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ARITHMETICAL QUADRATIC SURFACES
OF GENUS 0, I

J. BRZEZINSKI

Introduction.

Let A be a Dedekind ring with perfect residue class fields k(p)= A/p for all
prime ideals p € S=Spec (4), p=+ (0). Let F be the fraction field of 4, and E a
finitely generated regular extension of F of genus 0. An S-scheme a: M — S is
a model of E/A if o is proper, dominant, and the induced map a*: R(S)
— R(M) of the fields of rational functions on S and M is an injection of
F(=R(S)) into E(=R(M)). A model a: M — S is regular if the scheme M
is regular. A regular model a: M — § is called relatively minimal if every
S-morphism ¢: M — M’, where o': M’ — S is a regular model of E/A, is
an isomorphism.

Since A is a Dedekind ring, and the S-models M of E/A4 have dimension two,
they may be called arithmetical surfaces.

The existence of relatively minimal models, when the extension E/F has
arbitrary genus, was proved in [28]. If the genus is greater then 0, then all
relatively minimal models of E/A are S-isomorphic ([28, p. 155]). The same
result is true when the genus of E/F is 0 and A is a discrete valuation ring ([4]).
However, for arbitrary Dedekind rings A and extensions E/F of genus 0, there
are usually many non-isomorphic relatively minimal models ([9]).

The aim of this paper is to investigate some properties of birational maps
between relatively minimal models of the extension E/A, or more generally,
such maps between regular quadratic models of E/A4, where a regular quadratic
model is a regular model a: M — S such that each fiber M, = M x s Spec (k(p))
is a form of a projective line or a form of two intersecting projective lines over
k(p). Relatively minimal models have in fact this property, and a local
description of such models by certain quadratic forms motivates the term
“quadratic model” ([1], [2], [3] and Section 3). For a regular quadratic model
M, the number of prime idelas p of A such that M, is a form of two intersecting
projective lines over k(p) is finite ([28, p. 123]). We shall denote by d(M) the
product of all such p. Note that two regular quadratic models M and M’ are
locally isomorphiic if and only if d(M)=>d(M’) ([3, Theorem 3] when char (F)
%2 and Theorem (4.5) of Section 4 in the general case).
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If M and M’ are regular models of E/A, then every birational map ¢:
M — M'’is a composition of a finite number of blowing-ups (and blowing-downs)
([28, p. 55]). If M and M’ are regular quadratic models and p * d(M), then we
say that a birational map ¢: M — M’ (or simply M’) is an elementary
transformation of M if o =16~ !, where : M* — M is a blowing-up of M at a
k(p)-rational point x € M, and the strict transform of x under ¢ is contracted
to a point of M’ by the blowing-up 7: M* — M'. If M and M’ are relatively
minimal models of E/A, we prove (Theorem (4.11)) that there is “a path” of
elementary transformations from M to M’, which means that there is a
sequence of relatively minimal models My=M,M,,...,M, =M’ such that
M, is an elementary transform of M, for 0<i<n.

This result and others concerning regular quadratic models of E/A are
proved by using a one-to-one correspondence between the isomorphism classes
of regular quadratic models of E/A and the isomorphism classes of hereditary
A-orders in a quaternion algebra Q(E/A) corresponding to the extension E/A
(Section 4). We prove that if a regular quadratic model M of E/4 and a
hereditary A-order A correspond to each other, then for each p ,}’ (M), there is
a one-to-one correspondence between the k(p)-rational points of the fiber M,
and the integral (left) A-ideals with norm p. In this correspondence, elementary
transformations at two points give isomorphic models if and only if the right
orders of the left ideals corresponding to these points are isomorphic (Theorem
(4.7)). If M is a regular quadratic model and 4 is a principal ideal ring, this
result gives an arithmetical characterization of all prime ideals p,}’b(M) such
that an elementary transformation at a k(p)-rational point of M leads to a
regular quadratic model isomorphic to M: p=(p) has this property if there is
r € A, (r)| d(M), such that rp is represented by a certain quaternary quadratic
form (Theorem 4.9). If A=Z is the ring of integers, we get a connection with
some old classical problems concerning representations of integers by integral
quaternary quadratic forms (Section 5).

The correspondence between regular quadratic models of E/A and
hereditary A-orders in Q(E/A) goes via A-lattices on the quadratic space
Qo(E/A) consisting of the quaternions whose trace is equal to 0, and with
quadratic structure defined by the reduced norm on Q(E/A) restricted to
Qo(E/A). Various geometrical properties of quadratic models of E/4 may be
considered as arithmetical properties of A-lattices (quadratic forms) on the
quadratic space Q,(E/A4), or algebraical properties of A-orders in the
quaternion algebra Q(E/A). The last connection, between A-lattices on
Qo(E/A) and A-orders in Q(E/A), is well-known and has been investigated in
many papers (e.g. [18], [5], [20], [11], [21]). We hope that the geometrical
point of view will add a new dimension to these classical results.

Section 1 contains some technical facts concerning lattices on ternary
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quadratic spaces. In Section 2 we discuss relations between geometrical
properties of models and arithmetical properties of lattices, and in Section 3 we
go from lattices to orders. Section 4 contains proofs of the main results of the
paper presented in this Introduction. In the last section we consider the case of
global fields and some examples concerning integral quadratic forms.

1. Lattices on ternary quadratic spaces.

Let A be a Dedekind ring with quotient field F. Let (V,q) be a quadratic
space over F, that is, g: V— F is a mapping satisfying q(ax)=a%q(x) for a € F,
and b(x,y)=q(x+y)—q(x)—q(y) is a symmetric bilinear form. Note that b(x, x)
=2q(x). We shall often write (x,y) instead of b(x,y). Let (V,q) be a ternary
quadratic space. If xo,x,,x, € V, we denote by d(x,, x;,x,) the determinant
det [(x; x;)], and by d'(x, X;, x,) the determinant (3)det [ (x;, x;)], which in the
case of char (F)=2 is understood as:

(X0s X1) (X0, X2) (X1, X5) + 4 (X0) (X1, X2)% + G (x,) (X0, X2)* +q(x2) (Xg, X;)* .

We say that (V, q) is regular if d(e,, e,, €,) 0, and half-regular if d'(e,, e,,e,) +0,
where e, e,, e, is a basis of V ([17, (1.15) and (2.14]). Throughout the whole
paper, we shall assume that the ternary quadratic space (V,q) is half-regular.

By an A-lattice on V we mean a finitely generated projective 4-module L
contained in V and such that FL=V. The norm n,(L) of the lattice L is the A-
ideal in F generated by g(x) for x € L. The volume v4(L) is the A-ideal in F
generated by d’'(xq, X, X,), where x,, x;, x, are arbitrary elements of L. If Lis a
(free) lattice over a principal ideal ring A, e, e,, e, a basis of L and n4(L)= (a),
a € F*, then we say that the quadratic form:

(1.1) qL = (l/a)<Z qe)Xi+ 3 b(ebej)Xin)
i i<j
corresponds to L.
By the reduced determinant of L, we mean the ideal

(1.2) D4(L) = va(Lng(L)>.

It is easy to see (e.g. by looking at the forms g, corresponding to the localiza-
tions L, of L over A, for p € Spec (4)), that d,4(L) is an integral ideal of 4.

The A-lattices L and L' on V are isometric if there is an isometry ¢: V — V
(that is, g(ox) =q(x) for x € V) such that gL=L'". L and L’ are similar of there is
an A-ideal a in F such that L and aL’ are isometric. It is easy to check that the
ideal d,(L) does not depend on the choice of a lattice in the similarity class of
L. Moreover, if (V2 ¢ denotes the quadratic space (V, q) scaled by a € F*, that
is, V=V and ¢“(x) =aq(x), then d,(L?)=Dd4(L), where L denotes the lattice L
considered on the quadratic space (V*,q°.
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If L and L' are A-lattices on V, then [L: L] denotes the product of the
invariant factors of L’ in L, that is, if {e;} is a basis of V such that L= @ a,e; and
L'= @ aje;, where a,, a; are A-ideals in F ([19, 81:11]), then [L:L"]=[T1aja; *.
It is easy to check that:

(1.3) v,(L) = [L: L')%0,(L).

Note that Lo L’ and [L:L']=A imply L=L".

