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DERIVATIONS OF JORDAN C*-ALGEBRAS

HARALD UPMEIER*

0. Introduction.

The classical results of Kadison [13, 14] reveal a close connection between
the geometric structure (group of isometries, state space) of a C*-algebra and
its Jordan algebraic (quantum mechanical) structure. This feature is also
typical of the more general class of Jordan C*-algebras (JB*-algebras)
introduced by Kaplansky [30]. By complexification, JB*-algebras correspond
exactly to the JB-algebras investigated by Alfsen, Shultz and Stermer [1]. JB-
algebras are of interest in functional analysis, spectral theory and algebra
(formally real Jordan algebras). A promising application of JB-algebras is to be
found in complex analysis, based on the 1 —1 correspondence between JB*-
algebras and bounded symmetric domains in complex Banach spaces with tube
realization [18,7].

Derivations of JB-algebras, which have been thoroughly studied in special
cases (for C*-algebras and for finite dimensional JB-algebras), are of particular
importance to the holomorphic automorphism group G of a bounded
symmetric domain 4 of tube type and to its Lie algebra g =aut (4) consisting
of all complete holomorphic vector fields on 4. More precisely, g has a Cartan
decomposition g=t@p into the subalgebra f of all infinitesimal isometries and
the subspace p of all vector fields (x— {za*z})0/dz, where {za*z} denotes the
triple product of the JB*-algebra Z associated with 4 [16, 17]. Further, the
self-adjoint part X of Z induces a decomposition f=im@aut (X), where m
consists of all Jordan multiplications by elements of X and aut (X) is the Lie
algebra of all derivations of X. The summands p and im of g are well-known; p
and Z are isomorphic as real Banach spaces and m is related to derivations of
self-dual Hilbert cones [8,3]. However, for JB-algebras X in general, little
seems to be known about the structure of aut (X). Therefore the purpose of this
paper is to study derivations of JB-algebras and to indicate their applications
to complex analysis.

Our first objective is to describe derivations of Jordan operator algebras
(JC-algebras) in terms of derivations of C*-algebras which are well-
understood. The restriction to JC-algebras is justified by the structure theory
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developed in [1], as indicated in section 1. The principal result of section 2
shows that for reversible JC-algebras X each derivation of X can be extended
to a *-derivation of the C*-algebra generated by X, and is therefore
implemented by a Hilbert space operator. This is a generalization of a theorem
of Sinclair [24] on Jordan derivations of C*-algebras. For infinite dimensional
spin factors the above extension property is not valid.

Our second problem is to clarify the relationship between aut (X) and its
ideal int (X) of inner derivations. This problem is of relevance to complex
analysis since int (X) determines the subalgebra [p,p] of f generated by Lie
products of vector fields in p. If dim (X) < 00, then it is well-known that aut (X)
=int (X) and therefore t=[p,p]. In section 3 we characterize those JBW-
algebras (i.e. JB-algebras with predual) X satisfying aut (X)=int (X). It is
shown in particular that purely exceptional JBW-algebras and reversible JW-
algebras have only inner derivations. If X is a JB-algebra, then int (X) need not
be uniformly dense in aut (X), but it is shown in section 4 that aut (X) is the
strong operator closure of int (X). Consequently each infinitesimal isometry of
a bounded symmetric domain of tube type can be approximated pointwise by
vector fields in [p, p].

1. Preliminaries.

1.1. DEFINITION. A JB-algebra is a real Banach Jordan algebra X with unit e
and product xoy such that ||xoy| <|x| [yl and ||x||>< [x*+y?| whenever
x,y € X. A derivation of X is a linear map D: X — X satisfying D(xoy)=Dxoy
+ xoDy fot all x,y € X. Let aut (X) denote the Lie algebra of all derivations
of X.

