 2 — *R where T is a hyperfinite time-line and {Q,%, P) is a hyperfinite
probability space such that the mappings w — X (t, w) are ¥-measurable for all
teT

If T is a hyperfinite time-line, an internal basis {Q,{%,},c1, P) indexed by T
consists of a hyperfinite set , an increasing *-sequence {%,},. rof *-algebras of
subsets of ©, and a *-probability measure P on %, , where t,, is the largest
element in T. For convenience we shall often assume that ¢, is the internal
power-set of 2 such that each one-point set {w} is %, -measurable.

Let us illustrate these definitions by an example:

ExampLE 1. In [1], Anderson constructed the following process: Choose an
n € *N\ N, and let the time-line be T={k/n : k € *N, k<n?}. The set Q is the
set { —1,1}7of all internal functions from Tto {—1,1}. If w € Q, we shall write
w; for w(i/n). The internal algebra ¥, will be the *-algebra generated by the
equivalence classes of the relation ~,, where w~, o' if w;=wj for all i<k.
The probability measure P is the uniform measure on ; P{a)}=2”"z for
all w € Q. Then (Q,{%,},P) is an internal basis. We define a hyperfinite
stochastic process x: Tx Q2 — *R by

k=

1
x(kimo) = 3 o)/ .

Anderson proved that if we define f: R, x Q — R by f(t, w)=°x(f, w), where §
is the least element of T larger than ¢, then § is a Brownian motion.

We see that for each t € T, w — x(t, ) is ¥,-measurable, and this motivates
our next definition:

A hyperfinite process X: Tx Q2 — *R is said to be adapted to the internal
bases (Q,{%,},P) if o — X(t,w) is ¥,-measurable for all t € T.

NortaTioN. We shall often write X,(w) or —suppressing w— X, for X (¢, w).
Let 0=t,<t; <...<t.=t, be the elements of T in increasing order. If X: T
x Q — *R is a process, we shall write 4X (¢, ) for X(¢;,,,0)— X(t;, w). We
use the following notation for summation: If s=t, t=t; and i<j, we write

i X(r,w) for :‘2—;1 X (8, w) .
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Notice that the term X(t,w) is not included in the sum ¥ X (r,w). We use
similar notation when the limits s and ¢ of the summation depends on w.

By the quadratic variation of a process X: Tx Q — *R, we mean the process
[X]: TxQ — *R defined by

t

[X1(tw) =Y (4X(s,w)?.
0
Observe that if X is adapted to a basis (@, {%,}, P), then so is [X]. If y is the
process of Example 1, then [x](t, w)=t.
An internal stopping time adapted to the internal basis {Q,{%,}, P) is an
internal mapping 7: 2 — T such that for all t € T, the set {w € Q: t(w)<t} is
in 4,

DErFINITION 2. A hyperfinite process M: Tx Q — *R is called a hyperfinite
martingale (hyperfinite sub-martingale, hyperfinite super-martingale) adapted to
an internal basis (2, {%,}, P), if M is adapted to (@, {%,}, P) as a process and
for all s,t € T, s<t, and all A € ¥,:

E(14M,—M)) =0 (E(1,(M,—M)) 2 0, E(1,(M,—M) < 0).

In this definition the expectation E(1,(M,—M,)) is just a hyperfinite sum
Y vea l4(@)(M (@) — M (w)P{w}.

This paper is a study of hyperfinite martingales, and we have already
encountered one; Anderson’s process y is a martingale with respect to the basis
{Q,{%9,}, P) constructed in Example 1.

We shall need the following technical lemma relating the expectation of the
quadratic variation of a martingale to the expectation of the square of the
martingale.

LemMMA 3. Let M: TxQ — *R be a hyperfinite martingale adapted to the
internal basis {,{9,}, P), and let 6,7 be two internal stopping times adapted
to the same basis. Assume that o(w)=1t(w) for w € Q. Then:

E(M (0 (o), 0 — M(z(w),0)?) = E((M(0(e),w)— M (z(w), w)?)

E(o(zw) AM(s, w)2> .

(w)

The proof is an easy exercise in the martingale property and the definition
of stopping times, and is left to the reader.

We end this section by quoting two results from the standard theory of
martingales which we shall use in the sequel. The first is a famous inequality
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due to J. L. Doob which is proved in almost any text on stochastic processes;
see e.g. Doob [6] or Métivier [18]:

ProrosiTiON 4. (Doob’s inequality). Let X:JxZ — R be a positive
(standard) submartingale with respect to a stochastic basis {Z,{F },c;, LD, where
J<R,. Let I be a countable subset of J and assume that b=sup I € J. Then for
all p e (1,00) such that E(X!)< oo, we have:

sup X,

tel

p
= "p—:T“Xb"p'

4

In this paper we shall use the *-transfer of Proposition 4 to deal with
hyperfinite martingales, while in [12] and [13] we shall need the standard
version above.

The next proposition is *-transfer of well-known inequalities in the theory
for discrete martingales.

PROPOSITION 5. Let M: Tx Q — *R be a hyperfinite martingale. Then for all
pell,ood and all t e T:

I/ M3+ IMI@)l, < 10p

sup (M)
sSt P

and

< p)/12 [YME+[MIO)], .

p

sup (M,)
sst

For a proof, see Nevetu [21] (Corollary VIII-3-18) or Meyer [19]. Lest the
reader should feel discouraged by the length and difficulty of these proofs, we
hasten to assure him that we shall only need the result for p=4, and for some
constants c,,d, € R in stead of 10-4 and 4]/1_2. A simple proof may then be
obtained from Meyer’s comments in [19], and this was done in [11].

3. The structure of A2-martingales.

We define the classes of hyperfinite martingales, which we shall study in this
paper. Compare the definition of L?-martingales in Métivier [18, page 16]:

DEeFINITION 6. Let M: Tx Q2 — *R be a hyperfinite martingale adapted to
the internal basis {Q, {¥,}, P)>. M is called a A2-martingale if for all finite ¢t € T,
E(M?) is finite. M is called a local A2-martingale if there exists an increasing
sequence {t,},.n Of internal stopping times adapted to {£,{%,}, P) such that
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°1, — 00 a.e. in Loeb-measure, and such that for each n the martingale M,
defined by M, (t,w)=M(1,(w) A t,w) is a A%>-martingale. The sequence {t,} is
then called a localizing sequence for M.

