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COHOMOLOGY MOD3 OF THE
CLASSIFYING SPACE OF THE LIE GROUP Eg
AKIRA KONO and MAMORU MIMURA

1. Introduction.

Let E¢ be the compact, 1-connected, simple Lie group of type E¢. H , (Eg; Z)
is p-torsion free for any prime p>3 ([7]) and has p-torsion for p=2 and 3 ([1],
[2], [5]). The cohomology rings H*(E¢; Z,) are known:

(1.1) H*(Eq; Z,) = Z,[e;5)/(e3)® Ales, €9, €15,€17,€23)

(1.2) H*(Eq; Z3) = Z;3[eg]/(e3) ® A(es, 7,0, €44,€45,€47) ,
where e, =P'e;, eg=fe, and e, s=Pe,,,

(1.3)  H*(Eq; Z,) = A(es,eg,€;4,€;5,847,€,3) for any prime p>3,

where dege;=i.
It is known that for any prime p>3, H*(Ee; Z,) is universally
transgressively (and hence primitively) generated and so by the Borel theorem

H*(BEG; Zp) = ZP[X4,xlo,x12,xl6,x18,xZ4] With degx,=i .

The purpose of this paper is firstly to determine the Hopf algebra structure of
H*(Eg; Z,) and then to determine the module structure of H*(BEg; Z;) by
making use of the Eilenberg-Moore spectral sequence {E,,d,} such that

E, = Cotor? (Z5,Z;) with A=H*(Eg; Z,),
E. = $1H*(BE,; Zs) .

(The result with Z,-coefficient is already determined in [10]).
According to Browder [4] H*(E,; Z,) is not primitively generated. In fact,
Araki showed in [1] that @(e,,)=es®e; and @(e,s)=ez®e,, where

@: A*(Eg; Z5) » H*(Eq; Z3)@ H*(Eg; Z)

is reduced diagonal map induced from the multiplication on E4 (the same
notation is used for F,). Thus it seems hard to calculate the Hopf algebra
H*(Eq; Z;).
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The paper is organized as follows:
In section 2 we determine the Hopf algebra structure of H*(Eg; Z3). The
result is

THEOREM 2.9. With suitably chosen e,,, e,s and e, in (1.2)

(1) e, e;=P'e;, eg=Pe, and e, are universally transgressive and hence
primitive.

(2) ey, €15 and e, can not be chosen to be primitive and @ (e;) =eg®e;_g for j
=11, 15, 17.

In section 3 we recall the results on Cotor” (Z 3, Z;) and Cotor? (Z;,Z;) with
A=H*(E¢; Z;) and B=H*(F,; Z,), where F, is the compact, 1-connected Lie
group of type F,. It is known ([11]) that the Eilenberg-Moore spectral
sequence for F, with Z;-coefficient collapses.

In sections 4 and 5 we prove that the Eilenberg—Moore spectral sequence for
E¢ also collapses with Z;-coefficient by using the naturality for the inclusion
F, = E¢ and for dimensional reasons. Thus

THEOREM 5.6. As modules

H*(BE,; Z,) =~ Cotor” (Z,,Z;) with A=H*(Es; Zs) .

However, it seems difficult to determine the algebra structure of
H*(BEg; Z,), although we give a partial result in section 6.

To determine the algebra structure we need information of the invariant
subalgebra of H*(BT®; Z;) under the Weyl group of E; where T® is the
maximal torus of E¢ (cf. [17], [18]).

Throughout the paper H*(X) means H*(X; Z,) unless otherwise stated.

The paper is a revised version of [9] and the result was announced in [18].

AckNOWLEDGEMENT. The early draft of the paper was written while the
second author was at Aarhus Universitet. He is most grateful to Professor Leif
Kristensen for the kind invitation to Matematisk Institut at Aarhus.

2. Hopf algebra structure of H*(E).

In this section we will determine the Hopf algebra structure of H*(Eg).
The following is due to Araki [1]:

THEOREM 2.1. (1) H*(E¢) = Z;[e5]/(e3)®A(e3, €7, €9, €1 1,15, €17),
(2) H*(F)=Z;[e5]/(e3)®A(es,€5,€44,€45),
where dege; =i, e;=P'e,, eg=Pfe, and e, s=P'e,,,
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(3) F, is totally non-homologous to zero mod 3 in Eg,

(4) H*(E4/F,; Z)= A(8é,, €,,) with degeé; =i,

(5) ¢le)=es®e;_g for j=11,15 and e, is universally transgressive and hence
primitive for i=3,7,8,9.