We say that L is a hereditary lattice if D ,(L) is square-free. This terminology
is justified by the fact that the hereditary A-lattices on (V, q) are in one-to-one
correspondence with the hereditary A-orders in the even part of the Clifford
algebra C(V,q) of (V,q) (see (3.6)). Sometimes the hereditary order
corresponding to such a lattice is maximal, and then it would be motivated to
call the lattice maximal. However, according to the accepted terminology, a
lattice L on V is maximal if L'> L and n,(L')=n4(L) imply L' = L. In fact, from
(1.2) and (1.3), we get easily:

(1.4) PROPOSITION. A hereditary lattice is maximal.

If the residue class fields k(p)=A/p are perfect for all prime ideals
p € Spec (A), p=* (0) then the converse of this statement is also true. If F is a
global field and char (F)=2, then using the description of maximal lattices
given in [13, Satz 9.5 and Satz 9.7], we get by a direct computation that d (L)
is square-free for any A-maximal lattice L. A similar proof can be given in the
general case, but it is easier to give a proof based on the relations between
hereditary lattices and hereditary orders developed in Section 3. In the sequel,
we shall not use the fact that maximal lattices are hereditary.

In the remaining part of this section (with one clear exception), we shall
assume that the ring A is a discrete valuation ring with maximal ideal p = (n). If
(V,q) is a quadratic space, we write (x,y) instead of b(x,y). We shall omit the
subscript A in ny,v4,D4.

(1.5) LeMMA. Let L°c L be two A-lattices on the quadratic space (V,q). Let
L°& L and d(L)= A.

(@) If d(L® = (n), then there is a basis ey, e,,e, of L and a natural number
a2l such that L°=Aey+ Ane,+An**"'e,, q(ey) € n** 'n(L) and
(eos €;) € ™~ *n(L). Moreover, n(L%)=nr?*"'n(L).

(b) If eg,e,e; is a basis of L such that q(ey) € n** 'n(L) and
(eos ;) € m*~'n(L), then L® = Aey,+ An’e, + An** e, is a hereditary sublattice
of L and d(L% = (n).

Proor. (a) We can choose a basis e, e,,e, of V such that

L = Aey+ Ae, + Ae,, L° = Aey+ Ane,+Ane, and a<bh
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([19, 81:117). Then (L) =n2*¥p(L). Let n(L%)=nn(L), ¢=0. By (1.2), D(L°)
=n?9*2b=39(L), so 2a+2b=3c+1. Since the possible values of ¢ are
0,a,b,2a,2b or a+ b, we get, using the last equality, that c=b. Hence b=c=2a
—1 and a21. Now n(L%=n?"!'n(L) implies gq(e,) € n** 'n(L) and
(eg, ;) € " n(L).

(b) Let L°=Aey+ An’e, + An**~'e,. Then v(L%)=n?>3~Vy(L) and n(L°)
=mn‘n(L), where, by the assumptions, ¢ =2a— 1. Since d(L°)=n5"2"3D(L), we
have ¢<2a—1. Therefore c=2a—1, so d(L%)= (n).

(1.6) COROLLARY. Let A be complete relative to the p-adic topology. If there are
hereditary A-lattices L and L° on V such that d(L)= A and d(L°) = (r), then (V,q)
is isotropic.

Proor. Multiplying the lattice L° by a suitable A-ideal in F and scaling the
quadratic space (V,q) by an element of F* we may assume that L°4¢ L and
n(L)=A. By (1.5),

L = Aey+Ae, +Ae,, L° = Aey+Ane +An** e, ,

where a=1, q(ey) € (n12*7Y), (eg,ey) € (n°~ 1) and n(L%)=(n?*"1). Let q;=
Y a;X;X;, where 0Si<j<2, a;;=(e,e) for i#j and a;=q(e). If o=
2 b; XX, then boo=1"""Vagy, byy =mayy, by =1"""ay,, boy=n""“"Vay,,
by, =ay, and b,, =n"a,,. Suppose n|b,, and n|by,. Then = |ay, for i=0,1,2,
and the assumption d(L)=A gives a contradiction. Therefore m by, or
n f bo,. Since

qro = booX3+bo1 XX +boyXoX, (mod7),

g0 has non-trivial zeros (0, 1,0) and (0,0, 1) over k(p). By the Hensel lemma, at
least one of these zeros can be lifted to a non-trivial zero of g;o over A.

If L is an A-lattice on the quadratic space (V,q), denote by P*(L/pL) the
projective k(p)-space defined by the linear k(p)-space L/pL. The image of x € L
in L/pL will be denoted by x*, and if x € L\ pL, the corresponding point of
P%(L/pL) by [x*]. There is a quadratic structure on the linear space L/pL
defined by g,(x*)= (1/n")q(x) (mod n), where (z")=n(L). We say that a point
[x*] of P*(L/pL) is isotropic if x* is a (non-trivial) zero of the form g,. Note
that x € L defines an isotropic point of P?(L/pL) if and only if x € L\ pL and
q(x) € pn(L).

(1.7) PROPOSITION. Let L be a hereditary lattice on the quadratic space (V,q)
and d(L)= A.

(a) If L® is a hereditary sublattice of L and [L: L°]=p?, then there is a basis
€o,e,,e; of L such that L°= Ae,+ Ane, + Ane, and q(ey) € pn(L). Moreover,
(L% =pn(L) and d(L°)=p.
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(b) If L= Aey+ Ae, + Ae, and q(e,) € pn(L), then L° = Ae,+ Ame, + Amne, is
a hereditary sublattice of L and [L: L°]=p>.

(c) (@) and (b) define a one-to-one correspondence between the hereditary
sublattices L° of L such that [L: L°]=p? and the isotropic points of P?(L/pL).

PRrOOF. (a) Let ey, e,,e, be a basis of L such that L°= Ae,+ An, + An’e,,
where a<b and a+b=2. If n(L)=nn(L°), then d(L°) =n*"3d(L). Hence c=1,
so we can apply the first part of Lemma (1.5).

(b) Follows immediately from the second part of Lemma (1.5).

(c) If L° is a hereditary sublattice of L, then by (a), e, defines an isotropic
point of P?(L/pL). It is easy to check that another choice of bases of L and L°
defines the same point of P*(L/pL).

Conversely, if [x*] is an isotropic point of P>(L/pL), then x € L\ pL and
q(x) € pn(L). Hence there is a basis e, =x,e,,e, of L and by (b), ¢, defines a
hereditary sublattice L° of L. We check that L° does not depend on the choice
of e; and e,, as well as on the choice of another element x’ € L defining the
point [x*] of P?(L/pL).

Now the desired result follows easily.

We end this section with a result concerning ternary lattices over arbitrary
Dedekind rings. We already use this result in the next section, but we prove it
later (see (3.12)).

(1.8) LEMMA. Let Lo L° be hereditary A-lattices on the quadratic space (V, q).
If [L: L°)=p?, then there is precisely one hereditary lattice L' # L such that
L'>L and [L': L°)=p2 Moreover, d(L)=D0(L).

2. Lattices and models.

Let A be a Dedekind ring with quotient field F, and (V,q) a half-regular
ternary quadratic space over F. We denote by X the sheaf of A-modules
associated with an A-module X, where 4 denotes the structure sheaf on §
=Spec (4). Let L be an A-lattice on (V,q), and a an A-ideal in F. If U is an
open subset of S, we may assume that

L= NL, ad &U) = N a,,
pelU pelU

where all the localizations L, (respectively a,) are contained in V (respectively
F).

The lattice L defines an isomorphisms class of projective S-schemes in the
following way. We choose an open covering of S such that for each open set U
of this covering both L(U) and n(L) (U) are free A(U)-modules. The quadratic
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form qy, corresponding by (1.1) to a basis of L(U) over A(U), belongs to the
polynomial ring A(U)[X], where X stands for X 0 X1, X,, and defines a
projective A(U)-scheme.

21 ay: Proj (A(U)[X1/(qu)) — Spec (A(U)),

where ay; is induced by the natural injection 4(U) — A(U)[X]/(qy). If U and
U’ are two arbitrary open sets of the covering, there is a natural A(U N U’)-
isomorphism ¢y of Proj (4(U N U)[X1/(qy)) onto Proj (A(U N U X1/(qy))
induced by the equivalence of the quadratic forms g and g over A(U N U").
Now we can glue the morphisms (2.1) along the isomorphisms ¢ . We shall
denote by

(2.2) o M(L) — Spec (A)

any Spec (A)-scheme obtained in this way.

Let us note that if (V,q) is a half-regular ternary quadratic space, the field
E=R(M(L)) of rational functions on M(L) is a regular finitely generated
extension of genus 0 of the field F, and (2.2) is a model of E/A.

