LARGE HOMOMORPHISMS OF LOCAL RINGS

GERSON LEVIN

In [1], L. Avramov introduced the idea of a small homomorphism of local rings. Namely, if (R, m, k) and (S, m, k) are local rings and $f: R \to S$ is a homomorphism which makes the triangle $k \leftarrow R \to S \to k$ commute, then f is small if f_* : $\operatorname{Tor}^R(k,k) \to \operatorname{Tor}^S(k,k)$ is injective. We present here a dual notion. Namely f will be called large if f_* is surjective. The main result is Theorem 1.1 which gives several equivalent characterizations of surjective large homomorphisms. Besides providing a dual to small, large homomorphisms include the homomorphisms $R \to R/(x)$ where x is either a non zero-divisor or a member of (0:m). They also occur in recent work of Herzog [4] and Schoeller [6]. Section 1 is devoted to proving the main result and Section 2 applies this to produce the examples cited.

1.

Let (R, m, k) be a local ring and M a finitely generated R-module. The Poincaré series P_R^M is the formal power series $\sum B_i z^i$ where $B_i = \dim_k \operatorname{Tor}_i^R(M, k)$. Also, if S is any R-algebra, $\operatorname{Tor}_i^R(S, k)$ has the structure of a graded algebra via the standard external product [5, p. 221].

THEOREM 1.1. Let (R, m, k) and (S, n, k) are local rings and $f: R \to S$ a local homomorphism which is surjective. Then the following are equivalent.

- 1. The homomorphism f is large, i.e. f_* : $\operatorname{Tor}^R(k,k) \to \operatorname{Tor}^S(k,k)$ is surjective.
- 2. For any finitely generated S-module M, considered as an R-module via f,

$$P_R^M = P_S^M P_R^S .$$

- 3. The homomorphism p_* : $\operatorname{Tor}^R(S,k) \to \operatorname{Tor}^R(k,k)$ induced by the canonical map $p: S \to k$ is injective.
- 4. For any finitely generated S-module M, regarded as an R-module via f, the induced homomorphisms $\operatorname{Tor}^R(M,k) \to \operatorname{Tor}^S(M,k)$ are surjective.
 - 5. There is an exact sequence of algebras

$$k \to \operatorname{Tor}^{R}(S, k) \to \operatorname{Tor}^{R}(k, k) \to \operatorname{Tor}^{S}(k, k) \to k$$
.

Received September 5, 1979.

PROOF.

 $1 \Rightarrow 3$. We consider the change of rings spectral sequence

$$E_{p,q}^2 \cong \operatorname{Tor}_p^S(k,k) \otimes \operatorname{Tor}_q^R(S,k) \Rightarrow \operatorname{Tor}_{p+q}^R(k,k)$$
.

By [2, p. 348], the edge homomorphisms

$$\operatorname{Tor}_{p}^{R}(k,k) \to \operatorname{Tor}_{p}^{S}(k,k) \cong E_{p,0}^{2}$$

and

$$E_{0,a}^2 \cong \operatorname{Tor}_a^R(S,k) \to \operatorname{Tor}_a^R(k,k)$$

are precisely the induced homomorphisms f_* and p_*

Hence f_* is surjective if and only if $E_{p,0}^2 = E_{p,0}^{\infty}$ for all $p \ge 0$ and p_* is injective if and only if $E_{0,q}^2 = E_{0,q}^{\infty}$. We will prove the latter by showing that, in fact, all the $d_{p,q}^r$ for $r \ge 2$ are zero.

The spectral sequence is derived from the double complex

$$C_{p,q} = Y_p \otimes_R X_q$$

where Y is a free resolution of k over S and X is a free resolution of k over R. Choosing Y and X to be algebra resolutions makes C a DG algebra and then each E^r , d^r is also a DG algebra. With respect to this algebra structure

$$E_{p,q}^2 \cong \operatorname{Tor}_p^S(k,k) \otimes \operatorname{Tor}_q^R(S,k) = E_{p,0}^2 E_{0,q}^2$$

Since f is surjective, $d_{p,0}^2 ext{: } E_{p,0}^2 o E_{p-2,1}^2$ is zero and $d_{0,q}^2 ext{: } E_{0,q}^2 o 0$ so since d^2 is a derivation on E^2 , $d_{p,q}^2 = 0$ for all $p \ge 0$ and $q \ge 0$. Now $E^3 = E^2$ so $E_{p,q}^3 = E_{p,0}^3 E_{0,q}^3$. For every $p \ge 0$, $d_{p,0}^3 = 0$ since f_* is surjective so the argument may be continued to give $d_{p,q}^r = 0$ for all $r \ge 2$, $p \ge 0$, $q \ge 0$.