Thus it suffices to determine @(e,,) in order to know the Hopf algebra
structure of H*(E¢). (The result is stated in Theorem 2.13).
Consider the two fiberings:

22) F4s— E¢ % E¢/F,,
2.2y E¢/F, — BF, — BE;.

NotaTioN. By abuse of notation we denote by é, and é,, the mod3
reduction of é, and é,, respectively.

The following is easy to see.
ProposiTION 2.3. (1) eg=0*(&y) (up to sign).
(2) One of the following is true:

(2.4) é,, is transgressive with respect to (2.2).
(2.5) there is an element fo+0 with deg fo=9 such that

dy(1®ey,) = @8y and fyt(&) = 0,

where d is the differential and < is the transgression in the Serre spectral
sequence associated with (2.2)'.

(3) (2.4) and (2.5) are equivalent to the following (2.4) and (2.5) respectively:
(2.4) o*(e,7)=e, is universally transgressive,
(2.5 e,, can not be chosen to be primitive.

Proor. (1) By (3) of Theorem 2.1 0% 0*(&,) € H°(E¢)xZ,.

(2) is obvious.
(3) Consider the commutative diagram:

E, — * — BEg

l | I
E¢/F, —» BF, — BE4

where the upper sequence is the universal Eg-bundle. It follows from this
diagram that (2.4) implies (2.4) or equivalently that (2.5) implies (2.5). Since
e,,=0*(é,,) and since H°(BEg)=~Z, generated by 7(eg) =X,, we may take f,

Math. Scand. 46 —- 15
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=Xq, that is, @(e;;)=es@ey in (2.5). Note that ¢(egey,)=esRey+e,®@eg and
that ege, is the only decomposable element in H!7(E¢) the image of which has
the form eg®ey. Therefore ¢ (e, +decomp.)+0. This shows that (2.4) implies
(2.4) or equivalently that (2.5) does (2.5).

The following theorem is proved in [11].

THEOREM 2.6. (Kono—Mimura-Shimada)
(1) The Eilenberg—Moore spectral sequence for F, with Zj-coefficient
collapses,
(2) H*(BF )= Z3[ X4, Xg, X9, X30, X21, X235, X261/S ~ for *<35
(see section 3 for the ideal S),
(3 fa‘—‘glfu Xo=PXs, ’?20=9358’ X21=PX205 i25=?lf21’ X26 = PBX3s.
(4) all the relations for the degrees <35 are obtained from X,Xq=0 over l,.

NotaTioN. A=H*(E4) and B=H*(F,).
It is quite easy to obtain

LemMMA 2.7. If (2.4) were true, then
Cotor? (Z,,Z;)=~Cotor? (Z;,Z,) ® Z3[V10,V15]
(cf. section 3 of [11]).

NotaTioN. When an element « € Cotor” (Z,,Z,) or Cotor?(Z,,Z,) is a
permanent cycle, we denote by & the element of H*(BG), G=EF,,
represented by a. Further, by abuse of notation, we denote by the same symbol
the corresponding elements of H*(BEg) and H*(BF,) under i*: H*(BEy)
— H*(BF,), where i: F, — E is the inclusion.

LEMMA 2.8. If (2.4) were true, then the Eilenberg—Moore spectral sequence for
E¢ with Z-coefficient would collapse for degrees <35.

Proor. The elements y,, and y,g are permanent cycles. In fact, the elements
V10 and j, g represented by them are the transgression images of e, and e,,
respectively by (2.4). Meanwhile it is clear (without assuming (2.4)) that

i*: H*(BEg) & H*(BF,) & Z,[%,, %, %,] for *<9,

where %z =2'x, and Xy=pP'x,.
The elements #3xg, fP> %5, P! pP*x5 and pP! ﬁ93x3 are not decomposable
in H*(BEg), since they are not decomposable in H*(BF,). On the other hand



COHOMOLOGY MOD3 OF THE CLASSIFYING SPACE ... 227

there is only one non-decomposable element x,,, x,;, X,5s and x,, of

Cotor” (Z3,Z,), A= H*(E), in each degree 20, 21, 25 and 26 respectively. Thus
x; are permanent cycles for i=20, 21,25, 26.

REMARK 2.9. By the Adem relation we have
Bxs =0,
P'%g = PPP'R, = PPI%,+P*PR, =
Pxg = PPP'%, = PP3%,— PPz, = 0,
P%g = PPP'Ry = PP3P'%, = %, .