The S-scheme M (L) need not be regular, but we have:

(2.3) ProrosiTioN. M(L) is regular if and only if L is hereditary.

Proor. [3, Theorem 2].

Now let L, and L, be two A-lattices on (V,q) and let L, >L,. We may
choose an open covering of S such that for each open set U of this covering,
L,(U) and n(L)) (U), where i=1,2, are free A(U)-lattices. Let M(L;) be the S-
scheme obtained by glueing the projective schemes corresponding to a choice
of a basis of L,(U) for each U. If U, is an open set of the covering, the matrix
expressing the chosen basis of L,(U,) by the chosen basis of L,(U,) defines a
graded homomorphism of graded rings, 4(Uo)[X]/(4f}) into AWUNXY @),
and hence a birational map

(2.4) Proj (A(Uo)[X1/(af) — Proj (A(Uo)[X1/(aF)) -

We shall say that the birational S-map from M(L,) to M(L,), defined in this
way, corresponds to the pair of lattices L, L,.

(2.5) ProposITION. Let M (L) be a regular S-scheme defined by a hereditary A-
lattice L on the ternary quadratic space (V,q). Let p € S, p+0 and p*b 4(L).

(a) There is a one-to-one correspondence between the k(p)-rational points of
the fiber M(L), and the hereditary sublattices L° <L such that [L: L°]=p>.

(b) If L? is a hereditary sublattice of L corresponding by () to a k(p)-rational
point x of M(L),, then M (L®) is a blowing-up of M(L) at the point x.
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(c) Let L' be the second hereditary lattice on (V,q) such that L'+ L, L' > L°
and [L': L°]=p? (see (1.8)). Let 6: M(L®°) — M(L)and ¢': M(L®) — M(L’) be
blowing-ups corresponding by (b) to the pairs of lattices L°, L and L°, L'. Then
a'c ™! is an elementary transformation of M (L) at a k(p)-rational point of M (L),

ProoF. (a) Let q,, be a quadratic form corresponding to L,. Since M(L),
= Proj (k(p)[X]/(qL), where g}, is the image of g;, under the canonical
homomorphism A[X] — k(p)[X], there is a one-to-one correspondence
between the k(p)-rational points of M(L), and the isotropic points of
P*(Ly/p.,). By (1.7) () the isotropic points of P?(L,/p,,) are in one-to-one
correspondence with the hereditary sublattices L{, <L, such that [L,: L{,]
=p?4,. Now, LY, over A4, uniquely defines a lattice L° over 4 such that LJ
=Ly and Ly=L, for q€ S, q%p. Thus L® is a hereditary A-lattice and
[L: L°]=p? Conversely, each hereditary sublattice L° of L such that [L: L°]
=p? (uniquely) defines its localization L) < L, which is a hereditary sublattice
of L, such that [L,: L] =p?4,.

(b) Let eg, e,, e, be a basis of V such that L =a4e,+ a,¢, +a,e, and L°=a,e,
+a;pe, +a,pe, ([19, Theorem 81:11] and Proposition (1.7)). We may assume
that L,= Ayeo+ Aye; +Aye;, and then,

L) = Ayeo+Ayme, + Ayme,,  where pA, = (7).

Define o;: M(L) » S and o;0: M(L°) — S by an open covering of §
containing a neighbourhood U, of p such that ey, e,, e, is a basis of L(U,), and
€0, e, , e, is a basis of LO(U,). Let : M(L®) — M (L) be the S-birational map
defined on an open subset of ao' (U,) by the chosen bases of L(U,) and L°(U,).
If ge S, q=+p, then L2=Lq, so there is a neighbourhood U, of q such that
o|ap' (Uy) is represented by an isomorphism of azo' (Ug) onto a; '(U,). We
have to examine ¢ in a neighbourhood of a0 (p), so we may assume that 4 is a
discrete valuation ring, L = Ae, + Ae, + Ae, and L° = Ae,+ Ame, + Ane,, where
p=(n) is the maximal ideal of 4. Let

M(L) = Proj (A[xo,x,x,]) = Proj (4[Xe, Xy, X,1/(q)

and
M(L% = Proj (Alye, ¥1,¥2]) = Proj (A[Y,, Yy, Yz]/(‘lL")) s

where q; and g, are the quadratic forms corresponding to the chosen bases of
L and L°. We have to show that the birational map o: M(L°) — M (L) induced
by the homomorphism o,: A[xq, X;,X,] — Al[Ye,¥1,¥2] such that

(2.6) 0o(X0) = Yo, Go(xy)) = my;, 6o(x) = my, .

is a blowing-up of M (L) at the point x € M (L), corresponding to the sublattice
L° of L.
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Let a;;=b(e;e)), for i+j, and a;=q(e). It follows from (1.7) (a) that m|ag,.
Let ago=mbgg, bgo € A. We have

(2.7 qro = booY5+ao, YoY, +ao, Yo Y, +mg(Y,, Y,),

where g € A[Y,, Y,, Y,]. Since (n) } d4(L), we get n } ag, or m } ap,. Thus the
fiber M(L), is an intersection of two projective lines corresponding to the ideals
(m, o) and (m, booyo + 1Yy +ao2y2) of Alye,y1,y2)-

It is easily ‘verified that ¢ is regular at all points of M(L®) not on the line
(m,y,). Using (2.6), the equality yo(booyo+ao1y:+ao2y2)=mng(yy,y;) in
A[Y0,1,¥,], and the fact that () } (L), it is a matter of easy computations to
show that ¢ is also regular on that line.

Now we check that there is only one point at which ¢~! is not regular,
namely, the point (=, x,, x,), and that this point is just the image under o of the
projective line (m, byoyo + g1 Yy + o2Y2)-

It follows from (1.7) (c) that the k(p)-rational point x € M (L), corresponding
to L is defined by the zero (1,0,0) of g, that is, by the ideal (m,x,,x,) of
A[xo,x,,%,]. Hence ¢ is a blowing-up of M(L) at the k(p)-rational point
x € M(L), corresponding to L°.

(c) Let L'=Ae,+ Ae} + Aé,, L° = Aey, + Ane) + Ane), and
(28) (eOs ey, neZ) = (36, ne,b neIZ)P )

where P is an invertible matrix with elements in A. In the basis e, ne,, me,, the
two primes in the fiber M (L°), are described by the points (yo,y;,y,) such that
booyo + ao1¥1 +do2y, =0 (the prime blown down to a point of M (L)) and y,=0
(the second prime). In the basis e}, ne}, ne,, the same two primes are described
by the points (y,,y},)?) such that byoy,+ doyy; +dp,y2 =0 and y, =0, where
aj;, by, are defined for L°< L’ as a;;, by, in (2.7) for L°cL. We want to show
that the prime blown down to a point by ¢’ is not the same as the one blown
down to a point by g. If they are equal, the sets of points of L characterized by
yo=0 and y, =0 are equal. Then, by elementary considerations, we get from
(2.8) that ¢; can be expressed over A4 by e}, that is, L L’. By symmetry, we get
L=L', which is impossible.

3. Lattices and orders.

Recall that if (V,q) is a quadratic space over the field F, then the Clifford
algebra C(V,q) of (V,q) is the F-algebra T(V)/I, where T(V)=@®;, Ti(V) is
the tensor algebra of V, and I is the ideal of T(V) generated by the elements
x®x—q(x), x € V. We are interested in the subalgebra Co(V,q) of C(V,q)
which is generated by 1 € T°(V)=F and the images in C(V, q) of the products
xX® ... ®x, € T¥(V), for r>0, which will be denoted by [x,,...,x,,].
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Let, as earlier, A be a Dedekind ring with quotient field F and L an A-
lattice on the quadratic space (V,q) over F. We shall denote by O(L) the A-
order in C,(V,q) (that is, a subring of C,(V,q) containing A an finitely
generated as an A-module) corresponding to L. O(L) is generated as an A-
module by the elements 1 and a[x,,...,x,,], where x; € L, a € F and an (L)
<A ([13, Satz 14.1]).

(3.1) ProrposITION. If L and L' are two lattices on (V,q), then O(L)=O(L)) if
and only if L'=aL, where a is an A-ideal in F.

Proor. [13, Satz 14.1].