The set €(S, X) of all continuous maps from a compact space S to a JB-
algebra X is a JB-algebra with pointwise algebraic operations and supremum
norm. Each x € X generates a JB-subalgebra isomorphic to (T, R), where T is
a compact space. Therefore the proof for C*-algebras [21; Lemma 4.1.3] can
be modified to show that all derivations of a JB-algebra X are bounded. If
aut (X) is equipped with the operator norm, there is an isomorphism of Lie
algebras

(1.2) auté (s, X) ~ €(S,aut X)
(clear, if dim (X) < o00; in the general case, (1.2) follows from [29; Cor. 1.10]).
1.3. DerFiniTiON. Let H be a complex Hilbert space and let ' (H) denote the

JB-algebra of all bounded hermitian operators on H with the product xoy:
= (xy+yx)/2. A uniformly (weakly) closed unital subalgebra of J# (H) is called
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a JC-algebra (JW-algebra) on H, respectively. The exceptional Jordan algebra
of all self-adjoint 3 x 3-matrices with octonion entries is denoted by #,(O).

By the deep results of Alfsen, Shultz and Stermer [1, 23], the study of JB-
derivations can frequently be reduced to the case of JC-algebras: The second
dual X" of a JB-algebra X is a JB-algebra with the Arens product and for each
D € aut (X) the second transpose D" is a derivation of X*. Further, each JB-
algebra X with predual has a decomposition

(1.4) X = Xp®Xex ,

such that X, can be realized as a JW-algebra and X > %(S, #5(0)), where S
is a compact space [23; Th. 3.9]. Since the center of X vanishes under aut (X),
it follows from (1.2) and (1.4) that

(1.5) aut (X) ~ aut (X,,) ®%(S,aut #,(0)) .

Finally, aut #°;(O) is a well-known classical Lie algebra (a real form of F, [11,
p. 411]).

2. Extension of derivations of JC-algebras.

The most important examples of JC-algebras are provided by C*-algebras.
Henceforth, derivations of associative *-algebras commuting with the involution
are called *-derivations. C*-algebras Z have the fundamental property, that
each *-derivation D of Z is implemented by a Hilbert space operator w lying in
the weak closure of Z [21; Cor. 4.1.7]:

(2.1) Dz = [w,z] := wz—zw forall zeZ.

Sinclair [24] has shown that each Jordan derivation of the self-adjoint part X
of Z is actually induced by a *-derivation of Z. In this section this result is
extended to a large class of JC-algebras X, if Z is replaced by the C*-algebra
generated by X. As a byproduct we obtain a new proof of the theorem of
Sinclair.

2.2. DerINITION. A JC-algebra X on a complex Hilbert space H is said to
have the extension property, if each derivation of X can be extended to a *-
derivation of the C*-algebra generated by X on H.

Not all JC-algebras have the extension property, as the counterexample of
infinite dimensional spin factors shows:

2.3. ExampLE. If X is a real Hilbert space of dimension >2and ee X is a
unit vector with orthogonal complement Y, then X =Re@®Y with the product
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(rie+y)o(rae+yy) 1= (rira+ (i |y2))e+ry,+ry,

is a JB-algebra called a spin factor. The derivations of X are exactly the skew-
adjoint operators on Y. Now suppose that dim (X)=o00 and consider a
(faithful) JC-representation X —s#(H). By the universal property of the
Clifford representation of X, the C*-algebra Z generated by X on H can be
identified with the Clifford C*-algebra of X [22]. Each derivation of the simple
C*-algebra Z [22; Prop. 1] is inner [21; Th. 4.1.11]. Hence it follows from [2;
Th. 4] that D € aut (X) can be extended to a *-derivation of Z if and only if D
is a trace-class operator.

Reversible JC-algebras X defined by the property
Xipeo s X, €X =Xyt oo Xy + X, .0 X, €X

and thoroughly studied by Stermer [26, 27] are complementary to spin factors
in the following sense: By [26; Th. 6.4 and Th. 6.6], each JW-algebra X has a
decomposition

(2.4) X = Xrev®X2 ’

such that X ., is reversible and X, is a direct sum of JW-algebras isomorphic to
L*(S,U), where S is a measure space and U is a spin factor [33; Th. 2].
Further, a JW-factor of dimension #3,4,6 is a spin factor if and only if it is
not reversible [26; Th. 7.1].

The following theorem is the main result of this section.