I
o

Then all the relations in degrees <30 can be obtained by applying the
operations to the relation x,X,=0. In fact,

- - 1 - -
X4XQ = 0_———“—‘“ x8x9 = 0‘_“ xg = 0
P lér’
- - v - - - -
X31%4 = 0 Xy0%X9+XgXy = 0
2! sum
R N e ez oz -0
XZSX4+x21x8 =0 x25X4+x2()X¢) =0 ’x26X4+XZIXQ = .

Thus we have shown

Lemma 2.10. If (2.4) were true, we would have an isomorphism as algebras
H*(BE¢) =~ Z,[¥,0,71s]® H*(BF,) for *<30.
ProposITION 2.11. The statement (2.3) is false.
ProoF. By the Adem relation j3,=2°y,, = 2>P%j,,. Here 2%, € (X,, %),
the ideal generated by X, and X, since deg #j,,=22. Meanwhile the ideal

(X4, Xg) is closed under the operation 2! and 22. Thus j;, € (X4, Xg), which
contradicts to the fact that y,, ¢ (X,, Xg)-

COROLLARY 2.12. There are no primitive elements in H'" (Eg).
Putting e,,=0*(é,,) we obtain

THEOREM 2.13. In (1.2), the elements e; are primitive as well as universally
transgressive for i=3,7,8,9; and ¢(e;))=es®e;_g for j=11,15,17.
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REMARK 2.14. (1) This result was independently proved by Toda in [18], in
which he calculated the invariant submodule H*(BT®)" ¢ under the Weyl
group W(E¢) and studied the Serre spectral sequence associated with the
fibering EIIl - BEg — B(Ds* T!). There is also given a proof in [8].

(2) Lemma 2.10 can be obtained by the comparison theorem on the Serre
spectral sequence for the fibering (2.2).

3. Cotor” (Z5,Z,) and Cotor?(Z,,Z,).
Recall the following

ProrosiTioN 3.1. (Theorem 5.20 of [12])
Cotor” (Z3,Z3) = Z;[x4, Xg, Xg, X305 X215 X235, X265 X365 Xa8]
® Z3[Y105 Y225 Y26 Y27 V545 V585 V60> Vear Y16/ R
where R is the ideal generated by
(2 x3,x31, X35 Y37 »
(33)  xoXpy +Xp6Xa, XoXy5+X26Xs, Xo¥27+ X26Y10 5
X21X25+ X26X20 X21Y27 + X26Y22, X25V27 — X26Y26 >
(B4 x50°Q,%,,0%Q,%,50%Q, 27020, x,60°Q ,
(3:5)  XgX4, X9Xg, Xg¥ 105 X21X4s X25X8, V27Y10 »
(3:6) x31Xg+XoXz0 = Xz5X4—XgX20
X21Y10 F XgY22 = Y27X4—X9)22 »
X25¥10 — XoY26 = V21X8t+X9Y26 >
(3.5)  X21X320, X25X20 X21Y22: Y27Y220 ¥25Y 260 Y27Y 26 5

(3.6)  y327X20+ X35¥22 = X31¥26 —X25¥22 = —Y27%X20—X21V26 -
(For 9Q see [12].)

For sake of our convenience we use here different notations for the
generators from those in [12]. The correspondance is as follows:
Cotor? (Z,5,Z,) x;

gen. in [12] 4 (i=4,8,9), y; (i=20,21,25), x, (i=26,36,48)
Cotor? (Z,,Z,)
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gen. in [12] a; j=10), —y; (j=22), x; (j=54),
y; (j=26,27,58,60, 64, 76)

Recall also the following

ProrosiTioN 3.7. (Theorem 3.9 of [11])
Cotor? (Z3,Z;) = Z;[x4, Xg, X0, X305 X215 X25, X26, X365 Xa81/S

where S is the ideal generated by x,Xq, XgXg, X3, X4X21, XgX25, X4X25,+XgX31,
2 2 3 3 3

X20X215 X20X25, X215 X255 XoX30—XgX35+XgXpy, X30—X3X4g+ XgX3ze X26X4

+X31Xg, X26Xg+ X25Xg, X26X20—X21X2s-

Let i:F, » Eg be the natural inclusion. Consider the induced
homomorphism

i*: Cotor (Z,,Z,) — Cotor?(Z,,2,).

By the observation on the cochain level in the correspondence between
Cotor” (Z3,Z5) and Cotor® (Z,,Z,) we obtain

CoROLLARY 3.8. i*(x)=x; for all i and i*(y)=0 for all j. In particular i* is an
isomorphism on the subalgebra generated by all x/s.