If (V, q) is a half-regular ternary quadratic space over F, then Q=C,(V,q)is a
generalized quaternion algebra over F, that is, Q is a central simple F-algebra
of dimension four ([17, (6.11) and (5.21)]). Q has an involution a + a* such
that the trace T(a)=a+a* and the (reduced) norm N(a)=aa* are elements of
F([17, (5.9)]). If X is an A-lattice in Q, we denote by N(X) the A-ideal in F
generated by the norms N (x), where x € X.

Let A be an A-order in Q. Since the discriminant of any basis of Q is a square
of an element of F, the discriminant of A is a square of an ideal of A ([24, pp.
218, 2217). Denote by d 4(A) (or simply d(A)) the squareroot of the discriminant
of A. By n,(A) (or simply n(A)) we denote the ideal N(A%)~!, where A* is the
complementary ideal of A, that is, the set of x € Q such that T(Ax)< A.

If A and A’ are A-orders in Q, then

(3.2 b(A) = [A": AJp(A)

where [A’: A] denotes, as earlier in (1.3), the product of invariant factors of A
in A’, both considered as A-lattices.

Let Q, be the subspace of Q consisting of all x € Q such that T(x)=0. We
shall consider Q, with quadratic structure defined by the norme N restricted to
Q,. It is easy to check that (Q,, N) is half-regular, and Cy(Q,, N)=Q, where an
isomorphism is given by [x,y] — xy* ([21, p. 343]).

If A is an A-lattice on Q,, then O(L) is an A-order in Q and

(3.3) d(D(L) = n(D(L) = d(L)

([21, Satz 7] and [29]).
If A is an A-order in Q, we define the corresponding A-lattice on Q, by

3.4) L(A) = n(A)(Q, N A% .
It is easy to check that
(3.5 n(2(4)) = n(4) and d(L(A)) = n(A)>d(4)"2.
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Recall that A is a hereditary order if every (left) ideal of A is A-projective.

(3.6) ProrosiTION. (a) The maps
L— O(L) and A— 2(A)

define a one-to-one correspondence between the A-lattices on Q, such that d(L)
=n(L) and the A-orders in Q such that d(A)=n(A).

(b) If A is a hereditary order in Q, then d(A)=n(A). Moreover, d(A) is a
square-free ideal of A.

(c) A lattice L on Q, is hereditary if and only if the order O(L) in Q is
hereditary.

(3.7) REMARK. If A is an A-order in Q, then d(A)=n(A) if and only if A4 is a
Gorenstein order ([29, Proposition 2.4]).

(3.8) REMARK. Since the discriminant of any basis of Q is a square of an
element of F, the volume v(L) of an A-lattice L on Q,, defined in Section 1, is a
square of an A-ideal in F. Using this fact and the definition of d(L), we get

easily that for each A-lattice L on Q,, there is an A-ideal a in F such that d(aL)
=n(aL).

Proor. (a) If L is an A-lattice, then O(L) is an A-order satisfying (3.3). If L
and L' are two A-lattices such that d(L)=n(L) and d(L)=n(L"), then by (3.1),
the equality O(L')=O(L) implies L' =aL, where a is an A-ideal in F. Since d(L’")
=n(L)=a*n(L)=0a?d(L) and d(L)=d(L), we get a= A4, thatis, L'=L.If A is an
A-order such that d(A)=n(A), then L=n(L)(Q, N A¥) is an A-lattice on Q,, and
d(L)=n(L) by (3.5). Moreover, A=0(L) by Theorem 3.4 of [29].

(b) We may suppose that A is a complete discrete valuation ring with
maximal ideal p = (n) ([24, (40.5)). If A is maximal, then d(A)=n(A)=4 or (n)
([24, (25.2) and (25.4)]). If A is not maximal, then 4 = A’, where A’ is a maximal
order. In that case, Q can not be a skewfield, so Q is isomorphic to the matrix
algebra M, (F). Since A is a hereditary, non-maximal order, A is isomorphic to
the order A° consisting of all the matrices

b
(3.9) [:C d] ,

where a,b,c,d € A ([24, (39.14)]). By an easy computation, we get d(A°)
=n(A%=(n), so the same is true for A. Note that d(A) is square-free.

(c) If O(L) is hereditary, then d(O(L)) is square-free by (b). But by (3.3), (L)
=0d(D(L)), so L is a hereditary lattice.

Conversely, let L be a hereditary lattice. We may assume that d(L)=n(L)

Math. Scand. 46 — 13
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((3.8)) and that A is a complete discrete valuation ring with maximal ideal
p= (n) ([24, (40.5)]). Note that d(A)= A or (n), where A =DO(L). If A is maximal,
then it is hereditary. Assume A is not maximal, and A’ is a maximal order
containing it. By (3.2), d(A’)=A and d(A)=(n). Let L'=£(A’). We have d(L')
=A and d(L)= (n). By (1.6), (Qo, N) is isotropic, so Q is isomorphic to the
matrix algebra M,(F) ([17, (5.21)]). Let A° be the hereditary order of all
matrices (3.9), and L°=£2(4°. We have d(L)=n(L)=(n) and d(L°)=n(L°)
= (m), so the lattices L and L° are maximal (in the sense of (1.4)) and have the
same norm. Therefore L and L° are isometric ([17, (15.6)]), which implies that
the orders O(L) and O(L°) are isomorphic. This proves that O(L) is hereditary.

(3.10) CoroLLARY. Two A-lattices L and L' on Q, are similar if and only if the
A-orders O (L) and O(L') in Q are isomorphic.

Proor. If L and L’ are similar, then O (L) and O (L) are isomorphic by (3.1)
and [13, Satz 14.3].

Conversely, let A=90(L) and A’'=0O(L’) be two isomorphic orders. By (3.1)
and (3.8), we may assume that d(L)=n(L) and d(L')=n(L'). If A’=aAa™", then
L'=aLa"! by (3.4) and (3.6) (a). Since the mapping x — axa~!, x € Q induces
an isometry of (Q,, N), we get the desired result.

(3.11) ProposiTiON. (a) If L° and L are hereditary A-lattices on Q, such that
L°cL and [L: L°]=p?, then O(L°)cO(L) and [O(L): O(L%]=p,

(b) If A° and A are hereditary A-orders in Q such that A°c A and [A: A°] =p,
then 2(A°%) <= L(A) and [L(A): L(A%)] =p2

Proor. (a) Since d(L°)=d(L)p by (1.7) (a), the equality [O(L): O(L%]=p
follows from (3.2) and (3.3). By (3.8) we can assume that d(L)=n(L). Since Lg
= L, when q #p, we have only to prove that D(Lo)pCD(L)p, SO we may assume
that A is a discrete valuation ring with maximal ideal p = (n). Then by (1.7) (a),

L=Aey+ Ae, + Ae,, L° = Aey+ Ame, + Ane, ,

n(L)=A and n(L%= (n). It is easy to see that the order O(L)c= Cy(Qo, N) is
generated, as an A-module, by 1, [eq, e,], [eo, e,] and [e,, e,]. Denote f, =e,, f;
=me,, f,=me,. Then, since n(L% = (n), O(L°) is generated as an A-module by
the elements 1 and (1/n)[ f,, f;], where 0<i< j<2. But (1/n)[f, f;] € O(L) if i
#0 or j*0, while (1/m)[ fo, fol= (1/m)[eq, €01 = (1/7)N (e,) € A by (1.7) (a).

(b) By (3.2), b(A% =Dbd(A)p. Therefore the equality [£(A): £(A4°)]=p? follows
from (1.2), (1.3), (3.3) and (3.6). Since A°<=A and pA < A°, we get p(A°)F <= A*.
By (3.5), n(A4%)=0(A%)=d(A)p =n(A)p, so we have
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n(A)p(Qo N (A%) = n(A)(Qo N 4%,
that is, £(A4% < £(A).

Now, as an application, we shall prove Lemma (1.8).

(3.12) ProoF oF LEMMA (1.8). If Q= C,(V, q), then (Q,, N) is similar to (V, g),
which means that there is a € F* such that (Q,, N) and (V?, ¢°) are F-isometric
([17, (5.20)]). Therefore we can assume that L and L° are hereditary A-lattices
on Q, such that [L: L°]=p?2. Replacing L and L° by aL and aL° for a suitable
A-ideal a in F, we can assume that d(L)=n(L), and then, d(L%)=n(IL°) by (1.7)
(a). Since A°=9O(L®) is a hereditary, non-maximal A-order in the central
simple F-algebra Q, there are exactly two hereditary A-orders A and A’
containing it and such that [A: A°]=[A": A°]=p ([24, (40.8)]). O(L) is one of
these orders, say A. Let L'=2(A"). Then L'+L, L'>L° and [L': L°]=p? by
(3.11) (b). It follows from (3.6) (a) that besides L,L’ is the only A-lattice
satisfying these properties.

