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NONDISCRETE INDUCTION AND
A DOUBLE STEP SECANT METHOD

F.-A. POTRA and VLASTIMIL PTAK

The application of the method of nondiscrete mathematical induction to the
iterative processes treated thus far, in particular to the Newton process, has led
to definitive results; not only has it yielded estimates sharp in every step, but
also the conditions on the initial data obtained turn out to be optimal. Last but
not least it should be mentioned that this method leads to very simple and
clear proofs. It is natural that the first processes to be treated were the simple
ones; iterative processes involving a larger number of quantities to be
computed and estimated at each step make it necessary to consider
approximate sets depending on more than one parameter. Recently
approximate sets depending on two parameters were applied by F.-A. Potra in
his paper [7] on the Regula Falsi; using a two-dimensional analogue of the
induction theorem he was able to obtain, for the secant method, results of the
same order of sharpness and optimality as those mentioned above.

In the present paper we intend to apply these ideas to the study of a double
step secant method.

This method consists in the construction of two sequences {x,}, {y,}

(1) Yn+1 = yn—[yn’xn;f]—lf(yn)
V)] Xpt1 = Yut1—Dm Xns f]_lf(yn+l)

where fis a mapping from a Banach space E into a Banach space F, and where
[Ym x,; f] denotes a divided difference of the operator fin the points y, and x,
(for the definition, see Section 2).

This iterative procedure requires at each step only one inversion of a linear
operator, so that it is not much more complicated than the secant method [20],
[21]; it is, however, considerably faster than this one. Indeed, from a theorem of
J. W. Schmidt and H. Schwetlick [22] it follows that the order of convergence
of this method is 1+|/§ (See also the paper [3] of P. Laasonen). In [22] the
convergence of the iterative procedure is proved under the assumption that
there exists a simple root x* of the equation f(x)=0, the convergence
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conditions being formulated in terms of |(f'(x*))™!|. In [3] one does not
suppose apriori the existence of a root of the equation and. the convergence
conditions are formulated only in terms of the initial data (ie.
If o), 1S o)y |DosXo; f17'). None of the above mentioned
papers contains estimates of the distances |y,— x*| and |x,— x*|.

We intend to show in the present paper that sharp estimates, as well as
optimal convergence conditions, may be obtained by the method of non-
discrete mathematical induction. The present paper is entirely self-contained
and may be read without the knowledge of any article on the method of
nondiscrete mathematical induction. Nevertheless, let us mention the
Gatliburg lecture [12], or the survey [19], where the reader could learn more
about the motivation and the general principles of the application of this
method, should he so desire.

SoME NotaTiONs. If (E,d) is a metric space, x, an element of E and r a
positive number, we denote by U (x,,r) the closed spherical neighbourhood of
X, with radius r:

U(xg,r) = {x € E; d(x,x0)<r} .

If X is a normed vector space and x an element of X then we shall denote by
|x] the norm of this element.

We shall use a measure of invertibility for linear operators in Banach spaces.
If A is a linear operator on a Banach space E we define

d(A) = inf{|Ax| ; |x|=1} .

Clearly d(4)=|A"""! if A is invertible; also d(A+ B)=d(A)—|B| for any
perturbation by a bounded linear operator B. If A is invertible and d(4)—|B|>0
then so is A+ B.

1. The induction theorem.

Let p be a natural number. For each i=1,2,.. .,p, let T; be either the set of
all positive numbers, or an open interval (0,t;) for some t;>0. Denote by T the
cartesian product Ty x ... x T,

DEeFINITION. A function w mapping T into T is said to be a rate of
convergence on T if the series 33, w™(r) is convergent for each r € T.

Here w°(r)=r, and the function o™ is the nth iterate of w, so that 0™*V(r)
=w(w™(r).

We shall, sometimes, refer to such functions as rates of convergence of type
(p, p).
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If B is a function with values in R?, we shall denote by f; its ith component;
thus, for instance,

™) = (0P (F),. .., 0" ().