In this section we shall use Lemma 3 and Proposition 4 to derive some
properties of the paths of A>-martingales. An obvious consequence of Lemma 3
is that a hyperfinite martingale is a A%-martingale if and only if E(M3+[M](t))
is finite for all finite t € T.

PropoOSITION 7. Let M: Tx Q2 — *R be a local A*-martingale. Then the set of
all w € Q such that M(t, w) and [M](t, w) are finite for all finite t € T has Loeb-
measure one.

Proor. Let {t,} be a localizing sequence for M. For each finite t € T and
each n € N, E(LM_](t)) is finite. Consequently [ M ](¢) is finite a.e. Since [M, ]
is an increasing process max, <, [M, 1(s) is finite L(P)-a.e. Now °t, — 0o L(P)-
a.e. and hence max, ., [M](s) is finite L(P)-a.e. Since this is true for an arbitrary
finite t € T, the [M]-part of the proposition follows.

By Proposition 3

E(max an(s)) < 4E(MZ(1)
ssSt
and consequently max,, MZ(s) is finite L(P)-a.e. for all n € N and all finite
t € T. Repeating the argument of the first part of the proof, we prove the M-
part of the proposition.

Proposition 7 tells us that the local A2-martingales live where we want them
to live; in the finite part of *R. Our next result deals with the behaviour of the
paths as we approach a point ¢t in T. We need some definitions.

DErINITION 8. If f: T— *R is an internal function we define the upper S-left-
limit of f at t by:
S-lim f(s) = inf sup{°f(r) : sSr<t, r¢ mon (1)} .
st sémon (1)
The lower S-left-limit of f at t is defined by:
S-lim f(s) = sup inf{°f(r) : sSr<t,r¢ mon (1)} .
st sémon ()

The upper S-right limit S-lim,y, f(s) and the lower S-right limit S-lim,, f(s) .
are defined in a similar way.



272 TOM L. LINDSTROM
The function f'is said to have an S-left limit at t if

S-lignf(s) = S-lim f(s) £ +oo
st stt

and an S-right limit if
S-lim f(s) = S-lim f(s) + +o00.
sit slt

Notice that these limits only depend on the monad of t and not on which
point in that monad we use.

A process X: Tx Q — *Ris said to have S-left limits (S-right limits) a.e. if for
L(P)-almost all w € Q the function t — X (¢, ) has S-left limits (S-right limits)
for all finite t € T.

We have the following:

THEOREM 9. Let M be a local A*-martingale; then M has S-left- and S-right
limits a.e.

Proor. We prove the S-left limit case; the S-right limit case is similar.
There are three ways in which M can fail to have S-left limits on a path s
— M (s, w); there must exist a finite ¢t € T such that either

S-imM(s,w) = o0 or S-imM(s,w) = —c0
stt stt

or such that

S-lim M (s, w) — S-lim M (s, w) > ¢
stt stt
for an ¢ € R, €>0.

In the first two cases max;<,|M(s,w)| must be infinite and according to
Proposition 7 this can only happen on a set of measure zero.

In the third case we may for each n € N find a sequence ¢, <t,<...<t,<t
such that |M(t;,,,w)— M(t, w)\l%s, for 1Zi<n, by definition of mm and
S-limy,,. If we can prove that this only happens on a set of measure zero, we
have proved the theorem. Since it will be useful in the sequel, we formulate
this statement as a separate lemma:

LEMMA 10. Let M: Tx Q — *R be a local A*>-martingale. Let A be the set of
all @ such that there exists an ¢ € R, >0, and a finite t € T such that for all n €
N there are n elements t, <t,<...<t,<t in T with |M(t;,,0)—M(t;, w)|2¢
for all i, 1<i<n. Then L(P)(A)=0.

PRroor. It is enough to prove the lemma for A2-martingales, since we can then
use localizing sequences of stopping times to prove it for local A>-martingales.
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Moreover, it is enough to prove that for all ¢>0 and all finite ¢ € T, the set B of
all w € Q such that for all n € N there are elements ¢, <t,<...<t,<tin T
with |M(¢;;,w)— M(t;, ®)| = ¢ has Loeb-measure zero.

So let us assume that M is a A2-martingale with ¢, t and B as above. Define
an internal sequence of stopping times by: 7,(w)=0 and

T,e (@ =min{se T: s>1,(w) A IM(s,0)—M(r,(w),w) = 3¢} At.

For k € N let B, be the set of all w € Q such that there exist t, <t, < ... <t, <t
with |M(t;,, 0)— M(t;, w)| 2 e If {(Q,{%,},P) is the internal basis of M, then
B, € 9, and is hence measurable. For each w € B, and each ¢, in the sequence
defining w as an element of B, there is an m € *N such that ¢, <7, (w)<t;,,,
and if 7,,(w)=t;,, then 7, ., (w)=t;,,. Consequently 7,_,(w)<t, <t

By Lemma 3 we have:

B( % (M@0~ M 0100

ne*N

Tn+1(@)
- o 5 "% ameon) - BO0).

ne*N t,(w)
(These sums are really hyperfine since t,(w)=t for some n € *N, and so there is
no problem of convergence.)
For w € B,, we have by definition of t,,, and the fact that 7,_,(w)<t:
Y (M(1y4 (@), 0) = M(t,(0),0)?* 2 (k=1)(2)° .
ne*N

Consequently:

4E([M](1)
k-1 °

Since M is a A%-martingale E([M](?)) is finite and hence L(P)(B,)=°P(B)
— 0 as k — oo. Since B=MB,, L(P)(B)=0. This proves the lemma, and
completes the proof of Theorem 9.

P(By)- (k—1)(e/2)* < E(IM](t)) or P(By =

4. S-continuous A%-martingales.

DEFINITION 11. An internal function f: T— *R is called S-continuous if for
all finite s,z € T such that s~t, the values f(s) and f(f) are finite and
infinitesimally close. A hyperfinite process X: Tx Q — *R is S-continuous if for
all @ in a set of Loeb-measure one, the function t — X (t, ) is S-continuous.