2.5. ExTENSION THEOREM. Every reversible JC-algebra X on a complex Hilbert
space H has the extension property, i.e. each derivation D of X can be extended
to a *-derivation of the C*-algebra Z generated by X on H.

For the proof we need some facts on derivations of JW-factors. Throughout,
let K be one of the skew fields R, C and H of real, complex and quaternion
numbers, respectively. If E and F are K-Hilbert spaces (with scalar
multiplication on the right), Z(E, F) denotes the Banach space of K-linear
continuous maps from E to F. Let z* € Z(F, E) be the adjoint of z € Z(E, F).
Then u*v € K is the inner product of u,v € E=%(K, E). Put

Y(E) .= Y(E,E), X(E):={xe ZL(E): x*=x}

and
() = {we L(E): w*=—w}.
If r is a positive integer, define J#,(K): =2 (K").
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2.6. LEMMA. Let E be a K-Hilbert space. Then each derivation D of # (E) has
the form Dx=[w,x] for all x € # (E), where w € & (E) satisfies 4||w| <5||D|.

PrOOF OF 2.6 (included for the sake of completeness). Put r:=dimg (E). If
r=2, then J#(E) is a spin factor. Choose a spin system e,,. ..,e, [26; p. 181]
and define

2.7 8w = i [De,e,] .
v=1

If r=3, then D is induced by a *-derivation, again denoted by D, of Z(E) [11;
p. 143, Cor. 3]. As in [15; Lemma 2] choose an orthogonal decomposition E
=K@F and write the operators z € £ (E) as matrices

v A

00 00
(a) := (g g), (v) := (v 0) and (A) := (0 A)'

Applying D to the identities (1)*>= (1), (a)(1)= (a)= (1)(a) and (v)(1)= (v), (1)(v)
=0, we get for some u € F:

0 u* a au* —u*v 0
D(1) = (u 0), D(a) = (ua 0 ) and D(v) = ( 5 vu*>’

where a — d is a *-derivation of K and ||7|| < ||D| |lv|. Hence, d={[s, a] for all
a € K, where s € K is skew-adjoint. From (v)(a)= (va) and (v,)*(v,) = (v}v,) it
follows that Sv:=0+ vs defines a bounded operator S € & (F). Finally, (1)(A)
=0=(A4)(1) and (4)(v)= (Av) imply that

DiA) = 0 —u"‘A)
) = (—Au [s,41)°

Define

Hence,

s —u*
w:=<u s )ey(E)

satisfies Dx =[w, x] for all x € J# (E).

In the complex case it is possible to choose ||w| < | D| by [25; Th. 4]. If K
+C, we may assume that r=2 by considering a 2-dimensional subspace
containing h € E and wh. From (2.7) it follows that 2||w|| < ||D| if K=R and
4|lw| 5ID|l if K=H.
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Proor of 2.5. For each pure state f of Z, let n;: Z" —» £(K,) be the
canonical W*-representation associated with the normal state f of the second
dual Z" [21; p. 41]. Let o be the weak operator topology on #(K ). Then

(2.8) n (2" =n,Z = L(K,).

If X" is embedded in Z", it can be proved as in [21; Prop. 1.16.2] that the unit
ball of m (X") is g-compact. Hence it follows from the Kaplansky density
theorem for Jordan algebras that

.9) Y= n,(X") = n,X

is reversible. By (2.9) and the proof of [21; Lemma 4.1.4], there is a
commutative diagram

X2 x
(2.10) el (LT

Y 4> Y
where 6 € aut (Y) satisfies ||6| <||D||. Since the complex algebra C[X]
generated by X is uniformly dense in Z, it follows from (2.8) that C[n X7 is o-
dense in £ (K ). Thus Y is a JW-factor acting irreducibly on K . Hence Y is of
type I by [27; Th. 4.1]. Let r be the degree of Y. If r=2, then Y is a spin factor
of dimension <6 by [26; Th. 7.1]. If r=3, it follows from [26; Th. 3.9] that

there exists a K-Hilbert space structure E on K  such that Y= (E). From (2.7)
and 2.6 we can deduce that

(2.11) oy = [wpy] forall yeY,

where w, € & (K ;) satisfies 4w || < 5(|D||. Denote by K, n and w the direct sum
(over all pure states f of Z) of K, n, and w,, respectively. Then (2.10) and
(2.11) imply that n(Dx)=[w, nx] for all x € X. Hence [w,nz] e nZ forallz € Z
and thus n(Dz): =[w, nz] defines a *-derivation of Z extending D, since n: Z
— Z(K) is faithful.