4. Models and orders.

Throughout this section, A denotes a Dedekind ring with perfect residue
class fields k(p)=A/p for all prime ideals p € S*=Spec (4)\ (0), F is the
fraction field of A4, and E is a finitely generated regular extension of F of genus
0. E is the field of rational functions on a non-singular conic q(X,, X, X,)=0
in P?(F), where q is a (half-regular) quadratic form over F ([28, p. 68]). We
may assume that

(X0, X1, X,) = aX?+bX, X, +cX3-X3,

where a,b,c € F and b*>—4ac € F* ([17, (2.16)]). Two non-singular conics q,
=0 and g, =0 are F-isomorphic if and only if the quadratic forms g, and g, are
similar, that is, equivalent over F up to a constant factor ([28, p. 70]). Since
two half-regular ternary quadratic spaces (F?, q,) and (F?, q,) are similar if and
only if the algebras Cy(F?,q,) and C,(F3,q,) are isomorphic ([17, (5.20)]), the
extension E/F defines an isomorphism class of quaternion algebras. We shall
denote by Q(E/A) a representative of this class. Note that if E= F(x,y), where
ax*+bxy+cy*=1 and b® —4ac € F*, then the algebra Q(E/A) is isomorphic to
the Clifford algebra of the binary regular quadratic form aX?+bXY +cY?
([17, (5.22))).

As in Section 3, let Q,(E/A) be the subspace of Q(E/A) consisting of all
x € Q(E/A) such that T(x)=0, and considered with quadratic structure defined
by the norm N restricted to Q,(E/A). If E=F(x,y), ax* +bxy+cy*=1 and
b?—4ac € F*, then the S =Spec (4)-scheme



196 J. BRZEZINSKI
M = Proj (A[Xo, X1, X21/(40)) »

where qo=a,X?+a,, X, X, +a,X2+ayX3, aga,,a,a,,€ A and a,/ay=
—a, a,,/ay= —b, a,/a,= —c, is a model of E/A. Since the quadratic form g, is
similar to the quadratic forms corresponding to Q,(E/A) ([17, (5.20)]), each S-
scheme M (L) constructed for an A-lattice L on Q,(E/A) is a model of E/A.

The next Proposition was proved in [9] (when char (F) = 2) using the results
of [1] and [2]. The present proof is based on the properties of hereditary
orders and does not depend on these three papers.

(4.1) ProposITION. Let A be a maximal A-order in Q(E/A), and M(£(A)) an
S-scheme defined by the lattice £(A). Then M(R(A)) is a relatively minimal
model of E/A and d(M(2(A)))=d(L(A))=0d(A).

ProoF. Since A is a maximal order and the residue class fields of 4 are
perfect, the ideal d(A4)=n(A) is a product of all prime ideals p of 4 such that
Q(E/A) is ramified at p ([24, (25.4)]). Let £(A)=L. Since the ideal d(L)=20(A)
is square-free, M (L), is a regular S-model of E/A by (3.1). It suffices to show
that for each p € S*, the fiber M (L), is a form of the projective line P (k(p)) or
a non-trivial form of two intersecting copies of P! (k(p)) ([28, p. 155]). We have

M(L), = Proj (k(p)[Xo, X, X,1/(g2,))

where gf, is the image under the canonical homomorphism A[X,, X,, X,]
— k(p)[Xo, Xy, X,] of a quadratic form g, corresponding to the 4 -lattice L,
If p,{'b(L), then M(L), is a form (trivial or non-trivial) of the projective line
P1(k(p)), since then qf, has rank 3. Let p|d(L)=0(A). We want to show that
the quadratic form q,‘fp is irreducible over k(p), and is a product of two distinct
linear factors over a non-trivial extension of k(p). In order to do this, we can
assume that 4 is a complete discrete valuation ring, p its maximal ideal, and
the quaternion algebra Q(E/A) is a skewfield. We have pA =2, where P is the
maximal ideal of A, and A/PB=K is a quadratic separable extension of A4/p
=k(p). If ¢ is an element of A, whose image generates K over k(p), then A*
= A[£] is a non-ramified extension of 4 and F*=F({) is a splitting field for
Q(E/A). Consider the A*-lattice L*=L® 4A* on the quadratic F*-space
Qo(E/A)®p F*. Since d(L*)=pA* is the maximal ideal of A*, the lattice L* is
hereditary, and consequently, the order O(L*) corresponding to it in the
matrix F*-algebra Q(E/A)®r F* is hereditary and non-maximal. Hence O(L*)
is contained in a maximal order which defines a hereditary lattice L' on
Qo(E/A)® ¢ F* such that L'>L* and [L': L*]=p2A4*. Let M(L*) and M(L)
be Spec (4*)-schemes defined by L* and L'. Since M(L*) is a blowing-up of
M(L') at a k(pA*)-rational point of the fiber M(L'),4», the fiber M(L*), 4+ ;
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consists of two intersecting projective lines over k(pA*). This means that the
quadratic form g; »=¢q; modulo pA* is a product of two distinct linear factors
over k(pA*). To end the proof, let us note that such a factorization is not
possible over k(p). Otherwise, the quadratic form g; would have a non-trivial
zero over F by the Hensel lemma, which would imply that the quaternion algebra
Q(E/A) is not a skewfield ([17, (5.21)]). The last statement of the Proposition
follows directly from the proof.

(4.2) CoroLrary ([1], [2], [4]). All relatively minimal models of E/A are
locally isomorphic.

Proor. We may assume that A4 is a discrete valuation ring with maximal
ideal p. Let L be an A-lattice on the quadratic space Q,(E/A) such that M (L) is
a relatively minimal model of E/A and d(L)=n(L). Using the same inductive
argument as in [1, p. 303], it suffices to show that if M’ is obtained from M (L)
by an elementary transformation at a k(p)-rational point of the fiber M(L),,
then M’ is isomorphic to M(L). If x € M(L), is such a point, and L° the
hereditary sublattice of L corresponding to it by (2.5) (a), then by (2.5) (c), M’
=~ M(L'), where L' is the second hereditary lattice on Q,(E/A) containing L°
and such that [L': L°]J=p% By (3.2) and (3.11), O(L) and O(L’) are two
maximal A-orders in the quaternion algebra Q(E/A). Since A4 is a discrete
valuation ring, the orders O(L) and O(L’) are A-isomorphic ([24, (18.7)]).
Therefore the lattices L and L' are similar (even isometric), and hence, the
models M (L) and M(L)=~M'’ are A-isomorphic.

Since all relatively mininal models of E/A are locally isomorphic, the ideal
d(M) does not depend on the choice of a relatively minimal model M of E/A.
We shall denote this ideal by dg/,. The last statement of Proposition (4.1) and
Theorem (25.4) of [24] imply:

(4.3) COROLLARY. D 4 is the ground ideal of Q(E/A), that is, the product of the
prime ideals of A such that Q(E/A) is ramified at p.

(4.4) CorOLLARY. Let L be a hereditary lattice on Qy(E/A). Then d(M(L))
=d(L). Moreover, d(M (L)) =dg 4m,, where m, is the product of all prime ideals
P € S* such that the hereditary A,-order O(L), is not maximal.

Proor. It suffices to prove the equality when A is a discrete valuation ring.
We may assume that d(L)=n(L). If L is a hereditary lattice on Q,(E/A) such
that O(L) is a maximal order, then M(L) is a relatively minimal model and
d(M(L))=b(L)=bg,4 by (4.1). If A=D(L) is not a maximal order, then there is
a maximal order A’ > A such that [A’: A]=p, where p is the maximal ideal of



198 J. BRZEZINSKI

A. Let L'=2(A’). Then L'>L and [L': L]=p? Thus the S-model M(L) is a
blowing-up of M (L) at a k(p)-rational point of the fiber M(L'), by (2.5) (b).
Since D(M(L'))=0d(L")=Ddg4, d(M(L))=d(M(L")p and d(L)=Dbd(L')p, we get
d(M(L))=bd(L)=Dg,.p.

Now we can generalize Proposition (4.1), Corollary (4.2) and Theorem 1 of

[8]:

(4.5) THEOREM. (a) Each regular quadratic S-model of E/A is isomorphic to an
S-model M(L) for some hereditary A-lattice L on Q,(E/A).

