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SMOOTHING H-SPACES II

ERIK KJZR PEDERSEN

0. Introduction.

In [8] we showed that certain H-spaces obtained by homotopy mixing are
homotopy equivalent to smooth, stably parallelizable manifolds.
Unfortunately (as was added in proof) we needed the restriction on the
fundamental group =, that D(Zn)=0. It is the purpose of this sequel to [8] to
remove this restriction, and also to generalize the main theorem considerably. I
want to thank I. Hambleton for pointing out the error in [8].

1. Notation. Statement of results.

Throughout the paper space will mean topological space of the homotopy
type of a connected C.W. complex. For a set of primes / and a nilpotent space
X, X, denotes the localization of X at [ in the sense of [5]. A space X is called
quasifinite if H, (X)=@®H(X;Z) is a finitely generated abelian group. If
H,(X) is a Z-module X is called I-locally quasifinite if H,(X) is finitely
generated as a Z;,-module.

To state our main theorem we need a couple of definitions. Let S¢ denote the
i-sphere

DerFiNniTION 1.1. A nilpotent space X admits a special 1-torus if, up to

homotopy, there is a diagram of orientable fibrations

l__.__,SS____*Sz

L

T
St X B
l

L

—4 — 4
such that

(a) A is quasifinite, B is stably reducible.
(b) Localized at O the diagram is homotopy equivalent to
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T)———»sg—»sa
S—Ay X S3—Ag x S2
l pry lprl
* »Ag *Ag

We remark that since X is nilpotent and the fibrations are orientable 4 and B
are nilpotent so localization makes sense.

ExaMpLE 1.2. Given a bundle S —» X — A with A quasifinite stably
reducible and the bundle stably trivial then X admits a special 1-torus by
dividing out by the subgroup S'<S> (see [8] lemma 3.6). All compact Lie
groups other than SO(3)* x T! have subgroups isomorphic to S* as is seen by
classification and all these Lie groups admit special 1-tori. This will be further
discussed in section 5.

We need a p-local version of definition 1.1. Let X be a nilpotent space, p a
prime.

DEerFiNITION 1.3. X admits a p-local special 1-torus if, up to homotopy, there
is a diagram of orientable fibrations
Sl——83—§2

a4

such that

(a) A is p-locally quasifinite and B is p-locally stably reducible, i.e. there are
integers n and i and a map S%*' — X'B inducing isomorphism in homology in
dimensions =n+i.

(b) as in definition 1.1.

It is clear that if X admits a special 1-torus then X, admits a p-local special 1-
torus.

We prove the following

THEOREM 1.4. Let X be a quasifinite H-space. Assume for every prime p that
X, is homotopy equivalent to a product C(p)x D(p) and C(p) admits a p-local
special 1-torus. Then X is homotopy equivalent to a smooth, stably parallellizable
manifold.
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Remark 1.5. If H3(X)> Z the condition of the theorem is trivially satisfied
for all but finitely many primes. This is because for all but finitely many primes
X, is homotopy equivalent to a product of localized spheres which must
include a 3-sphere. We also note that in view of example 1.2 (see section 5) this
theorem is stronger than theorem 1.1 of [8].

2. Surgery.
We use special 1-tori for the following

PROPOSITION 2.1. Let X be a quasifinite, nilpotent Poincaré complex admitting
a special 1-torus. Then X is homotopy equivalent to a stably parallellizable
smooth manifold.

ReMARk. This result only needs condition (a) of definition 1.1. Condition (b)
is needed to ensure that the property of having a special 1-torus is a generic
property.