 $3 \Rightarrow 2$. Let Y be a minimal resolution of M over S and X a minimal resolution of k over R. We consider two double complexes

$$C_{p,q} = Y_p \otimes_R X_q$$
 and $C'_{p,q} = Y_p \otimes_S k \otimes_R X_q$

with canonical maps

$$h_{n,a}: C_{n,a} \to C'_{n,a}$$
.

Since Y and X are both minimal, the differential in C' is zero and h is clearly a mapping of complexes. Define

$$F_pC = \sum_{i \leq p} Y_i \otimes_R X$$
 and $F_pC' = \sum_{i \leq p} Y_i \otimes_S k \otimes_R X$.

With these filtrations C gives rise to the change of rings spectral sequence $E_{p,q}^r$ with

$$E_{p,q}^2 \cong \operatorname{Tor}_p^S(M,k) \otimes \operatorname{Tor}_q^R(S,k) \Rightarrow \operatorname{Tor}_{p+q}^R(M,k)$$

and C' gives rise to a spectral sequence $E'_{p,q}$ with

$$E_{p,q}^{\prime 2} \cong \operatorname{Tor}_{p}^{S}(M,k) \otimes \operatorname{Tor}_{q}^{R}(k,k)$$

and $d_{p,q}^{r} = 0$ for all $r \ge 0$.

The mapping h then induces a mapping of spectral sequences

$$h_{p,q}^r \colon E_{p,q}^r \to E_{p,q}^{\prime r}$$

with $h_{p,q}^2$ simply given by

$$1 \otimes p_* : \operatorname{Tor}_p^S(M, k) \otimes \operatorname{Tor}_q^R(S, k) \to \operatorname{Tor}_p^S(M, k) \otimes \operatorname{Tor}_q^R(k, k)$$

where p is, as above, the homomorphism induced by the canonical map $p: S \to k$. By hypothesis, p_* and thus $h_{p,q}^2$ is injective.

Then the commutative diagram

$$E_{p,q}^{2} \xrightarrow{d^{2}} E_{p-2,q+1}^{2}$$

$$\downarrow^{h^{2}} \qquad \qquad \downarrow^{h^{2}}$$

$$E_{p,q}^{\prime 2} \xrightarrow{0} E_{p-2,q+1}^{\prime 2}$$

shows that $d_{p,q}^2 = 0$. Then $E^3 = E^2$ and $h^3 = h^2$ is injective so $d_{p,q}^3 = 0$, etc. Thus, in the change of rings spectral sequence $E^2 = E^{\infty}$ showing that

$$P_R^M = P_S^M P_R^S$$

 $2 \Rightarrow 4$. In general, from the spectral sequence

$$\operatorname{Tor}_{p}^{S}(M,k) \otimes \operatorname{Tor}_{q}^{R}(S,k) \Rightarrow \operatorname{Tor}^{R}(M,k)$$

one obtains only an inequality of Poincaré series

$$P_S^M P_R^S \leq P_R^M$$
.

This is an equality if and only if the spectral sequence degenerates. In particular, if equality holds, all $d_{p,0}^r = 0$ for $r \ge 2$ so the edge homomorphism

$$\operatorname{Tor}_{p}^{R}(M,k) \to \operatorname{Tor}_{p}^{S}(M,k) \cong E_{p,0}^{2}$$

is surjective.

 $4 \Rightarrow 1$ is obvious.

5 ⇔ 1. From the diagram

$$\operatorname{Tor}^{R}(S, k) \to \operatorname{Tor}^{S}(S, k) \cong k$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Tor}^{R}(k, k) \longrightarrow \operatorname{Tor}^{S}(k, k)$$

212 GERSON LEVIN

we see that the composite

$$\operatorname{Tor}_{p}^{R}(S,k) \xrightarrow{p_{*}} \operatorname{Tor}_{p}^{R}(k,k) \xrightarrow{f_{*}} \operatorname{Tor}_{p}^{S}(k,k)$$

is zero for p > 0. We check the exactness by showing that the dual sequence of graded co-algebras is exact. Via the Yoneda product, $\operatorname{Ext}_R(k,k)$ and $\operatorname{Ext}_S(k,k)$ are algebras and $\operatorname{Ext}_R(S,k)$ is a left $\operatorname{Ext}_R(k,k)$ module. There is a commutative diagram

$$\operatorname{Ext}_{R}(k,k) \otimes \operatorname{IExt}_{R}(S,k) \longrightarrow \operatorname{IExt}_{R}(S,k)$$

$$\uparrow p^{*}$$

$$\operatorname{Ext}_{R}(k,k) \otimes \operatorname{IExt}_{R}(k,k) \xrightarrow{\varphi} \operatorname{IExt}_{R}(k,k)$$

$$\uparrow^{1} \otimes f^{*}$$

$$\operatorname{Ext}_{R}(k,k) \otimes \operatorname{IExt}_{S}(k,k)$$

showing that $p^*\varphi(1\otimes f^*)=0$. One then has a surjection

$$\operatorname{Ext}_{R}(k,k) \otimes_{\operatorname{Ext}_{S}(k,k)} k \to \operatorname{Ext}_{R}(S,k)$$
.