Using the internal definition principle it is easy to show that f: T— *R is §-
continuous if and only if f (¢) is finite for all finite ¢ € T, and for all such ¢ and all

Math. Scand. 46 — 18



274 TOM L. LINDSTROM

positive ¢ € R there is a 6 € R, 6 >0, such that for all s € T with |s—t| <3, we
have |f(s)—f (1) <e.

In this section we want to prove that a local A2-martingale is S-continuous if
and only if its quadratic variation is S-continuous. This is an example of the
main strategy of this paper; to relate properties of a hyperfinite martingale to
properties of its quadratic variation. Since it is an increasing process, the
quadratic variation is often much easier to work with than the wildly
oscillating martingale. A first feeble attempt in carrying out this programme
was made in Lemma 3 and some of its consequences gathered in Lemma 10
and Theorem 9. Using Proposition 5 we shall now launch a more serious
attack leading up to the result announced above (Theorem 14). We shall see
more consequences later when we use Theorem 14 to prove Theorem 21.

Let us return to the problem in question. We shall use a sequence {t,} of
internal stopping times defined by

1,(w) = min{te T: |M(t,w)|2n},

and then apply Proposition 4 to the martingales M, with p=4. We shall thus
consider expressions of the form E([M,](t)?). However, this may be infinite,
and in that case we should not be able to complete our calculations. Hence we
loook for conditions that will ensure us that it is finite. One of them is
obviously the following:

A process X: TxQ — *R is said to have infinitesimal increments if for all
finite t € T and all w € Q, AM(t,w)=x0.

We shall show that all S-continuous A%-martingales (or A2-martingales
having S-continuous quadratic variation) can be modified into A>-martingales
with infinitesimal increments, and then use Proposition 5 and the stopping
times above to prove our results.

We shall need some technical preliminaries: Recall from Anderson [1], that
a %-measurable internal function f on a hyperfinite measure space {Q,%,m) is
called S-integrable if:

(i) °fIfldm<oo.
(ii) If 4 € ¥ and m(A4)=~0, then [,|f|dm=0.
(i) If A € 4 and f(x)~0 for all x € A, then _[A |fldm=0.

Clearly, (iii) is redundant if (Q,%,m) is a probability space. Anderson further
defined SLP(Q2,%,m) to be the set of all internal ¥-measurable functions such
that |f|? is S-integrable, p>0.

LEMMA 12. Let {2,%, P) be a hyperfinite probability space. Let f: Q — *R be
a %-measurable internal function such that °f| f|* dP < 0c. Then fis S-integrable.
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Proor. It is enough to prove that f satisfies (i) and (ii) above. By Hélder’s
inequality we have for 4 € 4:

0= j |fldP = IIA-IfldP S (J‘IﬁdPy(J‘fzdP)* = P(A)*(J'fzdP)*.
A

Taking A= we have (i), and letting P(4)~0 we get (ii). This proves the
lemma.

ProposiTioN 13. Let M: TxQ — *R be a A%-martingale adapted to the
internal basis {Q,{%,}, P), and assume that the set

{weQ: 3teT(t finite and °AM (t,w) +0)}

has Loeb-measure zero. Then there exist an internal probability measure P on 9.
and a A*-martingale M adapted to {Q,{%,}, P) such that:

() M has infinitesimal increments.
(i) For all Be %, , P(B)~P(B).
(iil) There is a subset Q' of Q of Loeb-measure one, such that for all w € Q'
and all t € T, M(t,w) = M(t, w).

PrOOF. Let a € R* and ¢ a finite element of T. We shall construct a process
M such that [4M (s, w)| < afor all w € Q and all s<t, and a probability measure
Pon¥%,_such that M is a martingale with respect to <@, {%,}, P). Foralls e T,
we shall have [ [M](s)dP 2 [[M](s)dP. Finally, replacing M and P by M and
P respectively, (ii) and (iii) hold.

Let us first show that if we can construct such M and P for all a and t, then
we can prove the proposition: Consider the set of all n € *N such that there
exist M" and P" with the following properties:

M": Tx Q — *R is a hyperfinite process, and P" is an internal probability
measure on %, such that M" is a hyperfinite martingale adapted to
(2,{%}, P"). There exists a set A, € 9, , P(4,)<1/n, such that for all t<n
and all w ¢ A,, M(t,w)=M"(t,w). For all B e %, , we have |P(B)— P"(B)|
<1/n, and for all t<n,

J[M](t)dP 2 I[M”](t)df_’"-
Finally, for all w € Q and all t<n, |[AM"(t,w)| < 1/n.
This is an internal set, and putting a=1/n and t equal to the least element in T

larger than n, we see that it contains all finite n. Thus it contains an infinite
7 € *N, and taking M=M?, P=P" and Q' =Q\ A4,, we get the proposition.
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Let a and t be given; we shall construct M and P. The proof is long and
tedious, and we divide it into several steps:

(1). Definition of M. Let A be the subset of Q consisting of all w such that
there exists an s <t with [AM (s, w)| > a. The set A4 is internal and %,-measurable.
For w € A, let s, be the first element s in T such that |[AM (s, w)| >a.

If we Q\ A4, let M(s,w)=M(s,w) for all se T.

If we A, let M(s,w) = M(s,w) for s<s,,
_ AM(s , )
let AM(s,,w) = a— - *— and
( ‘1AM s, 0)
let AM(s,w) =0 for s>s, .

By hypothesis, A has Loeb-measure zero and M thus satisfies (iii).

(2). Definition of P. We must change P into P such that M becomes a
martingale with respect to <€, {#%,}, P). This is done by defining a measure P"
for all t; € T, t;<t, by induction. The measure P' obtained by this procedure
will be our measure P.