To simplify some of the formulae it will be convenient to introduce the
following vector function defined for r € T by the formula

3) Y = (ri+...+rpr+ . +r,+o0),. ..,
r,ro N+ .+, ().

Using this function, we can attach to the rate of convergence w the (R? valued)
function

@ o) = ¥ W)

The functions @ and o are obviously related by the following functional
equation

(5 6(r) = o(w()+y(), reT.
The components of ¢ satisfy the relations
©) o (r) = o, (N—(ry+...+1-y), k=2,...,p.

If a and b are two elements of R?, with coordinates a; and b; respectively, we
write a<b if a;<b, for all i; similarly a<b is taken to mean a;<b; for all i.

Now let (E,d) be a complete metric space and let 4 be a subset of E?. For
eachi=1,2,...,p we assign to A the subset 4; of E consisting of those x € E
for which there exists an a € 4 whose ith coordinate is x. If x € E? we denote
by d'P(x, A) the vector with components d(x;, 4;), i=1,2,...,p. If r € R?, r>0,
we shall denote by U(A,r) a neighbourhood of A4 of the form

U(A,r) = {x e E? ; dP(x,A)Sr} .

If Z(r), r € T, is a family of subsets of E? we denote by Z(0) its limit:

zm=n(um®i

seT \tSs

Now we can state the following generalisation of the Induction Theorem

[12].

THEOREM. Let T be a p-dimensional interval and let w be a rate of convergence
on T. Suppose that the family Z(t)<EP?, t € T, satisfies
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) Z(r) < U(Z(oM),¥(r)

Jor each r € T. Then

(®) Z(r) = U(Z(0),a(r)

for each r e T.

Proor. Given x, € Z(r), successive application of (7) yields a sequence {x,}
such that

Xp+1 € Z(@" V() N U(x,, ¥ (@™ (1);

the sequence {x,} is Cauchy in E? because the distances of its consecutive terms
are majorated by the terms of a convergent series

dP (x4 1, %) S Y(@™ (1)

It is easy to prove that the limit x* of this sequence belongs to Z(0) and that
dP(x*, x,)<o(r). The proof is complete.

Let us add two remarks: Instead of E? we could have taken the family Z(-)
to be subsets of the cartesian product of p complete metric spaces (E;d;). The
induction theorem remains true if the function ¢ is replaced by any other
function ¢’ with the property that the series

70 = 3 ¥(@"0)

is convergent for all re T.

Let us sketch briefly how the above theorem may be applied to the study of
the convergence of iterative procedures of the form

(10) xn+l € F(xn) 1)

where F is a multivalued mapping of E? into E? and x, is a given element of
E®. (By a multivalued mapping we mean a mapping which assigns to points
x € EP subsets of EP; in many cases this subset F(x) will be just one point so
that F will be a mapping from E? into E?, but the theorem is designed to take
care of errors in computing as well).

If we can attach to the pair (F, x,) a family of sets Z(r)< EP?, t € T, and a rate
of convergence w on T, so that the following conditions are satisfied:

(11) Xo € Z(r,) for acertain roe T,

(12) re T and x € Z(r) imply F(x) N Z(w(r)) N U(x,¥(r)) is nonvoid ,
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then it follows from the induction theorem that Z(0) is nonvoid. Moreover the
sequence {x,} obtained by successive applications of condition (12) converges
to a point x* € EP and satisfies the following relations

(13) X, € Z(0(ro))
(14) dP(x,,x0) < 0(ro)— (™ (ry))
(15) dP(x,,x*) = o(0™(r)) .

The last inequality represents an estimate of the distance between the
successive approximations x, and the “solution” x*. Since this estimate can be
given prior performing the iterations we shall call it an apriori estimate. On the
other hand, having computed x,,. . ., x,, we possess, in general, information on
which better estimates may be based. Indeed, suppose we find an r,_, € Tsuch
that x,_, € Z(r,-,). Taking x,_, and r,_, for x, and r, we have, by (15), the
estimate

(17) dP(x,,x*) £ o(0(r,-1)) = 0(rs-) =Y (r,-y) .