REMARK 3.9. Consider the spectral sequence {E,(E),d,} with Z,-coefficient
converging to H*(BE), where each term E, (E) is of bidegree, the homological
(or external) degree and the internal degree. The differential d, raises the
homological degree by r. Denoting by h(z) the homological degree for an

element z € Cotor? (Z;,Z,)=E,(E), we give a list of the homological degree
of the generators:

h(z) = 1 for z=x,4,Xg, X9, Y10 >

h(z) = 2 for z=X30,X31,¥22: X235, V26) X26: Y27 »
h(z) = 3 for z=X36,Xa8,Vsa »

h(z) = 5 for z=ysg, Y60, Ves -

h(z) = 6 for z=y,.

4. The module structure of H*(BEg)—1 (* <35).

NotaTioN. When an element o € Cotor? (Z3,Z,) is a permanent cycle, we
denote by & the element of H*(BE) represented by a.
Let i: F, —» Eg4 be the inclusion considered in [1].
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ProPOSITION 4.1. The induced homomorphism
i*: H*(BEg) —» H*(BF,)

is surjective for * <35.

Proor. By Toda [17] or by Kono—Mimura-Shimada [11], we know that
H*(BF,) for * <35 is generated by the generator x, € H*(BF,)=Z, over 4,.
Meanwhile, according to Araki [1], i*: H*(E()~H3(F,) and hence
i*: H*(BE¢)= H*(BF,). Thus the proposition follows from the naturality of the
cohomology operations.

COROLLARY 4.2. The elements x; (i=4,8,9,20,21,25,26) are permanent cycles.
In fact, there hold
is = ylf4, .ig = ﬂis, x‘zo = «?ais s
X1 = PXa0 X35 = gal,z“’ X6 = BXys 5

where x, € H*(BEy) is the generator.

PRrOOF. i*(X;) is not decomposable in H*(BF,) and hence is represented by
xi-

LeMMA 4.3. The elements y; (j=10,22,26,27) are permanent cycles.

PrOOF. Put y,,=1(ey), the transgression image of e,. (Remark that this
transgression has no indeterminacy.) Consider the Serre spectral sequence with
Z,-coefficient associated with the fibering (2.2), where H*(E¢/F,)= A(é,, €,-).
By Propositions 2.3 and 2.11 we have

dy(1®¢é,,) = £%,®é and d,(1®&) = y,,®1,

where 7,,%,=0. In this spectral sequence the relations XgX, = XoX3 = XoXg = X3
=0 imply respectively that X,®é,,, X3®¢€,,, Xs®€,, and X,®é,, are d,o-
cycles. Since i*: H*(BEg;) —» H*(BF,) is surjective for *=<35, there are
elements y, (k=22,26,27) such that

dig(Xi-18®€;17) = Ji®1 (k=22,26,27)
dig(X3®8,7) = 722X ®1 + 0 and  jp,%4 + o6 -
Of course j, € Keri* (k=22,26,27). Further they are not decomposable. It is
then easy to see that y, are represented by y, (k=22,26,27) respectively.

CoRrOLLARY 4.4. The Eilenberg—Moore spectral sequence for E¢ with Z5-
coefficient collapses for degrees <35.
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COROLLARY 4.5. Ker i* is generated by j, (k=10,22,26,27) for degrees < 35.

REMARK 4.6. Using the argument in [3] one can obtain
V26 = PV, and  §,, = Byae s

since 2'é,,=0, pé,,=0, P'x,=xg and Bxgz=X,. Furthermore, by a similar
argument to that in section 2 one can show

93910 = Y22 -

5. The module structure of H*(BEg)—II (* > 35).

NOTATION. N ={X3¢, X48, V54> V58> Y60» Voar V76 -

In the below we will show that the elements in N are all permanent cycles in
the Eilenberg-Moore spectral sequence {E,(Eq),d,}.

LemMa S.1. Let fe N. If d,(f)=*0, then d,(f) is expressed as a sum of
monomials containing y; and an odd number of x; (i=9,21,25) or y,,.

Proor. If d,(f)#0, each term of d,(f) must contain y; since the induced
homomorphism i*: E,(Eg) — E,(F,) is injective on the subalgebra generaled
by all the x;’s (cf. Corollary 3.8). As every element of N is of even degree, each
term of d,(f) must contain an odd number of x;s (i=9,21,25) or y,,.