Let P°=P. Assume that P% is defined, we shall construct P%+::

For each w € ©, let [w],=N{B € ¥, : w € B}. Given such an equivalence
class we define ¢, € *R by:

a-Pi([0],) &, = 2. (1AM (6, D) — a)P{@} : @ € [w], A s5=1} .
If @ € [w], and sg*t;, let P ({@}) = PY{@}/1+gy,, .

|[AM(1;, &)

If & € [w], and sz =t,, let P+ ({®})= alte)
[w]:,

PG} .

This defines P+!, and hence P=P* by induction.

(3). P is a probability measure: Let us calculate P+ ([w],). We write:

={0eQ: delw], Asz*t}

and
C={0eQ: del[w], nsz=t}.
We have:
Poel) = T Pe@h = T Pedapt 3]
@»eBUC aeC
_ Z Pi{&} |[AM (t;, )| Py}

deB 1 tew, aec all +ey,,)
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1 t, t;
- 1+8M<z P4 w}+ 2 |AM (t,, &)|P* {w})

weEB

1 o1 ~ -
- 1+épy, (d)e%luc d {w}+a @gc (4M(t;, &) - a)P {w})

1 ti t; _ pt
= Tro, (P“([w],)+ P[], )er,) = P ([w],) -

Thus P'+([w],)= P“([w],), and summing over all equivalence classes we see
that if P" is a probability measure, so is P"+'. By induction P=P' is a
probability measure.

(4). M is a martingale with respect to {Q,{%,}, P). It is enough to prove

Y AM(t,&)P{®@] =0 forallweQandallt,eT.

welw],

By definition of M and P this is obvious if t;>¢ or t;>s,, and hence we only
have to prove the formula for t;<t, t;<s,. In that case

P} = P{d}/o, where a=]] (1+¢4,,),
j<i
for all @ € [w],.
Let D={[®],,, : @ € [w],}. Then:

Y AM(,®)P{e} = Y  AM(t,, d)P'([a],,,)
delw], [@],,,eD

= Y AM(, &P (@],
(@),.,eD

since it follows from the calculation in (3) that P'([®],,, )=P"*'([&],,,,) for ¢
Ztisy

Let now
D, = {[&],, €D : so*+t} and D, = {[&),, €D sz=t}.
We get
AM (t, ®)P'+ ([&],,,,)
(@), eD
= Y 4AM@,®)P (0], )+ Y AM(@,@)P([d),,)
(@), €D, [@),..€D;
_ AMt,w .
= Y aM(, )JL—L—“—)+ Y AM(t,, )I (& “P"([w],m)
[@],.,.D, L+e,  (a1.eD + &(w1,)
Pl
= Y am@ o) 0) ([o ]m,)

(@], €D, 1+ ey,
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., Pi[&],
+ AM (t;, @) ——=+
[(D "ZI 2 ( ' w) 1 +8["’]u

_________l ~ ~
- a(l +6[‘0]-) [@]EED AM(ti, w)P([w]’EH)

1

- AM(t, G)P{@) = 0
a(l +e,,) tbez[;u},, P}

since M is a martingale. This proves that M is a martingale with respect to
(,{%,},P).

(5). An estimate: To prove that P(B)~ P(B), we shall need the following
estimate (where t=t,):

o
IIA

3 (Taa)pion="5 5 [T 0+a frariol

i=0 weQR\A

n-1

IIA

) H I+ G[wl,)]stw],,‘ PY([w],)

i=0 [w], =

= z Y n (1+s[,,,,)](£z {(1AM (t;, @) —a)-

i=0 [w],cQ
P} : @ e [w], A s‘;,=ti}>

:Z Y {(4M(t, @) —a)-P{d} : @ € [0], A s5=t;}

[w], =

QI'—“

i

1 2
J. (1AM (s, w)| —a)dP < —J‘ |[AM (s, w)|dP < —I max |M (s, w)|dP .
A a )a a Jq sst

|
Q|-

By Doob’s inequality we see that E(max, ¢, |M (s, w)|?) is finite, and it follows
by Lemma 12 that max,,|M(s,w)| is S-integrable. Since P(4)~0, we get
2a7', max, <, |M(s,w)|dP~0, and consequently

n—1
Y (2 s{w]'l)P(w) ~ 0

weRNA\i=0

(6) P(B) P(B) for all Be %,_: Let C be the set of all ® € 2\ A such that

e Elw), S <4 1t follows from (5) that P(C)=~1.

Let DcC be an element of ¥, . For each w e D, we have P{w}
= P{w}/TT,<. (1 +&4,), and consequently P*(D)< P(D). But on the other hand
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P'(D) = ) P{w}/n (1+g,) 2 Y Plo}/(1+e",
weD s<t weD
where & = (1/n)(gg),+ - - -+, ) -
This may be seen as follows:
(n (1+Elwl,))”" = e(l/mZlog(1+eg) < eoel+e) — 14,
since the logarithm is concave. Moreover,

(n—1) 2+n(n—1)(n—2) 3 i 1

n
1+ef' =1
(1+¢) +ne+ T3 ¢ 133 2 —

(since D= C, ne=Y]2] g, =% snd the sum converges). We get
n-1
P(D)2 Y P{w}(1—ns) = PD)— Y P{w} ¥ & ~ P(D)

weD weD i=0
by (5). Hence P*(D)=~ P (D). This proves the assertion when B< C. Let now B be
an arbitrary element of #,_; then B= (BN C)U (B\ C). By what we have just
proved P(C)~1, and since P is probability measure P(B\ C)~0~ P(B\ C).
Since BN C < C, we have already seen that P(BNC)~P (BN C). We get P(B)
=P(BNC)+P(B\ C)~P(BNC)+P(B\ C)=P(B).