2.12. CoroLLARY (Sinclair [24]). Each Jordan derivation of a C*-algebra is
already a derivation of the associative product.

3. Inner derivations of JBW-algebras.

If B and C are subsets of a Lie algebra with bracket [-,-], let [ B, C] denote
the set of all finite sums of elements [b,c], where b € B and ¢ € C.

3.1. DeriNiTION. Let X be a JB-algebra and put m:={xM : x € X}, where
xM denotes the multiplication operator defined by (xM)y:=xoy for all
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x,y € X. The elements of the ideal int (X):=[m, m] of aut (X) are called inner
derivations of X.

If 4 is the bounded symmetric domain associated with a JB-algebra X (i.e.
the open unit ball of the JB*-algebra Z:= X ®iX) and if g={®p is the Cartan
decomposition of g:=aut (4), then the map 4 +— ((ie)M,1— (le)M) induces
decompositions

(3.2) [p,p] = im@int(X) =« I = im@aut (X) .

Since the infinitesimal isometries in [p,p] are explicitly known, the problem
arises, to what extent f or aut(X) is determined by [p,p] or int(X),
respectively. If dim (X)< oo, then the answer is well-known [6; p. 281, Satz
3.1]:

(3.3) aut (X) = int (X) and therefore f = [p,p].

For the self-adjoint part X of a C*-algebra, aut (X) does not agree with int (X)
in general (see (4.1)). Therefore we consider in this section JB-algebras with
predual (JBW-algebras) and determine completely those JBW-algebras which
have only inner derivations. Recall that by (1.4) and (2.4), each JBW-algebra X
has a canonical decomposition

(34) X = Xex@X2®Xrev ’

such that

(i) X is a purely exceptional JBW-algebra,
(i) X, is a JW-algebra of type I, isomorphic to @ ;. ; L*(S;, Uj), where S;+ &
is a measure space and U, is a spin factor for each j € J,
(i) X, is a reversible JW-algebra.

3.5. THEOREM. Suppose X is a JBW-algebra with canonical decomposition
(3.4). Then aut (X)=int (X) if and only if sup;.;dim U;<oo.

The proof of 3.5 consists of several steps giving more precise information in
special cases.

3.6. ProposITION. Each purely exceptional JBW-algebra X has only inner
derivations.

Proor. Since X ~%(S,#;(0)) for some compact space S, the assertion
follows easily from (1.2).

Math. Scand. 46 — 17
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3.7. ExaMPLE. Let X =Re@®Y be a spin factor. Then int (X) consists of finite
rank operators since [xM,yM] has rank <2 for all x,y € X. Conversely, if
D € aut (X) has finite rank and if e,,...,e, is a Hilbert basis of DX, then

2D = Y. [(De)M, (e,)M] € int (X) .

v=1

If a JB-algebra X is given as in (3.4.ii), these remarks imply that aut (X)
=int (X) if and only if sup;.,dim U; < oo.

Each JW-algebra X has a type decomposition of the form
I ®1, DI, DI DI

(cf. [28; Th. 13]). X is called properly non-modular, if its modular part I, ®II,
vanishes. A real W*-algebra on a complex Hilbert space H is a weakly closed
self-adjoint real subalgebra W of ¥ (H). If d is a cardinal number, let .# ,(W) be
the set of all bounded operators on the Hilbert sum of d copies of H which are
matrices with entries in W. ’

3.8. THEOREM. Let X be a properly non-modular JW-algebra. Then each
D € aut (X) is the sum of 6 commutators [xM,yM], where x,ye€ X. In
particular, aut (X)=int (X).