(b) Let m be a square-free ideal of A such that dg;,|m. There is a one-to-one
correspondence between the isomorphism classes of regular quadratic S-models
M of E/A such that d(M)=m, and the similarity classes of hereditary A-lattices
L on Q,(E/A) such that d(L)=m. Hence, by Proposition (3.6), there is a one-to-
one correspondence between the isomorphism classes of regular quadratic S-
models M of E/A such that ®(M)=m, and the isomorphism classes of hereditary
A-orders in Q(E/A) such that d(A)=m.

(c) All regular quadratic models of E/A with the same invariant d are locally
isomorphic.

Proor. (a) Let M be a regular quadratic model of E/A. Then there is an S-
morphism ¢: M — M?*, where M* is a relatively minimal model of E/A ([28,
p. 131]). By Theorem 3 of [7] (the argument there does not depend on the
characteristic of F) and (2.1), M*= M (L*), where L* is a hereditary A-lattice
on Qy(E/A). The morphism ¢ is a composition of blowing-ups at closed points
([28, p. 55]), so by induction, it suffices to show that if M(L) is a regular
quadratic model and a blowing-up of M(L) at a closed point also gives a
quadratic model, then this model is isomorphic to a model M(L°) for some
hereditary A-lattice L°. This follows directly from (2.5) (b), since a blowing-up
of M(L) at a point x of a fiber M(L), gives a quadratic model if and only if
M(L),=P'(k(p)) and x is a k(p)-rational point.

(b) If M(L,) and M(L,) are two isomorphic regular quadratic S-models
of E/A, where L, and L, are hereditary A-lattices on Q,(E/A), then d(L,)
=Dd(L,) by (4.4). Replacing L, and L, by similar lattices, we can assume that
d(L,)=n(L)), for i=1,2, and then, it follows from Theorem 1 of [7] that L, and
L, are isometric. Since similar hereditary A-lattices L on Q,(E/A) define S-
isomorphic models M(L), and every regular quadratic S-model of E/A is
isomorphic to a model of this form by (a), the proof is completed.

(c) We can assume that A is a discrete valuation ring. Let M, and M, be two
regular quadratic models and let M;=M(L,), for i=1,2, where L, is a
hereditary A-lattice. If d(M,)="0d(M,), then d(L,)=D0(L,) by (4.4), so d(D(L,))
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=d(O(L,)) by (3.3). Hence the hereditary orders O(L,) and O(L,) are both
maximal or both hereditary non-maximal, which means that the p-adic
completions of O(L,) and O(L,) are of the same type ([24, p. 360]). By
Theorem 4.2,4) of [14], these orders are A-isomorphic. Hence the lattices L,
and L, are similar, and consequently, the S-models M(L,) and M(L,) are S-
isomorphic.

(4.6) REMARK. A more “geometrical proof” of Theorem (4.5) (c) was given in
[3, Theorem 3] when char (F)=*2. In our “algebraical proof” we use the
property of hereditary orders in quaternion algebras which says that two
hereditary orders of the same local type are locally isomorphic. The third
possibility is “an arithmetical proof” using the fact that two maximal lattices
(in the sense of (1.14)) of the same norm are locally isometric ([17, (156)]). In
fact, with the same notations as in (c) above, we may assume that d(L;))=n(L,)
for i=1,2 by (3.8). Then the lattices L, and L, are maximal by (1.4), and have
the same norm. Hence they are isometric, so the models M(L,) and M(L,) are
S-isomorphic.

Let I be an A-lattice on Q(E/A). The right order of I is defined as
0,(I) = {x e Q(E/A) | Ix<I}.

This is an A-order in Q(E/A). Similarly, O,(I) denotes the left order of I. If A
and A’ are two A-orders in Q(E/A), we define the right distance ideal from A’ to
A as

D,(A,4) = {x e Q(E/A)| A'xcA}.

This is the largest ideal in the set of all A'-left and A-right ideals contained in A.
Similarly, D,(A4’, A) denotes the left distance ideal from A’ to A. We say that a
left (or right) A-ideal B is integral if P is contained in A. P is called A-regular if
0,(P)=A.

If M is a regular quadratic model of E/A and M=~M(L), where L is a
hereditary A-lattice on Q,(E/A), we shall say that the hereditary order A
=9O(L) corresponds to M.

(4.7) THEOREM. Let M be a regular quadratic S-model of E/A, and let A be a
hereditary A-order in Q(E/A) corresponding to M. Let p € S*, p ¥ D(M). Then
there is a one-to-one correspondence between the k(p)-rational points of the fiber
M, and the integral left A-ideals with norm equal to p such that elementary
transformations at two k(p)-rational points of M, give isomorphic models if and
only if the right orders of the left ideals corresponding to these points are
isomorphic (as A-algebras).
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Moreover, the right order of the left ideal corresponding to a k(p)-rational
point of M corresponds to any model obtained by an elementary transformation of
M at this point.

ProOF. Let x € M, be a k(p)-rational point and let L° be the hereditary
sublattice of L =2(A) corresponding to the point x by (2.5) (a). Let L’ be the
second hereditary lattice on Q,(E/A) containing L° and such that { L': L°]
=p? (see (1.8)). If A°=O( L°) and A'=O(L'), then [4: A°]=[A": A°]=p and
A°=ANA by (3.11). Let B be the left distance ideal from A’ to A. We have

4.8) P = (44" and N(AA)Y) =[4:4NA].

Both equalities can be checked locally. If q € S* and q#p, then A,=A;=A],
while 4, and A, are maximal A4 -orders, and in this case the equalities can be
easily proved ([10, VI, § 2, Satz 15]). Now we see that N(P)=[4: A°]=p. Let
B be the integral left A-ideal corresponding to the k(p)-rational point x € M,

Conversely, let B be an integral left A-ideal such that N(P)=p. Let A’
= 0,(P) be the right order of B. We want to show that both A’ and A°=A4N A’
are hereditary orders in Q(E/A) and [A: A°]=[A": A°]=p.Ifq € S* and q*p,
then A,=A, Since N (‘B)=p,|' d(4), B, is not a two-sided ideal of A4 ([24,
(17.3)]), so 4, and A, are two distinct maximal A4, -orders. Therefore A’ is a
hereditary order ([24, (40.5)]), A’ # A and the left distance ideal from A’ to A is
equal to (A’A)™!. Since P (A'4)"! and N(P)=p, we get P=(A4'4)"". Hence
by (4.8), [A: A°]=[A": A°]=p, where A°=ANA". Since d(A°)=d(A)p and
p* d(A), A° is a hereditary suborder of A by (3.6). Now, let the k(p)-rational
point x of M, corresponding to the integral left A-ideal B be defined by the
hereditary sublattice L°=2(A°) of L.

Note that A'=0( L'), where L’ is the second hereditary lattice on Q,(E/A)
such that L'> L° and [ L': L°]=p>

It is easy to see that distinct k(p)-rational points of M, define distinct
integral left A-ideals, so it remains to show that elementary transformations at
two k(p)-rational points x,,x, € M, give isomorphic models if and only if the
right orders of the integral left A-ideals 98, and B, corresponding to these
points are isomorphic. Let L?, where i=1,2, be the hereditary sublattice of L
corresponding to x;. If M; is a model of E/4 obtained by an elementary
transformation of M at x,, then M;~M( L)), where L;is the second hereditary
lattice on Qy(E/A) such that [ Lj: L?]=p? and L)+ L.

Now, if M = M), then the lattices L} and L}, are similar (even isometric) by
(4.5) (b), and hence, the orders O( L})=A) and O( L,)=A) are isomorphic by
(3.10). Thus the right orders of the ideals B, och B, are isomorphic.

Conversely, if 0,(P,)=0,(B,), then the lattices L) =2L(0,(B,)) and L,
=£(0,(B,)) are similar (and even isometric) by (3.10). Since L; is the second
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hereditary lattice on Q,(E/A) containing LY and such that [ L;: L]=p?,
M(L)) can be obtained by an elementary transformation of M at the k(p)-
rational point x; € M, by (2.5) (c). Hence the elementary transformations of M
at the points x,,x, € M, give isomorphic models.

The last statement of the Theorem follows directly from the proof.

In the next theorem we want to characterize the fibers M, of a regular
quadratic model M of E/A such that an elementary transformation at a k(p)-
rational point of this fiber gives a model isomorphic to M. We have to assume
that the Dedekind ring A4 is a principal ideal ring.