Now, however, $\operatorname{Ext}_S(k,k)$ and $\operatorname{Ext}_R(k,k)$ are Hopf algebras so the left hand side has Poincaré series $P_R^k/P_S^k = P_R^S$ by hypothesis (using $1 \Rightarrow 2$) so the surjection above is, in fact, an isomorphism.

2.

The following theorem is useful in finding large homomorphism.

THEOREM 2.1. If (R, m, k) is a local ring and $x \in m \sim m^2$ and the homomorphism $R \to R/\mathrm{Ann}(x)$ is large, then so is the homomorphism $R \to R/(x)$.

Proof. The diagram

$$R/\operatorname{Ann}(x) \xrightarrow{p} k$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$(x) \xrightarrow{q} (x) \otimes_{R} k$$

gives a commutative diagram

$$\begin{array}{ccc} \operatorname{Tor}^{R}\left(R/\operatorname{Ann}\left(x\right),k\right) & \stackrel{p_{*}}{\longrightarrow} & \operatorname{Tor}_{R}\left(k,k\right) \\ \cong \downarrow & & \downarrow \cong \\ \operatorname{Tor}^{R}\left(\left(x\right),k\right) & \stackrel{q_{*}}{\longrightarrow} & \operatorname{Tor}^{R}\left(\left(x\right) \otimes_{R} k,k\right). \end{array}$$

Since $R \to R/\text{Ann}(x)$ is large, p_* is injective so q_* is also injective. Then the diagram

$$\begin{array}{ccc} (x) \to & (x) \otimes_R k \\ ^u \downarrow & & \downarrow ^v \\ m \longrightarrow & m \otimes_R k \end{array}$$

yields

$$\operatorname{Tor}^{R}((x),k) \xrightarrow{q_{*}} \operatorname{Tor}^{R}((x) \otimes_{R} k, k)$$
 $\downarrow^{u_{*}\downarrow} \qquad \qquad \downarrow^{v_{*}}$
 $\operatorname{Tor}^{R}(m,k) \longrightarrow \operatorname{Tor}^{R}(m \otimes_{R} k, k)$.

Since $x \notin m^2$, $(x) \otimes_R k \to m \otimes_R k$ is injective, but then v_* is injective and hence also u_* .

Finally, the diagram

$$0 \to (x) \to R \to R/(x) \to 0$$

$$\downarrow^{u} \quad \parallel \quad \downarrow^{w}$$

$$0 \to m \to R \longrightarrow k \longrightarrow 0$$

gives

$$\operatorname{Tor}_{i}^{R}(R/(x),k) \xrightarrow{\cong} \operatorname{Tor}_{i-1}^{R}((x),k)$$

$$\downarrow^{w_{*}\downarrow} \qquad \downarrow^{u_{*}}$$

$$\operatorname{Tor}_{i}^{R}(k,k) \xrightarrow{\cong} \operatorname{Tor}_{i-1}^{R}(m,k).$$

Since u_* is injective, so is w_* and then $R \to R/(x)$ is large by Theorem 1.1.

THEOREM 2.2. If (R, m, k) is a local ring, $x \in m \sim m^2$ and either

i)
$$x$$
 is a non zero-divisor or ii) $x \in (0:m)$,

then $R \to R/(x)$ is large.

PROOF. Note that the identity map $R \to R = R/(0)$ is obviously large. But if x is a non zero-divisor, Ann (x) = 0 so $R \to R/(x)$ is large by Theorem 2.1. Similarly, the canonical map $R \to k = R/m$ is large so, again by Theorem 2.1, $R \to R/(x)$ is large.

Examples of large homomorphisms have arisen recently in the work of Herzog [4] and Schoeller [5]. We obtain these results as a consequence of Theorem 1.1.

DEFINITION. A local homomorphism of local rings $g: S \to R$ is called an algebra retract if there exists a local homomorphism $f: R \to S$ such that $fg = 1_S$.