PRrROOF. X is reversible by [26; Th. 6.4 and Th. 6.6]. Applying [26; Lemma
6.1], [27; Lemma 2.3 and Th. 2.4] and the extension theorem 2.5, we may
assume that X is the self-adjoint part of a properly infinite real W*-algebra W
and that Dx=[w,x] for all x € X, where w € W is skew-adjoint. It follows
from [4; p. 103, Th. 1] that there is a spatial *-isomorphism ¢: W— #,(W).

Define
ac\. . —4fa0
(b d).— ¢(w) and 4 := ¢ (b O)'

Similarly, we may identify W and .#y (W) by a spatial *-isomorphism, such
that

a2l ]
L
o o o

(8]
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Then A=[P,Q] by [20; p. 512], where

0 - b, —a 0 . .
l 0 b2 0 “’a .
P.— 0 1 0 Q‘_ b3 0 0 —da
1o o0 1 0 e

Put 2x,:=P+ P*. Now it can be verified that P — P*=2[x,, x], where
0 07]

) [0 1 0
1 0 -1
0 -1 01
Xy 1= 1 , 2xy 1= {0
0
LO ] | 0 .

By the Jacobi identity, 4=[x,, Q]+ [x,, [x3,Q1]1+[x3,[Q,x,]]. Applying a
similar argument to
0c
RS |
Bi=9¢ (0 d)’

we obtain w=Y5_,[x,w,], where x, e X and w,6 e W satisfy |x,| |lw,|
<4|w|. Put 2y,:=w,+w¥ for all v. Then
6
D=4)5 [xMyM].
v=1
3.9. THEOREM. Each derivation D of a reversible JW-algebra X of type I, can
be written as D=4Y3>_, [x,M,y,M], where x,,y, € X satisfy | x,| ly,I| £5|D].

ProoF. Suppose that X = 5, (K), where r is a positive integer. Then it follows
from 2.6 that Dx=[w, x] for all x € X, where w is a skew-adjoint r x r-matrix
over K satisfying 4||w|| <5||D|. One can assume that |w| 1.

If K=R, we have

0)-(63 03] s

which shows that w=[x, y], where x,y € X satisfy || x| |y]| £1. If K+R, one can
assume that w is a diagonal matrix with diagonal entries a,,...,q, € iR. If
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trace (w)=0, one can further assume that for each k<r the partial sums s,:
=3%_, a; have modulus <1. Define P similar as in the proof of 3.8 and let Q
be the r x r-matrix with Q, ,,:= —s, for k <r and with zero entries elsewhere.
Then w=[P, Q]. Now argue as in the proof of 3.8. If p,q € H are skew-adjoint
and a € R satisfies 202 =|p|> +[q|?, it follows that

()00

0 p a a —q 0 s 0 O
-p 0 —q}), fg 0 -p =10 25 0],
« q 0 0 p —x 0 0 s

where s:=[p,q]. Applying these formulae to the remaining case of a scalar
matrix w, it is easy to show that 3.9 is true if X =2 (K).

Now suppose that X is a reversible JW-algebra of type Ij;,. Decomposing X
into homogeneous JW-algebras with finite faithful normal trace and applying
[12; Satz 36], we may assume that X =%(S, U), where S is a Stone space and U
is a reversible spin factor or U = #,(K) and r = 3 is finite. Each D € aut (X) can
be viewed as a map D € €(S,autU) by (1.2). If s € S, the above reasoning
implies that

5
D(s) = 4 ; [x. (M, y,(s)M] ,

where the maps x,,y,: S — U satisfy
Ix, @y, = 51D forall seS.

By [9; Th. 2.5], one can assume that x,,y, € X for all v.