(4.9) THEOREM. Let M be a regular quadratic model of E/A, where the ring A
is a principal ideal ring. Let A be a hereditary A-order corresponding to M in
Q(E/A), and p € S*, p,}’b(M). If an elementary transformation of M at a k(p)-
rational point of M, gives a model isomorphic to M, then there is an ideal
t|d(M) and an element o € A such that

(4.10) p = N(Aa) .

The converse is true if x|dg, 4.

Proor. Note that in a hereditary A-order A, for each p € S*, there is exactly
one two-sided regular integral prime ideal whose norm is a power of p ([24,
(17.3)] and [12, Satz 5]). If p ,{’D(A) then the prime ideal corresponding to p is
Ap and its norm is equal to p2. If p|d(A), then the corresponding prime ideal
has the norm equal to p.

Let x € M| be a k(p)-rational point such that an elementary transformation
of M at x gives a regular quadratic model isomorphic to M, and let P be the
integral left A-ideal corresponding to this point. By (4.7), O,(B) is isomorphic
to A. Since B is a regular A-ideal, there is a two-sided regular A-ideal Q and
o € A such that P =Qa ([15, Proposition 4.1]). Multiplying Q by an element
of A, we can assume that o € A, and the ideal A« is primitive, that is, (1/a)Aa
cAand ae A imply ae A*. Let Q=Rmn"', where mne A (m,n)=A, and R
is a square-free integral A-ideal such that N (R) divides d(A4). Hence nP =mRa.
By taking the norms, we get (m)=A and An=R?, so RP = Aa. Therefore rp
= N(Aa), where r=N(R)|d(M).

Conversely, if tp = N(Aa) and r|Dg/,, then PB=R"'Aa is an integral left A-
ideal, where R is the only two-sided regular A-ideal whose norm is equal to r.
Since N(P)=p and O,(B)=a" ! 4a, any elementary transformation of M at the
k(p)-rational point of M, corresponding to P gives a regular quadratic model
isomorphic to M by (4.7).
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In general, an elementary transformation of a regular quadratic model may
give a model from another isomorphism class. We end this section with a result
which shows that it is always possible to go from one isomorphism class of
relatively minimal models to another by a finite number of elementary
transformations.

(4.11) THEOREM. If M and M’ are two relatively minimal models of E/A, then
there is a sequence of relatively minimal models My=M, M,,...,M,=M' such
that M, , is an elementary transform of M, for 0<i<n.

Proor. Let A and A’ be maximal orders corresponding to the models M and
M’'. We shall construct “a path” of maximal orders from A to A’ ([15, Theorem
31]). If D=(A'A)"" is the left distance ideal from A’ to -A, then D
=PoP, ... P,-,, where P, are integral normal maximal ideals and the
product is proper ([24, p. 181 and p. 183]). Let A,=0,(B,) for 0<i<n—1, and
A4,=0,(B,-,). A; are maximal orders, A,=A4 and A,=A". Let M, be a
relatively minimal model of E/A defined by £(A,). Since P, is an integral left A;-
ideal such that N(B)=p;|dg, and O,(PB)=4,,,, the model M;,, is an
elementary transfom of M, by (4.7).

5. Global fields. Examples.

Let F be a global field, Q the set of all non-trivial spots on F, and S a subset
of Q such that Q\ § is finite and contains all archimedean spots on F. If (V, q)
is a half-regular quadratic space over F, then we say that (V, q) is S-indefinite if
there is a spot p € 2\ § such that (V,=V®pF,,q,) is isotropic, where F,
denotes the p-adic completion of F and g, the natural extension of g from V to
V. I (V,, ;) is anisotropic for each p € Q\ S, then (V,q) is called S-definite.
Let A(S)= A be the ring of all elements of F which are integral with respect to
all p € S, and let E/A be an extension satisfying the usual assumptions. If V
=Q,(E/A), where Q(E/A) is a quaternion algebra corresponding to the
extension E/A, then Q,(E/A) is S-indefinite if and only if there is p € 2\ S such
that EQ ¢ F,=F(x) is a purely transcendental extension of Fy, or, in terms of
algebras, Q(E/A) is ramified at p. The last condition says that the algebra
Q(E/A) satisfies the Eichler condition with respect to 4 ([24, (34.3)]). We shall
say that E/A satisfies the Eichler condition (or is S-indefinite) if the
corresponding algebra Q(E/A) (or the quadratic space Q,(E/A)) satisfies this
condition (is S-indefinite).

Let Cly (A) be the ray class group, that is, the multiplicative group of classes
of fractional A-ideals in F, where two ideals a and b are in the same class if
b=aN(a) for some a € Q. The class of a in Cly (4) will be denoted by [a].
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(5.1) TueoreM. If E/A satisfies the Eichler condition, and M is a regular
quadratic S-model of E/A, then the number of isomorphism classes of regular
quadratic S-models locally isomorphic to M is equal to the order of the group
Clg (4)/G,G,, where G is the subgroup of Cl, (A) generated by the ideal classes
[p] such that p divides d(M), and G, is the subgroup of Cly, (A) generated by the
ideal classes [p?] such that p does not divide d(M).

Proor. Let A be a hereditary order in Q(E/A) corresponding to M. We have
to show that there is a one-to-one correspondence between the isomorphism
classes of hereditary orders locally isomorphic to A and the elements of the
group Cl, (4)/G,G,. To prove this, we need some rather general facts.

(5.2) Each hereditary order locally isomorphic to A4 is equal to the right
order of a regular left A-ideal ([15, Proposition 3.2]). Moreover, for every
regular left A-ideal I, the order O,(I) is hereditary and locally isomorphic to A.
The right orders of two regular left A-ideals I, and I, are isomorphic if and
only if there is a regular two-sided A-ideal Q and o € Q(E/A) such that

(5.3) I, = QLo

([15, Proposition 4.1]).

This means that we have to compute the number of classes of regular left A-
ideals with respect to the relation (5.3).

(5.4) Eichler’s Theorem ([24, (34.9)]) holds for regular left A-ideals, that is, if
I is such an ideal and N(I)=Aa, a € F, then I=Ao for some a € Q. By
Theorem (40.22) of [24], we have to check that I and A are in the same genus
(that is, the p-adic completions I;, and A, are A -isomorphic for each p € ),
and A'l is A’-isomorphic to A’ for an A-order A’ containing A. Since I is a
regular left A-ideal and A is hereditary, I is locally free ([16, Theorem 2]). Thus
I,=A, for p € S. Using this fact, we check easily that N(A')=N({I)=Aafor a
maximal A-order A’ containing A. Hence the left A'-ideal A'l satisfies the
assumptions of Eichler’s Theorem for maximal orders. Therefore A'I=A’, and
the desired result follows from Theorem (40.22) of [24].

As a direct consequence, we get that if I, and I, are two regular left A-ideals
and the elements of Cly, (4) defined by the norms of these ideals are equal, then
1, and I, are A-isomorphic. In fact, the product I7 '1, is proper (concordant in
the terminology of [16, pp. 221]), and O,(I; 'I,)=0,(I,) is a hereditary order
locally isomorphic to A. Since N(I;'I,)= Aa, for some a € F ([16, Theorem
3)), we get I7'1,=0,(I,)a, for some a € Q, that is, I,=1,0.

(5.5) We already know that the norms of regular integral prime A-ideals are
the prime ideals p € S such that p | bd(A) and the squares p? of the prime ideals
p € S such that p } d(A) (see the proof of (4.9)). Moreover, each ideal of Ais a
norm of a regular left A-ideal. This is clear for prime ideals of A4 ([24, (24.13)]).
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If a=p,p,...,p; € S, then we can choose a regular left A-ideal B, such that
N(B,)=p,, then a regular left O,(‘B,)-ideal B, such that N(B,)=p, and so on.
The product of the ideals B; is proper and its norm is equal to a ([16, Theorem
3.

Now, let A’ be an A-order locally isomorphic to A4 and let I be a regular A-
left and A'-right ideal. If we map the ideal I on the element defined by its norm
in Clg (4)/G,G,, then this element corresponds to the whole class of hereditary
orders A-isomorphic to A’ by (5.3) and (5.5). By (5.5) the mapping is surjective,
while by (5.4) and (5.5) it is injective.

