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LARGE HOMOMORPHISMS OF LOCAL RINGS

GERSON LEVIN

In [1], L. Avramov introduced the idea of a small homomorphism of local
rings. Namely, if (R,m,k) and (S,m,k) are local rings and f: R — S is a
homomorphism which makes the triangle k < R — S — k commute, then fis
small if f,: TorR (k,k) — TorS (k, k) is injective. We present here a dual notion.
Namely f will be called large if f, is surjective. The main result is Theorem 1.1
which gives several equivalent characterizations of surjective large homomor-
phisms. Besides providing a dual to small, large homomorphisms include the
homomorphisms R — R/(x) where x is either a non zero-divisor or a member
of (0:m). They also occur in recent work of Herzog [4] and Schoeller [6].
Section 1 is devoted to proving the main result and Section 2 applies this to
produce the examples cited.

Let (R,m,k) be a local ring and M a finitely generated R-module. The
Poincaré series P¥ is the formal power series Y. B;z' where B;
=dim, Tor,R (M, k). Also, if S is any R-algebra, TorR (S, k) has the structure of
a graded algebra via the standard external product [5, p. 221].

THEOREM 1.1. Let (R,m,k) and (S,n, k) are local rings and f: R — S a local
homomorphism which is surjective. Then the following are equivalent.

1. The homomorphism f is large, i.. f,: TorR (k,k) — TorS (k,k) is surjective.

2. For any finitely generated S-module M, considered as an R-module via f,

pM — pMPpS .

3. The homomorphism p,: TorR (S, k) — TorR (k, k) induced by the canonical
map p: S — k is injective.

4, For any finitely generated S-module M, regarded as an R-module via f, the
induced homomorphisms TorR (M, k) — TorS (M, k) are surjective.

S. There is an exact sequence of algebras

k — TorR (S, k) — TorR (k,k) — TorS (k,k) — k .
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PRrOOF.
1 = 3. We consider the change of rings spectral sequence

E? , = Tor3 (k, )®TorR (S, k) = Tork, , (k,k).

p+a
By [2, p. 348], the edge homomorphisms
TorR (k,k) — TorS (k,k) =~ E2,
and
E? , = TorR (S,k) - TorR (k, k)

are precisely the induced homomorphisms f, and p,.

Hence f, is surjective if and only if E2 ,=EZ, for all p>0 and p,, is injective
if and only if E3 ,=Eg .. We will prove the latter by showing that, in fact, all
the d, , for r22 are zero.

The spectral sequence is derived from the double complex

Cp,q = Yp®R Xq

where Y is a free resolution of k over S and X is a free resolution of k over R.
Choosing Y and X to be algebra resolutions makes C a DG algebra and then
each E'",d" is also a DG algebra. With respect to this algebra structure
E% . = Tor3 (k,k)®TorX (S,k) = E2 ,E3 , .

Since fis surjective, d2 : E2 o — E2_, | is zero and d} ,: E} , — 0 so since d®
is a derivation on E? d2 =0 for all p20 and ¢20. Now E*=E? so E3,
=Ef,'oE3'q. For every p=0, d,’,'0=0 since f, is surjective so the argument may
be continued to give d, ;=0 for all r22, p20, ¢20.

3 =2 Let Y be a minimal resolution of M over S and X a minimal
resolution of k over R. We consider two double complexes

Cp,q = YP®RX(] and C;,_q = Yp®sk®RXq
with canonical maps
hp!q: Cptq - C’p‘q ¢

Since Y and X are both minimal, the differential in C' is zero and h is clearly a
mapping of complexes. Define

FPC = Z Y‘®RX and F‘,C’ = Z Yg®sk®RX-
isp isp

With these filtrations C gives rise to the change of rings spectral sequence E}, ,
with
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E2 , = TorS (M,k)®@TorR (S,k) = Tork, , (M, k)

ptaq

and C' gives rise to a spectral sequence Ej , with
E}, = Tor} (M,k)®Torf (k,k)

and dj ,=0 for all r20.
The mapping h then induces a mapping of spectral sequences
Wo.a: Epq = Ej g
with k2, simply given by
1®p,: Tors (M, k)®TorX (S, k) — Tor$(M,k)®TorR (k, k)

where p is, as above, the homomorphism induced by the canonical map p: S
— k. By hypothesis, p, and thus k2 _ is injective.
Then the commutative diagram
E . £ Ei—Z,qH
| "

2 1] 12
Ep.q Ep—z,q+1

shows that d2  =0. Then E*=E? and h®=h? is injective so d} ,=0, etc. Thus,
in the change of rings spectral sequence E%=E> showing that

PM — PYPS

2 = 4. In general, from the spectral sequence
Tor3 (M, k)®@TorX (S, k) = TorR (M, k)
one obtains only an inequality of Poincaré series
P¥py < P¥.

This is an equality if and only if the spectral sequence degenerates. In
particular, if equality holds, all 4}, ;=0 for r=2 so the edge homomorphism

TorR (M, k) — Tors (M, k) = E},

is surjective.
4 = 1 is obvious.