PRrOOF OF PROPOSITION 2.1. In the diagram of orientable fibrations
Sl————bil————»s2

| |

St——oX——B

Lo

#————-)A————-—)A

A is nilpotent and quasifinite, hence by [7] 4 is finitely dominated. It follows
that X and B are finitely dominated [6]. Also 4 and B are Poincaré Duality
spaces since X is [3]. It follows from [10] that X has O finiteness obstruction.
Considering (B, X) a Poincaré Duality pair, we may use the stable reduction of
B and a standard transversality procedure to produce a surgery problem

(M,0M) 5 (B,X) ¢:vy—¢

where ¢ is the trivial bundle. Let' ¢(B) be the finiteness obstruction of B.
Consider the exact sequence

... = H"*Y(Z,; Ro(@Zm) - L) > LE(m) —

where n=n,(B)=n,(X). The class of o&(B), {¢(B)}, is an element of
H"*'(Z,,KRo(Zn)). It follows from [9], that the surgery obstruction of dM
— X is 6{c(B)}. However, since A4 is a P.D. space of dimension n—3 we have
o(A)=(—1)""30(A4)* and by [10], o(B)=20(4)=0(A)+(—1)"*'6(4)* and
hence {6(B)} =0 in H"*!(Z,; K,(Zn)) and we are done.
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3. Reducibility of p-local H-spaces.

Browder and Spanier have shown that a finite H-space is stably reducible
[2]. This is one of the steps in the attempt to prove X is a manifold, since it
implies that the Spivak normal fibre space is trivial. We need to generalize the
results of Browder and Spanier to a p-local situation. This is mostly
straightforward. We shall nevertheless indicate the line of argument in this
section. The aim of the section is to prove:

THEOREM 3.1. Let D be a p-locally quasi finite H-space. Then D is p-locally
stably reducible.

We need a p-local edition of S-duality.

ProrosiTION 3.2. Let X be a simply connected p-locally quasifinite space.
Then X admits a finite p-local C.W. structure, i.e. X is homotopy equivalent to a
space Y with a filtration *=K,cK,<...cK,=Y such that K, is the mapping
cone of some map f;: 3" — K;_,, n(i) a nondecreasing function of i.

Proor. By the Hurewicz theorem we may find a finite wedge of local spheres
and a map f: v S’; — X such that H_(f) is onto in dimensions <k, k2.
Using the relative Hurewicz theorem we inductively attach local cells to make
H _(f) an isomorphism in higher dimensions. Since X is p-locally quasifinite
and finitely generated Z,-module have free resolutions of length one, we
eventually obtain a homotopy equivalence.

Let X and Y be p-locally quasifinite spaces. A p-local S-duality map is a map
X A Y— §} so that slant product

)= B (X) - B X(Y)

is an isomorphism. Here i is the generator of H"(S}).

Given a p-locally finite space X we note that the suspension ZX is a simply
connected p-locally quasifinite space and thus admits a p-local C.W. structure
by Proposition 3.2. We may now go through exercises F1-7 page 463 in
Spanier [11] to prove existence and stable uniqueness of a p-local S-dual with
the usual functoriel properties. We need the concept to complete the

Proor oF THEOREM 3.1. H*(D; Q) and H*(D; Z/pZ) are Hopf algebras and
we may argue as in the finite case [1] that D satisfies Poincaré Duality with Z,,
coefficients. We now only need to produce a map D — S} inducing
isomorphism in dimensions = n. Then we may use Hopf algebra arguments (as
in the finite case [2]) to prove that the composite D* A D* =(DxD)* — D
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— S} is a p-local S-duality map, so D™ is selfdual and the dual of D* — S} will
be a stable reduction.

Localized at 0 D is a product of odd dimensional spheres so if we let [ be the
set of primes different from p and form the homotopy pullback

y——nSit!

|

D 7rs(z)n,+l

then Y is quasifinite, nilpotent and satisfies Poincaré Duality at all primes
hence [5] and [7] is a finitely dominated Poincaré Duality space. By Wall [12]
Y has the homotopy type of K U ¢" where K is n— 1 dimensional and we may
thus produce a map Y — K U e" — §" by collapsing K to a point. Localizing
at p we obtain D=K, — §} with the required property and we are done.

4. Proof of main Theorem.
The proof will consist of two lemmas.

LemMA 4.1. If X is a quasifinite H-space and X ,=C(p) x D(p) where C(p)
admits a p-local special 1-torus, then X, does.