3.10. THEOREM. Let X be a reversible JW-algebra. Then each derivation of X
is inner, i.e. aut (X)=int (X).

Proor. By 3.8 and 3.9, it suffices to consider JW-algebras without type I
summand. From the extension theorem 2.5 and [21; Th. 4.1.6] it follows that
each D € aut (X) has the form Dx=[w, x] for all x € X, where w= —w* lies in
the complex W *-algebra W generated by X. It has been shown in [31, 32], that
each operator having central trace 0 in a finite W*-algebra W is a sum of 10
commutators in W (the separability condition assumed in [31; Th. 4.1] is not
necessary). Using this result and [20; p. 512], we may assume that w e [W, W1].
By [26; Lemma 6.1] and [27; Lemma 2.3 and Th. 2.4], we may further assume
that X is the self-adjoint part of a real W*-algebra V and w € [V, V]. Since X is
supposed to have no type I summand, V is of continuous type. Hence V is *-
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isomorphic to .#,(A), where A is a real *-algebra [4; p. 121], Since w*= —w,
the following Lemma implies that w € [ X, X] and therefore D € int (X).

3.11. LEMMA. Let A be an associative real *-algebra with unit 1 and denote by
V the *-algebra of all 2 x 2-matrices over A. Put
S:={veV:v¥=—v} and X := {veV: v¥=v}.
Then [S,S]<[X, X].

Proor. If

a —c*
s=<c b )E[S,S],

then a+b is a finite sum of commutators [o,,a,] and [f,, 8,], where a,,a, € 4
are self-adjoint and f,,, € A are skew-adjoint. Hence the assertion follows

from the formulae
0 —c* 0 c*
0 c 0/’

<aobb0a) L(b a _> ((1) éﬂ
(5 ana) = (6 2) G 2]
(0 ) =G 9) G )

4. Approximation by inner derivations.

For JB-algebras in general, the solution of the problem, how to describe
aut (X) in terms of int (X), requires topological arguments. If E is a Banach
space, let 7z and o denote the strong operator topology and the weak
operator topology, respectively, on the algebra . (E) of all bounded operators
on E. It is proved in this section that aut (X) is the closure of int (X) in the
topology 1 of simple convergence on X. By 3.7, int (X) is not uniformly dense
in aut (X) if X is a spin factor of infinite dimension. Another example of this
type is the following

4.1. ExaMpLE. Let X be the self-adjoint part of the C*-algebra

= {cly+z: c e C, z compact operator on H}
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acting on a Hilbert space H of dimension X,. Then
aut (X) = {x—[w,x] : we S(H)}.
Obviously w € & (H) induces a (Jordan) inner derivation if and only if
we[X,X]modCly,

which by [19; Th. 1] is equivalent to w € Z. Therefore int (X) is uniformly
closed but different from aut (X).

Since JB-derivations are automatically bounded, the pointwise limit of a net
of inner derivations lies in aut (X). Thus 1y seems to be a natural topology on
aut (X).

4.2. APPROXIMATION THEOREM. For every JB-algebra X, aut (X) is the closure
of int (X) in the strong operator topology tx (i.e. the topology of simple
convergence on X).

Proor. Suppose that X is a JW-algebra of type I,. Choose D € aut (X) and
X,. .., X, € X. We may assume that each x, has vanishing central trace (cf.
[28; p. 40]). Put x,,, ,:=Dx, for all u<m. By [33; Th. 2], X is a direct sum of
JW-algebras isomorphic to L*(S, U), where S is a measure space and U is a
spin factor. By the orthonormalization process, there exist ey,. . ., e,,, € X such
that

2m
x, = Y e,o(eox,)
u=1
and e,ox, are central for all u,v<2m. This implies for all v<m:

2m
2Dx, = Y [(De)M, (e, )M]x, .

n=1
If X is a JB-algebra with predual, the above argument together with 3.5 shows
that aut (X)=int (X)'X.By [1; Prop. 3.9], the unit ball of a JB-algebra X is
strongly dense in the unit ball of X*. Since each D € aut (X) can be extended to
a derivation of X" and multiplication is jointly strongly continuous on
bounded subsets of X" by [1; Prop. 3.7], it follows that

aut (X) = int (X) = = int (X)
by [S; p. 77, Prop. 11].
4.3. CorOLLARY. If 4 is a bounded symmetric domain of tube type and if g=

=1@®p is the Cartan decomposition of g:=aut (4), then ¥ is the closure of [p, p]
in the topology of simple convergence.