Recall from Proposition 3.1 the following relations in E,(Eg):

(R.1) X4xg = XgXg = X4X3; = XgXz5 = X0X33 = X30%35 = 0,
(R2) yioXg = ya2X31 = yaeX2s = 0,
(R3) y2227 = Ya6V271 = Yio¥27 = 0,

(R.4) xé = x%x = x%s = Y%7 =0,

(R5) yaaXas = yagXa1 = —X20¥27 5

(R6) xp0%Xg = —XgXp; = X4X35, Y22Xo = —V10X21 = XaV27»
Y26X9 = —Xgy27 = Yi10X2s >

(RT) xp6Xs = —X31X9, Xp6Xz0 = —X31X25, X26Xg = —X25Xg ,
X26Y22 = —X21)27, X26Y10 = ~V21%9: X26Y26 = X25Y27 >

(R.8) the other relations,
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(R)  yloXzy = —Yi10¥22% = 0 (by (R.6) and (R.2)),
Xg¥10Xz1 = Xg¥zpXg = 0 (by (R.6) and (R.1)),
YioX2s = YioV26Xe = 0 (by (R.6) and (R.2)),
XaY10X25 = XaYz6Xg = 0 (by (R.6) and (R.1)).

LEmMMA 5.2. Let fe N. Then
d,(f) = yioXa1S1 +V10X25 2+ V26X21 3+ V21 fa s
where
f1 is a monomial containing X,¢, Y26, X36> Xas »
[, is a monomial containing y,,, X,6, X36, Xag »
f3 is @ monomial containing y,e, X36, X36) Xas »

f4 is a monomial containing X,¢, X3, X43 -
Proor. (1) For f with deg f<54: By (R.2) we may put
d,(f) = y10X21f1 +Y10%2s[2HY22X0 f1 +V22%25 '3+ V26X0 f3

+Y26X21f3+ Y21 fs -

Then by (R.6) we may suppose f;=0 (i=1, 2, 3). The relations (R.1), (R.2), (R.7)
and (R’) imply that

(5:3) d,(f) = yioxa1f+V10%2sSa+V26X21f3+Y2rfa
where
fi is a monomial of X;6,26, X36) Xa8,V; (j254),
f> is a monomial of y,;,x26, X36, X4s,y; (j254),
f3 is a monomial of x,6,26, X36) X48,¥; (254),
further, by (R.3) and (R.6),
f4 is a monomial of x,6, X34, X48, V; (j=549).

Since deg f< 54, f; does not contain y; (j = 54).

(2) For f with deg f = 54: By the same reason as in (1), d,(f) is of the form
(5.3). In E,(Eg), there are no terms containing y; (j 2 54) in degrees 55, 59, 61,
65, 77 for dimensional reasons and by the relations (R.1) and (R.4). So we can
get the lemma.
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ProPoSITION 5.3. (1) X3¢ and x,q are permanent cycles and there holds
Xeg = P 3)236 .

(2) y; (j=54,58,64,76) are permanent cycles.
(3) yeo is a permanent cycle.

Proor. (1) and (2): For dimensional reasons we easily see that all the f;’s are
zero in d,(f) of Lemma 5.2 for f € N —{x¢0, X45}. Namely, all the generators of
N —{x¢0, X45} are permanent cycles. Specifically we get the element X,¢ in
H*(BEg). Consider the induced homomorphism i*: H*(BEg) — H*(BF,).
Then i*P3%,4=2>%,¢ is not decomposable in H*3(BF,). So there exists an
element in H*®(BEg) which is represented by x,s. That is, x, is a permanent
cycle and P3%;¢ =X,5.

(3) For dimensional reasons d,(yeo)=0y0X25V26 With o € Z3, where the
homological degree of both elements are h(ygo) =h(V10X25V26) =5 by Remark
3.9. However d, raises the homological degree by r=2, d,(ys0)=0.

COROLLARY 5.4. The induced homomorphism
i*: H*(BEg) —» H*(BF,)
is surjective.
By Proposition 5.3 together with Corollary 4.2 and Lemma 4.3 we have seen

that all the algebra generators in Cotor” (Z,,Z,) are permanent cycles in the
Eilenberg-Moore spectral sequence. Thus

THEOREM 5.5. The Eilenberg—Moore spectral sequence for Eg with Zs-
coefficient collapses.

THEOREM 5.6. As modules

H*(BEg) = Cotor? (Z5,Z;) (A=H*(Ey).