THEOREM 2.3. (Herzog) If $g: S \to R$ is an algebra retract with inverse $f: R \to S$, then for any finitely generated S-module M, regarded as an R-module via f,

$$P_R^M = P_S^M P_R^S .$$

Proof. Since $fg = 1_S$,

$$f_*g_*: \operatorname{Tor}^S(k,k) \to \operatorname{Tor}^R(k,k) \to \operatorname{Tor}^S(k,k)$$

is the identity on $\operatorname{Tor}^{S}(k,k)$ so f_{*} is surjective, f is large and Theorem 1.1 applies.

THEOREM 2.4. (Schoeller) If (R, m, k) is a local ring and $x \in m \sim m^2$ such that R/(x) is a complete intersection, then

- i) $\operatorname{Tor}^{R}(k,k) \to \operatorname{Tor}^{R/(x)}(k,k)$ is surjective.
- ii) $\operatorname{Tor}^{R}(R/(x), k) \to \operatorname{Tor}^{R}(k, k)$ is injective.
- iii) For any finitely generated R/(x)-module M regarded as an R-module via $f: R \to R/(x)$, $P_R^M = P_S^M P_R^S$.
- iv) The acyclic closure ([3]) of the augmented algebra $R \to R/(x)$ is a minimal resolution.

PROOF. By Tate's theorem, since R/(x) is a complete intersection, $\operatorname{Tor}^{R/(x)}(k,k)$ is generated as an algebra with divided powers by its elements of degree 1 and 2. Hence it suffices to check that

$$f_{\star,i} : \operatorname{Tor}_{i}^{R}(k,k) \to \operatorname{Tor}_{i}^{R/(x)}(k,k)$$

is surjective for i=1,2. Referring back to the spectral sequence

$$\operatorname{Tor}_{i}^{R/(x)}(k,k) \otimes \operatorname{Tor}^{R}(R/(x),k) \Rightarrow \operatorname{Tor}_{i+j}^{R}(k,k)$$

used in the proof of Theorem 1.1, it is clear that $E_{1,0}^2 = E_{1,0}^{\infty}$ so $f_{*,1}$ is surjective. Then $f_{*,2}$ is surjective if and only if $d_{2,0}^2 = 0$ which is true if and only if $\operatorname{Tor}_1^R(R/(x),k) \to \operatorname{Tor}_1^R(k,k)$ is injective. However this is equivalent to having $x \in m \sim m^2$. This proves i), and ii) and iii) follow from Theorem 1.1. Part iv) follows from the following more general result.

The following result was proved by H. Rahbar-Rochandel and independently by L. Avramov. Here is Avramov's proof.

THEOREM 2.5. If $R \to S$ is a surjective, large homomorphism of local rings, then the acyclic closure of the augmented algebra $R \to S$ is a minimal resolution.

PROOF. By Theorem 1.1 above and [1, Corollary 1.3(b), p. 408],

$$\operatorname{Tor}^{R}(S, k) \cong \operatorname{Tor}^{R}(k, k) \otimes f_{\star}$$

is a free Γ -algebra. Let P be the acyclic closure of $R \to S$ and suppose that i is the least integer such that $d(P_{i+1}) \not\leftarrow mP_i$. Since P is the acyclic closure, $d(P_{i+1}) \subset C_i(P) + mP_i$, where $C_i(P)$ denotes the elements of P_i generated by products of lower positive degree and divided powers of elements of even degree. By the choice of i, there is an isomorphism $P_j \otimes_R k \xrightarrow{\cong} \operatorname{Tor}_j^R(S, k)$ for j < i. The above information gives a relation in $\operatorname{Tor}_i^R(S, k)$ but $\operatorname{Tor}_i^R(S, k)$ is supposed to be a free Γ -algebra.

REFERENCES

- 1. L. L. Avramov, Small Homomorphisms of Local Rings, J. Algebra 50 (1978), 400-453.
- H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, N.J., 1956.
- T. H. Gulliksen and G. Levin, Homology of Local Rings, Queen's Papers in Pure and Applied Mathematics No. 20, Queen's Univ., Kingston, Ont., 1969.
- 4. J. Herzog, Algebra Retracts and Poincaré series, preprint.
- 5. S. MacLane, Homology, Springer-Verlag, Berlin Heidelberg New York, 1963.
- C. Schoeller, Sur l'homologie de certains anneaux locaux, C.R. Acad. Sci. Paris Sér. A 286 (1978), 1099-1102.

DEPARTMENT OF MATHEMATICS BROOKLYN COLLEGE, CUNY BROOKLYN, N.Y. 11210 U.S.A.