An r,_, for which x,_, € Z(r,_,) can usually be found as a function of x,_,
and x,, r,_;=0(x,-,x,). Estimates of the type (17) shall be referred to as
aposteriori estimates since they can only be given after the elements x,,.. ., x,
have been computed.

2. Divided differences.

The iterative procedure (1)-(2) uses divided differences of an operator, a
notion introduced by J. Schroder [23]. We shall use this notion in the
framework described in [3].

Let E and F be two Banach spaces and let f be a mapping of

U= {x€eE; [x—xo|Sm}

into F. If x and y are two points in U, x+y, a divided difference of fat x,y is a
linear operator A(x,y) € L(E, F) such that

A, ) (x=y) = f(X)=f0);

of course, this requirement does not determine the operator uniquely except in
the case that E has dimension one. Now suppose that for each pair of distinct
points u,v € U, an A(u,v) is given which is a divided difference of f at u,v. In
the following we shall suppose that the mapping (u,v) — A(u,v) satisfies a
Lipschitz condition.
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DEFINITION. A mapping (u,v) — [u,v; ] is said to be a divided difference of
f on U satisfying a Lipschitz condition (with constant H) if the following
conditions are satisfied:

1°. [u,v; f] is a linear and bounded operator from E into F such that

(18) [u,v; fllu—v) = f(u)~f(v)
for each pair u,v e U, u#v.

2°. If two such pairs (u,,v,) and (u,,v,) are given then

(19) ILuz,vy; f1—=Tuy,vy; fI £ H(luy—uy|+v,—vy)) .

Suppose now that the above two conditions are satisfied; then the following
is easy to prove.

For each x € U the Fréchet derivative of f exists and equals the limit of
Ly,x; f] as y € U tends to x, y+x. We may therefore extend the domain of
definition of [, -; f7] by setting

[x,x; f1 =71

for each x € U. The Fréchet derivative f* satisfies then a Lipschitz condition
If'x)=f"0) £ 2H|x -yl .
We shall use the following estimate: given three points x,y,y" € U, then
fO)=f¥)=D,x; F10 =x) = Hly =ylly' =x| .
If we take y=x, this reduces to the familiar formula:
IS0 =f(X)=f" () =x)| < Hy —x*.
The estimate is a consequence of the relation

fO) = f)+Dnx; 10 =x)+ 0, x5 f1=-Dnxs SO =x) .

3. Convergence of the process.

In this section we intend to prove the main theorem; we shall give sufficient
conditions for the convergence and estimates for the distances |y,—x*| and
|x, — x*|.

In section 4 we shall show that the conditions we impose are the weakest
possible (a precise meaning of this statement is given in Proposition (4.1)) and
that the estimates are sharp.

The iterations to be considered are sucessive constructions of pairs of points;
accordingly, we shall work in two dimensions so that p=2. We take for T the

Maht. Scand. 46 — 16
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positive quadrant (i.e. T= (0, 00) x (0, 00)); instead of r,,r, we shall write g,r.
With these notations we can state

3.1. LEMMA. Let a be a positive number. The pair of functions

_ rig+)
(21) wl(q,r) = q+2r+2(r(q+r)+a2)‘k
_ q+2r+w,
(22) wz(q,r) = W z(r(q+r)+a2)4}_wl
(22) r(@+n(g* +5r(@+n)+2r(g+n(g+2n)(r(g+n+ad*?

- (q+2r)(8a*+7r(g+1)+2(4a* +q* + Tr(q +1r)(r(g+r) +a?)*

is a rate of convergence on T. The corresponding o function is given by

(23) GI(Q9r) = ﬁ(q,r)+4+"~ 02(‘1,") = B(q’r)+r’
where
24 B(g,n) = (r@+r+a*t-a.