6. Some algebra relations.
By the Adem relation one can obtain

(6.1) Py = 0 for i=1,2, PXg=X%,, f%y = 0.

Similar results for the other generators can be obtained.

LEMMA 6.1. All the relations among x; (i<36) and y; (j<54) in the E (Eg)-
term give rise to the corresponding relations in H*(BEg).
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Proor. In fact, as is easily checked, these relations are obtained over 4, from
the relations x,Xy=0 and y,,Xy=0.

REMARK 6.2. (1) Let T® be the maximal torus of Eq and k: T®<Eg be the
inclusion. The computation by Toda in [18] on H*(BT®)"(Es), the invariant
subalgebra under the Weyl group, imply that the map i’ in the diagram below
is surjective and its kernel is generated by Xg, X,,, X2s, X26, J27°

H*(BEg)——X%— - H*(BT®)

H*(BT$)"(Eo)

(2) The following relations

X4Y26+XgV22—Y10%20 = 0, X30 = X3X36— X343 ,

Y32 = YioX36— XaVsas X30¥22 = XaVsg+V10XaX36 »
Y32%20 = Xa¥so+ Xs¥10X36: V10Xss+XaVeo—XaVea = 0,
Ys8Y22 = YV16X4 — X8V10X36)26 »

give the forms i'X,g, i'y; (j =26, 54, 58, 60, 64, 76) in H* (BT )" EJ modulo higher
terms (cf. [18]). In fact, i'y; (j=26,58, 60,64,76) become of this form, if one
chooses adequately the elements in lower degrees. Meanwhile, in the form

%45 = 1((—X36%3 + X30 + X30X5X4)/X3)
the weight of x%,x%x, is higher by 1 than the others. Then all the elements are
decomposable in H*(BT$)W®J[i'(x,)"1].

REFERENCES

1. S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional
groups, Nagoya Math. J. 17 (1960), 225-260.
2. S. Araki, Cohomology mod 2 of the compact exceptional groups E¢ and E,, J. Math. Osaka City
Univ. 12 (1961), 43-65.
3. S. Araki, Steenrod’s reduced power in the spectral sequences associated with a fibering 1, II,
Mem. Fac. Sci. Kylishi Univ., Ser. A. Math. 11 (1957), 15-64, 81-97.
. W. Browder, Homology ring of groups, Amer. J. Math. 90 (1968), 318-333.
. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes
de Lie compacts, Ann. of Math. 57 (1953), 115-207.
6. A. Borel, Sur 'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J,
Math. 76 (1954), 273-342.
7. A. Borel, Sous-groupes commutatifs et torsions des groupes de Lie compacts connexes, Tohoku
Math. J. 13 (1961), 216-240.
8. A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ. 17 (1977), 259-298.

wv S



COHOMOLOGY MOD3 OF THE CLASSIFYING SPACE . .. 235

9. A. Kono and M. Mimura, Cohomology mod 3 of the classifying space of the compact, 1-

connected Lie group of type Eg, Aarhus Univ. Preprint series 1974/75 No. 30.

10. A. Kono and M. Mimura, Cohomology mod 2 of the classifying space of the compact connected

Lie group of type Eg, J. Pure and Applied Algebra 6 (1975), 61-81.

11. A. Kono, M. Mimura, and N. Shimada, Cohomology of classifying space of certain associative

15.
16.

17.

18.

H-spaces, J. Math. Kyoto Univ. 15 (1975), 607-617.
. M. Mimura and Y. Sambe, On the cohomology mod p of the classifying spaces of the exceptional
Lie groups, 1, J. Math. Kyoto Univ. 19 (1979), 553-581.
. M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces,
(mimeographed notes).
. M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull.
Amer. Math. Soc. 71 (1965), 872-875.
J.-P. Serre: Homologie singuliére des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
N. E. Steenrod and D. B. A. Epstein, Cohomology operations (Ann. of Math. Studies 50),
Princeton Univ. Press, Princeton, 1962.
H. Toda, Cohomology mod 3 of the classifying space BF, of the exceptional group F,, J. Math.
Kyoto Univ. 13 (1972), 97-115.
H. Toda, Cohomology of the classifying space of exceptional Lie groups, Manifolds, pp. 265-271,
Tokyo 1973.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY, JAPAN

MATEMATISK INSTITUT
AARHUS UNIVERSITET, DENMARK

AND

MATHEMATICAL INSTITUTE
YOSHIDA COLLEGE
KYOTO UNIVERSITY, JAPAN