(7). {{M1(r)dP={[M](r)dP: It is enough to prove
J' AM(t, ®)*dP 2 J‘ AM(t;, ®)* dP
(o),

[w],,

for each t;<t and all equivalence classes [@w],. We define

El = {[(I)],‘HC[Q)]" : sd)*ti} E2 = {[(b]t,ﬂc[w]n : sa“)":ti} .
Then

f AM(t,@)?dP = Y  AM(t, ®)*P[&],,,,
[0’]1,

[‘I’]:,..EEl
+ Z AM(ti,(I))ZP[(I)],Hl .
[@],.,€E,
If s,<t, then AM(t,®)=0 for all @ € [w], and the inequality is obvious.
If not, we have

Z AM(t,.,d})zP[oT)],M = l"[ (1+£[¢,,,,) AM(t,,cT))zP“”[cb],“l
[@],,,€E, jsi [@]),,,,€E,

= l_l (1+8[(Dll) Z AM(ti’d))zP[CD]tlﬂ g Z AM(t"Cb)ZP[(b]hH
isi L D

d’]MNEEI u)]“”EE,

ti+1
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since AM (t;, @)= AM (t;, &) by definition of M and P[®], ,, = P"*'[®],,,, by the
computation in (3). We also have

Y AM(t,@)?*Pla],,, = [] (I+¢,) ) Y, AM(t, @) Pid],,,,

(@), €E; j<i (@, €E,
~ a(l + 6[w] ) ~
=[] U +ewy,) AM (t, &)? ——19b) plisfy]
,Ui el [,;,]Eesz [AM (t;, D)| i
> Yy aPlal,, = Y AM(@,@)*Plal,, -
[@),.,€E, [@).,€Es

Combining our results we obtain the inequality. We have now proved all
assertions about M and P made in the beginning of the proof, and we are
through.

Notice the use of Proposition 13 in the proof of the main result of this paper:

THEOREM 14. Let M: Tx Q — *R be a local A*-martingale. Then M is S-
continuous if and only if [M] is.

Proor. (i) Assume that [M7] is S-continuous. Using a localizing sequence of
stopping times we may assume that M is a A2-martingale. Then M satisfies the
hypothesis of Proposition 13, and M of that proposition is S-continuous if and
only if M is; and [M] is S-continuous since [M] is. Let 7, be the internal
stopping time

t,(w) = min{t e T: [M](t,0)=n} .

Since M has infinitesimal increments, [M,]<n+1.
If r € *R, let 7 be the smallest element of T larger than r. For m,n € *N and
teT,let

imss<i+1/n

AD, = {we Q: 3i§[t-n]< sup (M,,(S)—Mz.(;/—n))>4>1/m}

where [t-n] is the integer part of t-n. If A is the set of all w such that
s — M,(s,w) is not S-continuous, then A=U, U, cnMNuenA4®,. Since
°t,— 00 ae. as | — oo, it is enough for us to prove L(P)(M,.nA%,)=0
for all k,m,l € N; and to prove this it is enough to prove P(4% )~0 for
k,m,l € N, y € *N\ N. We have:

[ky] S
0= PMARY) £ Y P{w :_ sup (Mf,(S)-Mt,(i/?))4>1/m}
i=0 i

IIA

[kyl —
my ( sup_(Mt,(s)—Mr,(i/v»‘*)

=0 \ifpsSs<i+ify
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[ky]

< md, Y E((LM,1G+1/7)—[M,1G/))

i=0

(By Proposition 5, for suitable d, € R)

i=0

k7] — —
= E(mal4 Y ([1\71,,](1’+l/v)-[Mt,](i/?)V)-

Since [M,]<I+1, we have:

kv - _
mdy . (LM JG+1/7) =M Gy)P

= [ky) . _
md,(I+1) .;O (CM, ]G+ 1/y)—[M.]1(i/y))

lIA

< md(l+1)* .
There exists a set of Loeb-measure one where [1\7It,] i+ 1/y)~[M,l] (%)<5
for an infinitesimal 6, when i+ 1/y <[ky]. For w in this set

ti) _
md, .ZO (M. )G+ 1/y, 0)=[M ](ify, )
k7]

mdd Y. ((M1G+1/7,0)-[M,1/y,)

i=0

IIA

IIA

mdd,(1+1) ~ 0 .

Thus the expression inside the expectation

k7] S _
E<md4 .Zo ([M 3G+ 1/7)-[M,] (i/v))2>
is finite everywhere and infinitesimal a.e, and hence the expectation is
infinitesimal. It follows that P(4%,)~0, and as we have already noticed, this
proves one part of the theorem.

(ii) Assume that M is S-continuous. As above we may assume that M is a 1%-
martingale, and since M satisfies the hypothesis of Proposition 13, M is §-
continuous. It is enough to prove that [M] is S-continuous.

We define the sets B®, for m,n € *N, k € N by

B®, = {we Q: 3i[k-n}(([(MIG+1/n)—[M1G/n)?)>1/m)} .

As above it is enough to prove P(B¥,)~0 for all m,k € N, y € *N\N. For
given y € *N\ N we define a new martingale M by: For each w € Q such
that there is an i<[ky] with

sup__ (M (s,0)— MGy, o)) 2 1,

iySssi+1fy
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Let s, be the least s satisfying this formula. We put M (s,w)= M(s, w) for s
<s,, but let AM® (s, w)=0 for s=s,. Then M is obviously a martingale, and
since M and M have the same paths outside a set of infinitesimal measure, it
is enough to prove P(C®.)~0, where C%, is the set obtained from M in the
same way that BS,',‘,’y was obtained from M.

Let S={i/y : i € *N} be a subline of T. Let N: § x 2 — *R be the restriction
of M™ to S. We define a sequence {a,} of internal stopping times by

g,(w) = min{se S : [N](s,0)=n}.

By the definitions of M® and g,, we have [N, ]<n+2. Since °s, — 00 as n
— 00, we only have to prove that P(C¥, )~O0 for each n, where Cf,’,"y » is the

set obtained from M in the same way that B%, was obtained from M. We
have

0<P(CY,,)< uz” P{w : ([MY1G+1/y)—[MP1(/y) > 1/m)
i=0
Lky] — —
< m Yy E(([MP1G+1/y)—[MP1i/y)?)

i=0

IIA

k) — .
me, Y E( sup (I\?f,?(s)—Mf,’"’(i/y))“) (by Proposition 5)

i=0 iySssi+tify

IIA

meq(4/3) Z E((MY i+ 1/y)— MP/y))*)  (by Doob’s inequality)

[ky]

mc,(4/3) Z E((N,(i+1/7)—No, (/1))

]

L37]
("164(4/3)4 Z (N (i+1/7)— Nd.(l/')’))4)

Now (N,,_(i+l/y)—N,,"(i/y))z§[N,J§n+2, and thus the expression inside
the last expectation is always less than:

mca(4/3)*(n+2) Z (Noy i+ 1/7) = No /7)) S mey(4/3)*(n+2)

i=0

which is finite. On the set of measure one where M,‘,’_’ is S-continuous each
(Nc,”(i—-l—_l/;)—N,,,(%))2 is infinitesimal, and repeating the argument we see
that the expression inside the last expectation is infinitesimal a.e.