Proor. Consider the real polynomial
(26) f(x) = x*—a®.
If a<x,<y,, then the algorithm

_ yn_xn

Yt t = IS =1 (x2)
VYn—Xp

Tt = It T T (%)

yields two nonincreasing sequences {x,} and {y,} which converge to a.
Choosing

S

f(yn+l)

7 Xo = r+(r(g+nN+ad}, yo = xo+9q
we have

(28) Yo—Xo = ¢

and

(29) Xo—Yy, =T.

Taking now

w1(q,7) = y1—X;, 0,(4,7) = X, -y, 0,(q,7) = yo—a,
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we obtain the formulae (21), (22) and (23). The rest follows from the
convergence of the process. We observe also that the following relations hold:

(30) Yn—Xp = 0f"(q,7)

(1) Xa=Vu+1 = 03(q,7)

(32) Xg=Xo = 03(q,r)— 02 (0" (g,7))
(33) Yn—Xo = 0,(q,1) 0, (0" (g, 7))
(34) X,—a = (0" (g,r)

(35) Ya—a = o (@™(q,1)) .

We shall use the above lemma in the proof of the following theorem. There
the constant a will be chosen of the form

1

(36) a=sz

(d3+ H?qd —2doH (g0 + 2r0))* ,

where dy, H, q,, r, are some constants depending on the initial data.

3.2. THEOREM. Let E and F be two Banach spaces, let x, be a point of E and let
[ be a mapping from the closed disc U= U ((x,, m) into F. Let a divided difference
of f be given which satisfies a Lipschitz condition with constant H. Let y, be a
given point of U.

Suppose that the following conditions are satisfied:

1°. The operator [yo, xo; f] is invertible and d([yq, xo; f1)2d,,
2°. |yo—Xol =40,
3% 1os Xo5 S17 1 (Xl S 7.
If the initial data satisfy the inequalities
4. (r§+(qo+ro)?) > =dy/H ,
5°. m20,(do, 7o),
then the iterative procedure
Ynr1 = Yu— D Xus f171 ()
Xnt1 = Yns1 = DmXns S17f Gns)

is meaningful, the sequences {y,},{x,} obtained by it converge to a root x* of the
equation f(x)=0, and the following estimates hold:
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6°. |x* —xo|=6,(q0,70),

7. yn—x* £ 0, (0™ (go, To))s

8°. |x,—x* = 0,(0™ (g0, 7)),

9. ya—X*ZB(Yn-1 = Xn-1hs [Xn-1 = ¥al)s

10°. |xp = X*[ S B(Yn-1 = Xn-1h [Xn-1 = Val) = @1 (V-1 = X0 1ls X0 -y =y,

where w,, ®,, B, 6, 6, are the functions defined in lemma (3.2) with a given by
(36).

Proor. We shall consider a family of sets depending an two positive
parameters g,r as follows:

Z(gr) = {(nx) e E*; |y—x|2q, [y, x; f17" exists,
d(y,x; fDZh@g,n,x; f17 Y X)Sr}

where h is a positive function to be determined later.
We intend to prove that

37 Vo, Xo) € Z (4o, 7o)

and, given (y,x) € Z(q,r), that the pair (), x')

(38) y =y=-bx; 170

(39 X =y-lnx f17/0)
satisfies the inclusion

(40) ', x) € Z(w(g,n) N U((y,x),¥(g,1)

for at suitable rate of convergence w on T.
The inclusion (40) is equivalent to

(41) y=x| < w(q,7)

(42) d(ly,x’; f1) 2 h(w(g,r)
(43) IV, x's 17 (X)) £ w0,(g,7)
(44) =yl = q+r

(45) Ix'—x| £ r+w,(r,g) .