5 < 1. From the diagram

TorR (S, k) — Tor® (S,k) = k

! !
TorR (k,k) —— TorS (k, k)
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we see that the composite
TorR (S,k) 22> TorR (k,k) L Tor$ (k, k)

is zero for p>0. We check the exactness by showing that the dual sequence of
graded co-algebras is exact. Via the Yoneda product, Extg (k, k) and Extg (k, k)
are algebras and Extg (S, k) is a left Extg (k, k) module. There is a commutative
diagram

Extg (k, k)®IExtg (S, k) —> IExtg (S, k)

1 o

Extg (k, k) ® IExtg (k, k) 2> IExtg (k, k)
tes

Extg (k, k)®IExtg (k, k)

showing that p*@(1® f*)=0. One then has a surjection
EXtR (k, k)®Eth (k,k)k - EXtR (S, k) .

Now, however, Extg (k, k) and Extg (k, k) are Hopf algebras so the left hand side
has Poincaré series P%/P%= P} by hypothesis (using 1 = 2) so the surjection
above is, in fact, an isomorphism.

2.

The following theorem is useful in finding large homomorphism.

THEOREM 2.1. If (R, m, k) is a local ring and x € m~m? and the homomorphism
R — R/Ann (x) is large, then so is the homomorphism R — R/(x).

Proor. The diagram

R/Ann (x) —2— k
=] l=
(x) —4— (x)@rk
gives a commutative diagram

TorR (R/Ann (x), k) —22— Torg (k, k)
Tor®((x),k) —2+— Tor® ((x\)®rk,k).

Since R — R/Ann (x) is large, p,, is injective so g, is also injective. Then the
diagram
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(x) > (x)®gk
ul lv

m-— mQ@grk

yields

TorR((x), k)~ TorR((x)® g k, k)
u‘l lv,.l
TorR (m,k) — TorR (Mg k, k) .

Since x ¢ m?, (x)®gk — m®pgk is injective, but then v, is injective and hence
also u,.
Finally, the diagram

00— (x) > R—-> R/(x)— 0
U I
0O m >R—k—0

gives

TorR (R/(x), k) => Tork ((x), k)
Wil Jus

TorR (k,k) —=— TorR | (m, k) .

Since u, is injective, so is w, and then R — R/(x) is large by Theorem 1.1.

THEOREM 2.2. If (R,m,k) is a local ring, x € m~m? and either

1) x is a non zero-divisor
or ii) xe (0:m),

then R — R/(x) is large.

Proor. Note that the identity map R — R = R/(0) is obviously large. But if x
is a non zero-divisor, Ann (x)=0 so R — R/(x) is large by Theorem 2.1.
Similarly, the canonical map R — k=R/m is large so, again by Theorem 2.1,
R — R/(x) is large.

Examples of large homomorphisms have arisen recently in the work of
Herzog [4] and Schoeller [5]. We obtain these results as a consequence of
Theorem 1.1.

DEFINITION. A local homomorphism of local rings g: S — R is called an
algebra retract if there exists a local homomorphism f: R — S such that fg
= ls.
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THEOREM 2.3. (Herzog) If g: S — R is an algebra retract with inverse f: R
— S, then for any finitely generated S-module M, regarded as an R-module via f,

PY¥ = P¥P}.

Proor. Since fg=1g,
f48y: TorS (k,k) — TorR (k,k) — TorS (k, k)

is the identity on Tor® (k,k) so S« is surjective, f is large and Theorem 1.1
applies.

THEOREM 2.4. (Schoeller) If (R,m, k) is a local ring and x € m~m? such that

R/(x) is a complete intersection, then
i) TorR (k, k) — Tor®R™(k, k) is surjective.

ii) Tor® (R/(x),k) — TorR (k, k) is injective.

iii) For any finitely generated R/(x)-module M regarded as an R-module via f:
R — R/(x), PY=PYPS.

iv) The acyclic closure ([3]) of the augmented algebra R — R/(x) is a minimal
resolution.

Proor. By Tate’s theorem, since R/(x) is a complete intersection,
TorR/™ (k, k) is generated as an algebra with divided powers by its elements of
degree 1 and 2. Hence it suffices to check that

fy.i: TorR (k, k) — Tor®/™ (k, k)
is surjective for i=1,2. Referring back to the spectral sequence
TorR/™ (k,k)@TorR (R/(x), k) = Tork, ; (k, k)

used in the proof of Theorem 1.1, it is clear that E} ,=E{, so f,, is surjective.
Then f, , is surjective if and only if d2 ;=0 which is true if and only if
Tor® (R/(x),k) — Torf (k,k) is injective. However this is equivalent to having
x € m~m?. This proves i), and ii) and iii) follow from Theorem 1.1. Part iv)
follows from the following more general result.

The following result was proved by H. Rahbar-Rochandel and inde-
pendently by L. Avramov. Here is Avramov’s proof.

THEOREM 2.5. If R — S is a surjective, large homomorphism of local rings, then
the acyclic closure of the augmented algebra R — S is a minimal resolution.

Proor. By Theorem 1.1 above and [1, Corollary 1.3(b), p. 408],
TorR (S,k) = TorR (k,k) ~ f,
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is a free I'-algebra. Let P be the acyclic closure of R — S and suppose that i is
the least integer such that d(P;,,)¢mP; Since P is the acyclic closure, d(P;, ,)
< C;(P)+mP,, where C;(P) denotes the elements of P; generated by products of
lower positive degree and divided powers of elements of even degree. By the
choice of i, there is an isomorphism P;®gk =» Tor}‘ (S, k) for j<i. The above
information gives a relation in TorR (S, k) but TorR (S, k) is supposed to be a
free I'-algebra.
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