It follows that the expectation is infinitesimal, and so is P(C¥, ). Hence
[M] is S-continuous and so is [M]. This proves the theorem.

We end this section with an example:
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ExaMPLE 15. Let y be Anderson’s process from Example 1, and let us see how
much information we may obtain about y using the theory we have developed
so far: Obviously y is a martingale and [x](t)=t. By Lemma 3 y is a A%-
martingale, and from Proposition 7 we see that y is finite a.e. Since [x]
obviously is S-continuous it follows from Theorem 14 that so is y.

5. The stochastic integral.

DEeFINITION 16. Let X, Y: Tx Q — *R be two hyperfinite processes. By the
stochastic integral of X with respect to Y, we shall mean the process | X dY
defined by

(t,w) — i X(s,w)AY(s,w) .
0

We shall write [, X (s,w)dY(s, w) or [, X dY for the value of the process [ X dY
at time t. Obviously, [[ X dY](1) =35 X*(s)4Y (s)*.

We shall mainly be concerned with stochastic integrals of the form | X dM
where M is a hyperfinite martingale with respect to an internal basis
{2,{%,}, P), and X is a process adapted to the same basis. It follows from the
martingale property that | X dM then is a martingale adapted to {Q,{%,}, P).

The following simple identity will be useful in [12] and [13]. For X =y (the
process of Example 1) it was proved by Anderson in [1]; the proof in the
general case is similar to his:

ProposITION 17. Let X be a hyperfinite process. Then

t

[X]@ = X(t)z—X(O)2~2J XdX .
0

Proor. We have

x,ﬁ—xg-z'[

1

Xdx
0

I

k-1 2 k-1
(X0+ Y AX,‘) -X3-2 ¥ X,4X,
2 &

i=0

i=

k-1 k-1 2
X2+2X, ¥ AX,,+<Z AX,,) —-X2-
i= i=0

i=0

k-1 k-1 fi—-1
—2X, ¥ 4x,-2 ¥ [ ¥ AX,]>AX,‘
i=0 i=0 \j=0

k—1 2 k-1 i-1
(z Ax,,) 25 Y ax,4x,,.
i=0 i=0 j=0
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Now we have

k-1 i-1 k=1 k-1 k-1
2y Y AX, X, = Y Y AX,4X, - Y (4X,)?,
i=0 j=0 i=0 j=0 i=0
and
k—1 2 k—1 k-1
<Z AX,‘> =Yy Y 4x,4X, .
i=0 i=0 j=0
Thus
Ty k—=1 k-1
Xﬁ—X%—zj Xdx = Yy Y 4X,4X, -
0 i=0 j=0
k—=1 k-1 k—1
—(Z Y AX AX, - Y (AX,,.V) = [X1(t)
i=0 j=0 i=0

which proves the theorem.

If M is a A%-martingale, we define A2(M) to be the set of all those internal
processes X adapted to the internal basis of M such that °E(([} X dM)?) <00
for all finite t € T. Since [ X dM is a hyperfinite martingale with quadratic
variation 3 X24M?, this is by Lemma 3 equivalent to °E(X} X24M?) < oo for
all finite t € T.

If M is a local A%-martingale, we define A(M) to be the set of all X adapted to
the basis of M such that there exists a localizing sequence {t,},.n for M with
X € A*(M,) for each n e N.

The classes 42(M) and A(M) are perhaps too large to be really useful, and we
now construct two smaller classes SL?>(M) and SL(M) which consist —in some
sense — of the square S-integrable elements of A2(M) and A(M):

Foreacht e T,let T,=TN*[0,t) and let 7, be the internal power-set of T,.
If M is a A*-martingale with respect to (Q,{%,},P), we define an internal
measure vy on the *-measurable space (T, x Q,7,x %, ) by:

vu{(s, 0>} = Plo}(AM(s,w)? for weQ, seT,.
If ¢ is finite:

t

vm (T x Q) = Zg %AM(s,w)zP{w} = E(LM](®)

which is finite.

DerFiNITION 18, Let M: TxQ — *R be a A?-martingale adapted to
(2,{%,}),P) and let X be a process adapted to the same basis. Then
X € SL*(M) if and only if XIT,xQ e SLZ(T,XQ,ﬂ',xg,m,vM') for all finite
teT.
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If M is a local A*-martingale, X € SL(M) if and only if there is a localizing
sequence {t,} for M such that X e SLZ(MH) for all n e N.

Since the process X in Definition 18 is adapted, each X! T, x Q is measurable
with respect to a*-algebra &, much smaller than 7 X%, . The question
naturally arises whether XIT,xQ e SLX(T,xQ,7 ,x ¥4, , vy, if and only if
XIT,xQ e SLX(T,xQ,2,, vm2,). The answer is not quite obvious since there
are more sets of infinitesimal measure in J,x %, than in 2, but it is not
difficult to prove:

LeEmMA 19. Let {Q,9, u> be a hyperfinite measure-space, and let & be a *-sub-
algebra of 4. Let f: Q — *R be B-measurable. Then f € SL*(Q,%, ) if and only
if f e SLY(Q, B, p).

The next proposition shows us that the class SL(M) is large enough for most
purposes.

ProposITION 20. Let M be a local A*-martingale and X a process adapted to
the internal basis of M. Assume that on a set of Loebmeasure one max,,|X (s)|
is finite for all finite t € T. Then X € SL(M). In particular if X is a local
A%-martingale, then X € SL(M).

Proor. Let {t,} be a localizing sequence for M, and define another sequence
{o,} of internal stopping times by

o,(w) = min{se T:|X(s,0)2n} .