Suppose (y, x) € Z(q,r); it follows from (38) that
y=x=y=x=[nx f17f0) = =Dnx; f17'f(x),
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whence
(46) Yy =x=lnx; f17() .
Using this we have
f0) =f@+b,x; F10V=x)+ 0, x; f1-D,x; fDO' —x)
= [, % f1-Dnx; [0 %),
whence

(47) LSO = Hly =ylly —x .

From the definition of Z and from (46) we have |y’ — x| <r, whence
=y =V —-xl+lx—yl £ r+q,
so that (44) is established. Furthermore

< O _ Hrg+n)
“ S hian = Thgn

it follows that (41) will be satisfied if we assume that

Hr(q+r)
h(q,r) é wl(q’r)~

Let us do that. Now

dy,x's f1) 2 d(y,x; -0, x5 f1=Dnx; £
2 hig,)—H(ly' —yl+Ix'=x]) .

We already know that |y’ —x|<r; since
IX'=x| S X' =y|+ly —x| £ 0,(gn)+r
we have (45) and
49) d(ly,x'; f1) 2 h(g,)—H(q+2r+w,(g,7) .
To estimate f(x') we write
f&) = f0)+D,x; 1 =)+ x5 f1=Dnx; f D =)
so that, by (39)
fx) = .5 f1-Dhx; fDX' =) .
Thus
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< Hly' —yl+x' —x))w,(g,7)
= h(g,r)—H(q+2r+w,(q,7)

(50) DY, x5 f17 ()
H(q + 2r+a)1 (qa r))wl (q’ r)
h(q’r)—H(q+2r+wl(q’r»

To simplify the formulae, set h=Hk. To satisfy (41), (42), (43) it will be
sufficient, in view of (48), (49), (50), to have

(51) o, = r(g+r)
k
(52) kow = k—(q+2r+w,)
+2r+ow
(53) W, = G)lg—‘k—o—aj——l“ .

It is easy to see that these functional equations are satisfied if we set
k(g,r) = q+2r+2(r(g+r)+a?)?

and take for w,,w, the functions from Lemma 3.1. Here a is still a free
parameter; it will be chosen so as to have (y, xo) € Z (g, o). For this it suffices
to satisfy h(qg,ro)=d,, which leads to the choice

1
rYT] (d(z) + HZ‘I(Z) —2dyH(qo + 2"0))4} .

(36) a=cn

We have to remark that condition 4° of the Theorem implies that
di+H*q} 2 2dyH(go+2ro)

so that the formula (36) makes sense and it defines a nonnegative number.

It follows from the Induction Theorem that the sequence (y,,X,) is
convergent and that (y,, x,) € Z(w™(go, o). This however implies that |y, — x|
S w{"(qo, o), SO that both sequences x, and y, converge to the same limit point
x*. Since by (47)

lf(yn+1)| b Hlyn+l_yn“yn+l—xn|

and since (19) implies the continuity of f we have f (x*)=0. The estimates 6°, 7°,
8° are immediate consequences of (13), (14), (15). The aposteriori estimates 9°,
10° are immediate consequences of (17) if we prove that

(58) On+15Xn-1) € Z(|Yn—1—Xp- 1} 1Xp—1 —¥al) -

The first condition in the definition of Z(-, -) is satisfied trivially while the last
condition is a consequence of (46). It remains to prove the inequality



NONDISCRETE INDUCTION AND A DOUBLE STEP SECANT METHOD 247
d([yn—l’xn—l; f]) g h(lyn—l’xn—IL Ixn—-l "'ynl) .
Since we know that (y,_,,x,_) € Z(w" V(qq,r,)) We have

d([Yn-1%u-15 f1) 2 h(w("_l)(‘lo’ro»

and the desired inequality is a consequence of the monotonicity of h and the
inequality

(lyn—l—xn—llilxn—l-ynn § w("_”(‘Io,"o) .

The proof is complete.