DERIVATIONS OF JORDAN C*-ALGEBRAS 263

REFERENCES

1. E. M. Alfsen, F. W. Shultz and E. Stermer, A Gelfand—Neumark theorem for Jordan algebras,
Advances in Math. 28 (1978), 11-56.
2. H. Araki, On quasifree states of CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci.
6 (1970/71), 385-442.
3. J. Bellissard and B. Iochum, Homogeneous self dual cones versus Jordan algebras, the theory
revisited, Ann. Inst. Fourier (Grenoble) 28 (1978), 27-67.
4. S. K. Berberian, Baer *-rings (Grundlehren der mathematischen Wissenschaften 195),
Springer-Verlag, Berlin - Heidelberg - New York, 1972.
S. N. Bourbaki, Espaces vectoriels topologiques, Chap. 3-S5, Hermann, Paris, 1964.
6. H. Braun and M. Koecher, Jordan-Algebren (Grundlehren der mathematischen Wissenschaften
128), Springer-Verlag, Berlin - Heidelberg - New York, 1966.
7. R. Braun, W. Kaup and H. Upmeier, A holomorphic characterization of Jordan C*-algebras,
Math. Z. 161 (1978), 277-290.
8. A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algébres de von
Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121-155.
9. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
10. L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces (Lecture
Notes in Mathematics 364), Springer-Verlag, Berlin - Heidelberg - New York, 1974.
11. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ. 39,
Providence, 1968.
12. G. Janssen, Die Struktur endlicher schwach abgeschlossener Jordanalgebren 11. Diskrete
Jordanalgebren, Manuscripta Math. 16 (1975), 307-332.
13. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 56 (1951), 325-338.
14. R. V. Kadison, 4 generalized Schwarz inequality and algebraic invariants for operator algebras,
Ann. of Math. 56 (1952), 494-503.
15. W. Kaup, Uber die Automorphismengruppen Grafmannscher Mannigfaltigkeiten unendlicher
Dimension, Math. Z. 144 (1975), 75-96.
16. W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228
(1977), 39-64.
17. W. Kaup and H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces,
Math. Z. 157 (1977), 179-200.
18. M. Koecher, An elementary approach to bounded symmetric domains, Rice University, Houston,
1969.
19. C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J.
18 (1971), 247-252.
20. T. Saitd, Generation of von Neumann algebras (Lecture Notes in Mathematics 247), Springer-
Verlag, Berlin - Heidelberg - New York, 1972.
21. S. Sakai, C*-algebras and W*-algebras (Ergebnisse der Mathematik und Ihrer Grenzgebiete
60) Springer-Verlag, Berlin - Heidelberg - New York, 1971.
22. D. Shale and W. F. Stinespring, States of the Clifford algebra, Ann. of Math. 80 (1964), 365
381.
23. F. W. Shultz, On normed Jordan algebras which are Banach dual spaces, J. Functional Analysis,
to appear.
24. A. M. Sinclair, Jordan homomorphisms and derivations of semi-simple Banach algebras, Proc.
Amer. Math. Soc. 24 (1970), 209-214.
25. J. G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747.
26. E. Stermer, Jordan algebras of type 1. Acta Math. 115 (1966), 165-184.



264 HARALD UPMEIER

27. E. Stermer, Irreducible Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc. 130
(1968), 153-166.

28. D. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965).

29. J. P. Vigué, Automorphismes analytiques des produits continus de domaines bornés, Ann. Sci.
Ecole Norm. Sup. 11 (1978), 229-246.

30. J. D. M. Wright and M. A. Youngson, On isometries of Jordan algebras, J. London Math. Soc.
17 (1978), 339-344.

31. T. Fack, Sommes de commutateurs dans les algébres de von Neumann finies, Preprint (1978).

32. P. de la Harpe, Sommes de commutateurs dans les facteurs finis continus, Preprint (1978).

33. P. J. Stacey, Type 1, JBW-algebras, Preprint (1980) (added in proof).

MATHEMATISCHES INSTITUT DER UNIVERSITAT
AUF DER MORGENSTELLE 10, D-7400 TUBINGEN
FEDERAL REPUBLIC OF GERMANY