By the hypothesis, °7,(w) — oo a.e. Let 1,=0, A 1,; then {1} is a localizing
sequence for M and | X (s, w)| <n for s <7, (w). Consequently X € SLZ(M,;), and
X e SL(M).

If X is a local A%-martingale, then X satisfies the hypothesis of Proposition
20 by Proposition 7.

Before we turn to the next theorem let us recall some results about S-
integration. Let {Q,%,u> be a hyperfinite measure space with u(Q) finite.
Anderson [1] showed that an internal ¥-measurable function f: Q — *R is S-
integrable if and only if there exists a sequence {f,} of ¥-measurable finite
functions such that lim® ([ |f—f,|du)=0.

If f'is *-non-negative it follows from the proof that we may take f,=f A n.
Anderson also proved that if fis ¥-measurable and *-non-negative, then °{ f du
>(° fdL(u) with equality if and only if f is S-integrable.

We now use Theorem 14 to prove:

THEOREM 21. Let M be an S-continuous local A*-martingale, and let
X € SL(M). Then [ X dM is S-continuous.
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ProoF. It is clearly enough to prove the theorem when M is a A>-martingale
and X e SL*(M).

For each n € N define an adapted process X,: TxQ — *R by: X,(t,0)
=X(t,0) if |X (¢, 0)| S)/n; X,(t,0)=)/nif X(t,w)>)/n; and X, (t,0)=—}/n if
X(t,w)< —)/n.

Since M is S-continuous, it follows from Theorem 13 that [M] is S-
continuous. Now

oo

and hence we see that [| X,dM] is S-continuous for each n € N.
By the last of the results of Anderson mentioned above:

E(sup ([ [, xaw |- [, xam]))
o8 max [ [[ xaw |- [ [/ x.am]))
([ [, xam [ [ xan]) = 5(5 xame S xzane)

t o
°E<z (XZ—X},)AMZ) = j (X2=X2)dvy, .
0 T, xQ ‘

By definition of X € SL2(M) and the first of the results of Anderson above,
°f (X*—X2)dvy, — 0 as n — o0o. A well-known result of measure-theory (see
e.g. Bauer [3], Satz 15.5), tells us we may find a subsequence
{sup, <, °([Jo X dM]—[5 X,,dM])},cn Which converges to zero a..

Using the e-6-formulation of S-continuity (recall the comment following
Definition 11) one may prove exactly as in the real-valued case that the S-
uniform limit of a sequence of S-continuous functions is S-continuous. It thus
follows that [| X dM] is S-continuous. Applying Theorem 14 again we see that
{X dM is also S-continuous, and the theorem is proved.

t t
Y X2AM? < nY AM?
s s

n([M]@)—[M](s)) for s,te T, s<t,

=
A

IIA

1

If we replace X € SL(M) by X € A(M) in Theorem 21, the resulting
statement will be false as is easily seen.

Anderson [1] proved the theorem above for M =y (the process of Example
1) when X was in a certain subclass of SL2(x) (the class of “2-liftings”). Keisler
[10] used Bernstein’s inequality to prove the theorem when M=y and X is a
finite adapted process.
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6. The transformationformula and It6’s formula.
In this section we prove a nonstandard version of what may be called the
fundamental theorem of stochastic analysis.

If re T, we write r~ and r* for respectively the predecessor and the
successor of r in T.

THeOREM 22. (Nonstandard version of the Transformationformula). Let
@: *R — *R be an internal function and assume that @, ¢', ¢" all exist and are S-
continuous and finite for finite arguments. Let M: Tx Q — *R be a local A*-
martingale. Then for all finite t € T:

‘o(M)—"9(M,) = L @' (M)dM +3 L ¢"(M)d[M]

+Z (P(M)— (M) — ¢ (M)(M,+ —M)+3¢" (M)(M,+ —M,’)  ae.,

where the last sum is absolutely convergent.

Proor. We begin by enumerating the points s € T such that °AM(s~, w)+0.
By Lemma 10 this is possible for almost all w € Q, since for each finite t € T
and each positive ¢ € R there are only a finite number of s € T, s<t, such that
AM(s™,w)>¢. To make the definition precise, it is convenient to define a
bijection f: N, — N, x N, and let (f(n)), denote the first component of f'(n).

Define a sequence {z,},.n Of internal stopping times by

T,(w) = min {se T: |AM(s™,w)|>—— A s*17,(w) for k<n}.

(f( )i

Let Q' be the set of Loeb-measure one where M (t) is finite for each finite t € T
and where the sequence {t,(w)} enumerates all finite se T such that
°AM(s™, ) *0. Let {1,}, +n be an internal extension of {t,},n such that 1, +1,,
when k+m. For each finite t € T and each v € *N\ N, let

A, =1{seT,: s ¢ {t,(w):nsv}}.

For all w € Q' we get from Taylor’s formula:

t

o(M)—o(My) = % (¢(M,)— (M)

=Y (M, )-oM- )+ Y (p(M)—p(M))

nsSv seA,,
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= Z ((P(M‘c,,/\t)”(p(Mt,,_/\t))-" Z {(p/(Ms)(Mf—Ms)

nsv SEA,,
+30" (MY(M g+ — M) +3(¢" (£)— ¢" (M) (Mg — M)},

where & lies between M+ and M,
By the S-continuity of ¢” the sum over the very last term is infinitesimal for
o € & and thus

(p(Mt)”(p(MO) ~x Z ((p(M‘t,I/\l)—(P(M‘[;/\t))

nsv

+ Y {¢(M)(My—M)+1p"(M)(M+—M)?} for we Q.

seA,,

Adding and subtracting

Z {(p,(Mr,,‘ At)(Mr,,Al—Mt,,' At)"'%(p”(Mr; At)(Mr,,At_Mr,,’ /\t)z}
we get:

t t

@(M)— (M) zj <p’(M)dM+%J ¢"(M)d[M]
0

0

+ Z {¢(M1"At)_¢(M1; At)"(PI(Mr"‘ /\t)(Mrn/\l_Mr,,‘ /\l)

_%(P”(Mt; At)(Mr,,At_Mr,,' /\1)2} on .