Proor. Crossing the special 1-torus diagram
Clpp—B

|

A—4

with D(p) reduces the lemma to showing B x D(p) is p-locally stably reducible.
Now D(p) is a retract of a p-locally quasifinite H-space and is thus itself a p-
locally quasifinite H-space and thus p-locally stably reducible by theorem 3.1.

LEMMA 4.2. If X is a quasifinite H-space such that each X , admits a p-local
special 1-torus, then X admits a special 1-torus.

Proor. At all but finitely many primes X is a product of spheres, so we may
consider X a homotopy pullback

\\//
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where X is a product of odd dimensional spheres and X, also admit special 1-
tori. Mixing the special 1-tori in the obvious way we obtain X which admits a
special 1-torus and such that X;~ X, and X p, =X, in other words X is in the
genus of X. We now argue as in [8] Proposition 3.2 to show that admitting a
special 1-torus is a generic property for an H-space. The key step is the result of
Zabrodsky that one obtains the whole genus of an H-space by mixings defined
by diagonal matrices and the observation in [8] that one of these diagonal
entries may be assumed to be 1.

Combining these two lemmas with Proposition 2.1 proves theorem 1.4.

5. Examples.

In this section we show that compact Lie groups other than SO(3) x T* do
admit special 1-tori. This implies that our theorem 1.4 is indeed stronger than
theorem 1.1 of [8].

ProposiTION 5.1. Let G be a compact connected Lie group which is not
isomorphic to SO(3)* x T'. Then G has a subgroup isomorphic to S>.

Proor. We use classification of compact Lie groups. Any compact
connected Lie group is a quotient of H x T by a discrete central subgroup A.
Here H is a simply connected compact Lie group. Furthermore H is a product
of groups in a list, see [4, p. 346]. If we can find an S* subgroup of H that
intersects A trivially we are done. There are two cases. First assume H = (S3)*.
Then A4 cannot contain the center of (S%)* since if it does G will be isomorphic
to SO(3)* x T'. This being the case it is easy to find a subgroup isomorphic to
S3 not intersecting A. If H is not a product of $*’s it has a simple factor
different from S* and we will be done if we can find a subgroup isomorphic to
S? in this factor, intersecting the center trivially. We do this by checking the list.
We have $®=SU(2)=SU(n) (n=3) intersecting the center trivially since the
central elements of SU(n) are diagonal matrices with the same n’th root of
unity as entry. Similarly, S>=SP(1)cSp(n) (n=2) and S*=SU(2)=SO(4)
<=SO(n), n=5 do not contain —I which is the only central element 1.
Furthermore Eg > E; > E4>SU(6)> S° and since the center of Eq has order 3,
S3 must intersect it trivially and E¢ must intersect the center of E, (cyclic of
order 2) trivially. Finally F,>SP(3) and G,>SU(2) and these groups have
trivial center. We are done.

REMARK 5.2. It would be nice to have a conceptual proof of Proposition 5.1.
Working in the Lie algebra it is not hard to find a subgroup isomorphic to
SO(3) or S3 but it is crucial for us to be in the latter case.
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PROPOSITION 5.3. Let G be a compact Lie group with S* as a subgroup G> S.

Then
1 N S3 752

L G——G/S"

|

—— GJS——G/S?

*e——Le—1n

is a special 1-torus in G.

Proor. Lemma 3.4 of [8] shows that G/S! is stably parallellizable. It follows
from lemma 3.3 of [8] that H3(G; Q) —» H3(S%; Q) is onto. Let G, — K(Q,3)
= S3 represent an element in H3(G; Q) hitting the generator of H3(S*; Q) then
one sees by a spectral sequence argument that G, — (G/S®),xS3 is a
homology equivalence hence a homotopy equivalence and we are done.

FINAL REMARKS. In case D(Z7m)=0 we could replace the concept special 1-
torus by the concept 1-torus (see [8]). Since admitting a 1-torus is a weaker
condition than admitting a special 1-torus, it is not entirely a loss to have both
concepts.
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