Let us turn now to the question of uniqueness. The inequality 6° implies that

x* € U(xg,0,(40,70)) »

while from 5° we have
U(x0,02(q0,70)) = U = Ul(xq,m) .
Let us denote by V the open disk
V={x€eE; |x—xo| < 06;(qo,r0)+2a} .
The following result is easy to prove

3.3. UNIQUENESS THEOREM. If in Theorem 3.2 the inequality 4° is strict, then x*
is the only root of the equation f(x)=0 in the set UNV.

Proor. First let us remark that the inequality 4° is equivalent to

d
(60) —I—Io— 2 q0+2r0+2(r0(q0+r0)+a2)*.

If either 4° or (60) is strict then a>0.
Now let us suppose that there exist a z € U N V such that f(z)=0. We have
then

z=x* = [yo, %05 f17 (Wor X3 f1=[2.x*; fD(z—x%)

and

Do, Xo; f17 ' (o, %05 f1—L[2z,x*; fI)

H
S i (Iyo = Xol +1x0 — 2| +1x0 — x*)
0

H
< E‘ (g0 +202(q0, 7o) + 2a)
0
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H
= ;1—(qo+2r0+a+2(r0(q0+r0)+a2)*) =1,
0

whence |z—x*|=0.

4. Sharpness and optimality.

In Theorem 3.2, in order to assure the convergence of the iterative process to
a root of the equation f(x) =0, we have imposed condition 4° to the initial data
dy, qo, 7o and the Lipschitz constant H:

4. (r§+(qo+ro)?)* <dy/H.

Of course, in applications, g, can be made small if y, is taken close enough
to the initial approximation x,. If g, is very small, then condition 4° reduces to
4Hr,<d,, which means that the initial approximation must be good.

This is a property shared by all Newton-like methods. If we compare
condition 4° with the corresponding condition required by Laasonen (cf. [3,
condition (2.6)]) we can see—in spite of the fact that the two conditions are
not formulated in the same terms—that condition 4° is considerably weaker
than the one from Laasonen’s paper. In terms of dy, g4, 7o and H, condition 4°
turns out to be the weakest possible. This is a consequence of

4.1. PrROPOSITION. For each quadruple of positive numbers d,, H, q,, r, which do
not satisfy condition 4°, there exists a function f: R — R and two points
Xg,Yo € R such that:

(a) The divided difference of f satisfies a Lipschitz condition with constant H
and conditions 1°, 2°, 3° of Theorem 3.2 are satisfied.

(b) The equation f(x)=0 has no solution.

Proor. Take

1
f(x) = Hx2+ZE(2doH(‘10+2ro)"d(2)"H2‘I(2)) s

_dy—Hgq, _do+Hgy
Yo = TR Y= g

if

d
Go+2ro—2)/ro(ro+4qo) < ﬁo < go+2rg+2)/ro(ro+9o)

and
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d
flx) = -‘fx2+d0r0, X0 =0, yo = qo
0

if
do
0 < q < qo+2rg—2)ro(ro+qo) -

The following result shows that the estimates obtained in Theorem 3.2 are
sharp.

4.2. PrROPOSITION. For each quadruple of positive numbers dy, H, qo, 1o which
satisfy 4°, there exists a function f: R — R and two points x,,y, € R which
satisfy the hypotheses of Theorem 3.2, and for which all the estimates 6°, 7°, 8°,
9°, 10° are attained.

PRroOOF. As we have already remarked, in the proof of Theorem 3.2, condition
4° implies that d2+ H2q%>2d,H(q,+2r,), so that formula (36) makes sense.
Set f(x)=H(x* —a?), where a is given by this formula and set

Xo = ro+ (ro(do+ro)+ @)}, yo = Xo+4o -

It can be easily verified that

S o) —f(xo) - d S (xo)

0 0>
Yo—Xo do

and that the sequences obtained by the procedure (1)-(2) for the function
H(x®>—a?) are the same as those for the function x*—a? The rest follows
from the proof of Lemma 3.1.
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