Since this is true for all v e *N\'N, the series

o{(p(M‘t"/\t)—(p(Mr;/\t)_(p’(MT"— At)(Mr,,At'"Mr,,‘ /\t)—%(p”(M‘t; /\t)(MT,,/\I
_Mt,,‘/\l)z}

o118

converges to

t t

°</>(M,)~°<0(Mo)—°J~ @' (M)dM —3° 0(P”(M)d[M] on .

0
The convergence is absolute since the order of the terms in the sequence {t.}
does not matter. But the sum above is equal on Q' to the sum in the theorem,
and this completes the proof.

In the S-continuous case Theorem 22 becomes

CoROLLARY 23. (Nonstandard version of Itd’s formula). Let ¢: *R — *R be
an internal function and assume that @, ¢, ¢" all exist, and are S-continuous and
finite for finite arguments. Let M: Tx Q — *R be an S-continuous local A*-
martingale. Then for all finite t € T:
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t t

o(M)—p (M) ~ J @' (M)dM +% L @' (M)d[M] ae.

0
Applying Corollary 23 to a suitable integral of Anderson’s process y, one
may obtain a nonstandard version of 1t6’s lemma, as Anderson did in [1].
For standard versions of the transformationformula and Itd’s formula, see
Meétivier [18, page 264 and page 49 respectively]. We shall deduce these results
from the above versions in [13].

7. Doob—Meyer decomposition.

A process X: Tx Q — *R is said to be of finite variation if | X o| + X5 14X (s)|
is finite a.e. for all finite ¢t € T. Such a process is easily decomposed into two
monotone processes X * and X ~, by defining X * (t, w) =34 (4X (s, w) v 0) and
X~ (t,w)=34 (4X (s,w) A 0). Integration with respect to monotone processes is
easy to deal with, and since we in this paper have developed the theory for
integration with respect to martingales, we should now be able to treat
integration with respect to processes of the form X + M where X is of finite
variation and M is a local A%-martingale.

DEFINITION 24. Let Y: Tx Q — *R be a hyperfinite process adapted to the
internal basis {(Q,{%,},P). Y is said to have a Doob—Meyer decomposition if
there exist a process X of finite variation and a local i*-martingale M both
adapted to {Q,{%,}, P) such that Y=X+M.

ProPOSITION 25. Let Y: TxQ — *R be a hyperfinite process adapted to the
internal basis {Q, {%4,}, P) such that Y(0) is finite a.e. Assume that there exists a
sequence {t,} of internal stopping times such that °t, — co ae., and
E(X5"™(4Y(s))?) is finite for all n € N and finite t € T. Assume further that

o |E(4Y (5)|%,)| is finite for finite t € T, L(P)-a.e. Then Y has a Doob—Meyer
decomposition.

Before we prove the proposition, we make two remarks on the conditions
which Y must satisfy:

REMARK 26. The conditional expectation E(4Y(s)|¥,) is in the hyperfinite
case just an average: As in Section 4 let

[wl;,=N{Be¥% : weB}.
Then we have:

E(4Y(s)|9)(w) = ( %] AY(S,@)P{@})/P([G)];)-

Math. Scand. 46 — 19
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This definition makes some properties of the conditional expectation very easy
to prove, e.g. will the inequality

E(E(4Y($)19,)°) = E(4Y(s)),
which we shall need in the proof of the proposition, reduce to the algebraic
inequality

[(@py+ ... +ap)/(pr+ ... +p) P (s +...+p,) < alp +... +alp,.

REMARK 27. The condition Y§|E(4Y(s)|¥9,) <00 ae. in the proposition is
not much stronger than necessary, and we show that it is satisfied when Y has a
Doob-Meyer decomposition Y=X + M where X has reasonable integration
properties: Assume E(X,')<oo and E(— X, )<oo for all finite t € T. Then

E(4Y(5)|9,) = E(4X(5)|9)+E(AM(s)|¥,) = E(4X(5)|¥,)
and

E(} |E(4Y($)|9,)) = E(Y IE(4X(s)|9,)) < E(Y E(4X(5)| | (%))
= E(Y 14X (s)) = E(X;)+E(-X]) < 00 .

Thus YHIE(4Y(s)|9,) < oo a.e. This condition corresponds in the standard
case to the condition that Y is a quasimartingale, i.e. that the Doleans-measure
of Y is of finite variation (see Métivier [18]).

The condition that E(35"™A4Y(s)?) is finite is just to ensure that the
martingale we construct is a local A2-martingale. Without this condition we
can only prove that M is a martingale.

PrOOF OF PrROPOSITION 25. Define M by M(0)=0 and AM(t)=4Y(¢)
—E(AY(t)|%,); M is obviously a martingale. Define

t
X)) = YO+ E(4Y(9)| %) ;
]
by hypothesis X is of finite variation. Obviously Y=X + M.
It remains to prove that M is a local A?>-martingale, and to do this it is

enough to prove that E([M,](t))=E (X" AM(s)) is finite for all n € N and
all finite t € T.

E(tf' AM(s)Z) - E(Mf 4 y(s)2> - 2E<t§" AY(S)E(AY(5)] g,))
0 0 [}

+E(Mf E(4Y(5)| g,)z) .
0



HYPERFINITE STOCHASTIC INTEGRATION 1. 291

The first term is finite by assumption and the third is finite since we saw in
Remark 26 that E(E(4Y (s)|9,)?) S E(4Y (s)?). Using Holder’s inequality on the

second term we get
tat, tat, k]
<E( y AY(s)2>>*(E< Y AE(4 Y(s)|<4,)2>>
0 0
E(fz 4 Y(s)z) ,
0

which proves that the second term is finite. This proves the proposition.

IIA

E( % |4Y (s)E(4 Y(s)|gs)|>

IIA

NOTE ADDED IN PROOF. Most of the results in this paper have been
independently rediscovered and extended by D. N. Hoover and E. Perkins:
Nonstandard construction of the stochastic integral and applications to
stochastic differential equations (preprint), 1980.
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