(5.6) REMARK. If A=Z, then Theorem (5.1) says that in an indefinite
quaternion algebra over the field of rational numbers two locally isomorphic
hereditary Z-orders are isomorphic, or in the language of quadratic forms, that
there is only one class in the genus of indefinite integral ternary quadratic
forms with square-free discriminant. In particular, all maximal Z-orders in an
indefinite quaternion algebra over the field of rational numbers are
isomorphic, or, in the terms of quadratic forms, there is only one class in the
genus of indefinite integral ternary stemforms (that is, integral quadratic forms
with minimal discriminant in its similarity class). These two classical results
(see e.g. [18], [5]), were extended in [11, Satz 3] (see also [19, 104:10]) to
arbitrary indefinite sets of spots on the field of rational numbers. Theorem (5.1)
gives, in the ternary case, an expected generalization of these results to
arbitrary global fields ([11, p. 219]).

(5.7) ReMARK. Theorem (5.1) remains true if A is an arbitrary Dedekind
ring, and E is a purely transcendental extension of F. In this case Q(E/A)
is the matrix algebra M, (F), Cly(A4)=Cl(A) the class group of A, and the
number of isomorphism classes of relatively minimal models of E/A is equal to
the order of Cl(A4)/Cl(4)%. This result was announced in [28], p. 158 and
proved in [2] by methods of Galois cohomology of sheaves. Using the
correspondence between the isomorphism classes of relatively minimal models
and the isomorphism classes of maximal orders, the result follows directly
from a theorem of Chevalley ([27, § 3, Satz 3]) which says that the number of
isomorphism classes of maximal 4A-orders in the matrix algebra M, (F) is equal
to the order of Cl(4)/Cl (4)>. A slightly modified proof works for arbitrary
hereditary orders in M, (F) ([27, p. 385-6]) giving the result of Theorem (5.1)
also in this case.

If E/A is a definite extension the situation is much more complicated. Let
t(dg 4, m) denotes the number of isomorphism classes of regular quadratic A4-
models M of E/A such that d(M)="0g ,m. The number t(Dg 4, A) is called the
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type number of Q(E/A), and is denoted by t. If A=Z and dg 7 = (dg/z), m= (m),
where dg;z >0 and m>0, we shall write t(dg/z, m) and d(M)=dgzm instead of
t(bE/Z’ m) and b(M)

(5.8) THEOREM. If E/Z is definite, then t(dgz,m)=1 if and only if (dgz,m)
(2,1), (2,3), (2,5), (2,7), (2,11), (2,23), (2,15), (3,1), (3,2), (3,5), (3,11), (5,1), (5,2),
(7,1), (7,3), (13,1), (30,1), (42,1), (70,1), (78,1).

Hence there are exactly 9 definite extensions E/Z which have only one
isomorphism class of relatively minimal models (m=1). In the language of
algebras, this means that there are exactly 9 definite quaternion algebras over
the field of rational numbers with only one isomorphism class of maximal
orders.

In the language of quadratic forms, Theorem (5.8) says that there are exactly
20 genera of definite integral ternary quadratic forms with square-free
discriminant and only one class in the genus.

Theorem (5.8) follows directly if we apply the formulas of Theorems 16 and
26 of [23] to obtain a number N, such that t(dgz, m)=1 implies dgz < N, (e.g.
N,=400). Then using the table [6] of integral reduced ternary quadratic forms,
we get all the cases. If we denote the quadratic form g=3a,,X,X;, 0Si<j<2

by:
dgjz,m
[aoo as, ‘122]
ai2 Qo2 QAo

then the twenty regular quadratic models M =Proj(Z[xo, x;,x,1/(q)) of
Theorem (5.8) are:

[ T 2131 32511 s [ 2 3> 13 572
] .,110f ,Q 1104 ,{011},]010] ,{301 ,

33 P 221 425 23!
011 ,{001] ,{001] ,{010] ,]011 101 1]
(12275211 2] 123312 2]
[201] ,]010f ,]110f ,]101 ,
(11 10291 1 11#%2 1 2 97! 155:|7"'l
|01 0 ,{110 ,{010] ,|-311 .

Let us note that the results of computations in [22] give the number of

isomorphism classes of relatively minimal models for dgzm<210. The table
[6] gives this number for dgzm = 1000.

r
(=3
—_— -
——

O'—"
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Theorem (4.9) shows that there is a very close connection between the
existance of an elementary transformation of a regular quadratic model M of
E/Z at a Z/(p)-rational point of the fiber M, and the possibility to represent a
multiple rp, where r|d(M)=dgzm, by an integral quaternary quadratic form —
a norm-form of a hereditary order corresponding to M. Here, by a norm-form
of a hereditary order 4 we mean each quadratic form N(I}_, x.e;), where
ey, €,,€,, €5 is a Z-basis of A. If E/Z is indefinite, then the class number h of
each hereditary Z-order in Q(E/Z) is equal to 1 (e.g. by (5.4)), and the norm-
forms are universal, that is, they represent all the integers. If E/Z is definite the
situation is again more complicated. We have:

(5.9) THEOREM. Let E/Z be a definite extension and let M be a regular
quadratic Z-model of E/Z. Then the set P(M) of prime numbers p* d(M) such
that each elementary transformation at any Z/(p)-rational point of the fiber M,
gives a model non-isomorphic to M is finite (maybe empty).

PrOOF. Let A be a hereditary order corresponding to the Z-model M. We
claim that for each prime number p, each non-negative integer is locally the
norm of an element of A,=A®z Z,, where Z, denotes the p-adic integers. This
is clear when A, is a hereditary order in a matrix algebra. Since a norm-form,
as a quaternary quadratic form, is universal over the field of p-adic numbers,
each element of Z , is the norm of an element of 4, if 4, is a maximal order in a
skewfield ([24, (12.5)]). Now Theorem 1 of [26] implies that each sufficiently
large prime number is represented by the norm-forms of A. By (4.9), if
p € P(M), then for each r|dgz, rp is not represented by the norm-forms of A.
Hence P(M) is finite.

If t(dg/z,m)=1 and A is a hereditary order such that d(A)=dgzm, then for
each prime number p,|’ dg/z some multiple rp, where r|dg, is represented by
the norm-forms of A. As we know, there are 20 such cases. For 10 of them, not
only the type number t =1, but also the class number h=1, so the norm-forms
corresponding to these orders represent all non-negative integers. It seems that
if p|dg/z, it is also possible to take r=1 for the remaining 10 orders (for which
h=2).

Let us look at some examples.

(5.10) ExampLe. If E=Q(x,y), where x*+11y?=—1, then dg;=11, and
t(11,1)=2. The two isomorphism classes of relatively minimal models are rep-
resented by M;=Proj (Z[x,, x;,x,1/(g)), i=1,2, where

11 3] 11 4]
q‘=[010] and "’=[011] '
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The corresponding norm-forms are e.g. (see [20, p. 286]):

N,

x3+3x3+3x2 + x5+ x0x, — X, X3,

N, = x2+4x3 +4x% + X3+ X0X5 + XoX3 — 4% X, — X, X3+ X5 X3 .

It is easy to see that 2 € P(M,) and 2 ¢ P(M,).
(5.11) Exampie. If E=Q(x,y), where 6x?+11y>=—1 then dg;=66 and

t(66,1)=2. The two isomorphism classes of relatively minimal models are
represented by M;=Proj (Z[x,, x,,X,1/(g)), i=1,2, where

_[rearper 11 22een
=110 2190 1 '

The corresponding norms-forms are e.g.:
Ny = x3+17x} + 17x3 4+ x5+ xoX; + XoX; + XoX5 + X, X5 — X, X3 — X5X3 ,

N,

X34 22x% +22x3 + x3 + xoX3 — 22X, X, .

It is easy to check that N, represents 37, while 7 is not represented by N,.
Note that 5 ¢ P(M,) and S € P(M,).

In order to discuss more classical, diagonal forms, we may extend the
ground ring A.

(5.12) ExampLE. If E=Q(x,y), where x>+y?*=—1 and A=2Z[1/2], then
dg 4= A and M = Proj (A[x,, X,, X,1/(x3 + x2 + x3)) represents the only isomor-
phism class of relatively minimal A-models of E/A. As a corresponding norm-
form we may take N,=x2+x?+x2+x%. By (4.9), N, represents 2"p for each
prime number p and for some n=0. Now the well-known Euler trick gives
that N, represents all non-negative integers.

The sum of four squares is a norm-form of a non-hereditary order (in fact, a
Bass order) corresponding to the singular Z-scheme Proj (Z[x,x,,X,]/(x3
+x% +x32)). This suggests that another possibility to look at the problem of
integral representations by arbitrary ternary and quaternary quadratic forms is
to investigate singular models. This problem will be discussed in the second
part of the paper.
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