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ON THE EQUATION a(x"—1)/(x—1)=b(y"— 1)/(y—1)

R. BALASUBRAMANIAN and T. N. SHOREY

The equation

X—1 -1

x—1  y—1
has finitely many solutions in integers m>1, n>1, x>1, y>1 with x=y if

(@) x,y fixed (Thue [10], Siegel [9], Baker [1])
(b) x,n fixed (Siegel [8], Schinzel [7], Coates [3])
(c) m,n fixed and (m—1,n—1)>2 (Schinzel [6]).
(d) m,n fixed (Davenport, Lewis and Schinzel [4]).

Let P=2. Denote by S the set of all positive integers composed of primes not
exceeding P. Then we shall generalise (a) as follows:

THEOREM 1. The equation

m—1 "—1
X _by

1 =
() ax—l y—1

has finitely many solutions in integers m>1,n>1,x>1,y>1,a=21,b=1 with x,
»,a,bin S, (a,b)=1 and a(y —1)#b(x — 1). Further bounds for m, n, x, y, a and b
can be determined explicitly in terms of P.

Thus there are only finitely many integers with all the digits equal to a in
their x-adic expansions and all the digits equal to b in their y-adic expansions.
For integers with digits equal to 0 and 1 that occur periodically in their g-adic
expansions, theorem 1 gives the following:

COROLLARY. Let g>1 and g, > 1 be multiplicatively independent integers. Then
the equation

g—1 _gim—1
g-1 gt
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has finitely many solutions in integers u=1, u; 21, v>1, v, > 1. Further bounds
Sfor u, u,, v, v, can be given explicitly in terms of the greatest prime factor of gg,.

The proof of theorem 1 depends on linear forms in logarithms. Let «,. . .,a,
be non zero rational numbers of heights not exceeding A4,,. . ., 4, respectively,
where we assume that 4;2=3 for 1 <j<n. (The height of a rational number m/n
with (m,n)=1 is defined as max (|m|,|n|)). Put

n—1

Q = lj logA; and Q = Q'log4,.

ji=1
THEOREM A (Baker [2]). There exist effectively computable absolute constants
¢, >0 and c,>0 such that the inequalities
0 < odi...ol—1| < exp(— (c;n)*"Qlog Q log B)

have no solution in rational integers b,,. ..,b, with absolute values at most B
(22).

THEOREM B (van der Poorten [5]). Let p>0 be a prime number. There exist
effectively computable absolute constants c;>0 and c,>0 such that the
inequalities

can p
0o > ord, (&8 ... abr—1) > (c3n) Q(logB)2l_gé;

have no solution in rational integers b,,. . .,b, with absolute values at most B
(22).

We note that we could have used older results in place of theorem A and B.
In fact we shall apply theorem A with n, 4,,. .., 4, _, fixed and theorem B with
n,p,A,,....,A, fixed. Further we remark that we shall use theorem A thrice
and theorem B twice in the proof of theorem 1.

3

In this section, we shall prove theorem 1. Let m,n,x,y,a,b be as in the
theorem. Assume that they satisfy (1). Write

— Xs p—
xX=py...p5 y=p@...pr,

a=ph...p% b=7ph.. . ph.
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Here py,...,p, are primes <P and the exponents of p,,...,p, in the
factorisation of x,y, a, b are non negative integers not exceeding 2log x, 2log 3y,
2loga, 2logb respectively. It is no loss of generality to assume that m=n.
Further the equation (1) gives

2 ax™ ! < nby"™', by" ! < max™"!.

Denote by cs,cq,. . . effectively computable positive constants depending only
on P. Then we have:

Lemma 1. max (loga,logb) < cs(log (mlogx))? .

Proor. First we prove the inequality for logb. Suppose that a prime p
divides b. Then, by (1), we have

IA

m_1
ord, (b) < ord, (ax ) ord, (x™—1)

x—1
= ord, (p7™ ... ps™—1).

Now we apply theorem B with n=s<P, 4,=4,=...=A4A,=P and B
=2mlog x to the right hand side of the above inequality. We obtain

ord, (b) £ ce(log (mlogx))*,
and hence

logh = Y ord, (b)logp < c,(log (mlogx))* .

plb
Similarly
loga £ cgllog (nlogy))* .

In view of (2), the lemma follows immediately.

LemMA 2.
3) min (log x,logy) £ cologm .
Proor. We prove the lemma when x<y. The proof is similar for the case

x2y. Let § be the smallest positive integer such that ax™~?#by"~%. Observe
that 6 <n, since (a,b)=1. Now it follows from (1) and (2) that

0 < |ax™ % —by" ™% < max™"'"%+nby" " '7% < 2mPax""'7%.
Thus we have

) 0 < |ph...p%—1] < 2m*x~!
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where u;=b;—a;+ (n—0)y;— (m—9d)x; for i=1,...,s. By lemma 1 and (2), we
find that the integers |u;] do not exceed ¢, mlog x. Now apply theorem A with
n=s<P, A,=A,=...=A,=P and B=c¢,ymlogx to obtain

(5) P ... pE—1] > (mlogx)~ .
Now by combining (5) and (4), we get (3). This completes the proof of lemma 2.

LemMA 3. max (log x,logy)<c,,(logm).
Proor. We prove the lemma when x<y. The proof is similar for the case
x=y. From (1), lemma 1 and (2), we have

ax™ a
byl =
x—1 4

0+ +b(y" "2+ ... +1)

x—1
< a+nby""? < y""2exp (c,3(log (nlogy))?) .

Thus

(6) 0% (pf'...pr(x=1)""~1) S y~'exp (ci3(log (nlogy)?),

where v;=a;—b;+mx;— (n—1)y; for i=1,...s. From lemma 1 and (2), we

observe that the absolute values of v; with i=1,...,s do not exceed c,,mlogx
which, in view of lemma 2, is less than ¢, smlogm. Now apply theorem A with
n=s+1=5P+1, A;=A,=...=A;=P, A, ,=x=<m® and B=c;smlogm
to conclude that

(7) (i ... pr(x=1)71=1) Z exp (—cy6(logm)’) .

Observe that we have used lemma 2 for a bound for A, ;. Now the lemma
follows immediately from (6) and (7).

ProoF oF THEOREM 1, From (1) and lemma 1, we have

m b n
= Y - < exp (c,5(log (mlog x))?) .

0 b
* x—l-y—ll_

x—1 —y—l
Thus

-m+3
b

x—1
@®) 0< P?"--P:"}*_—l"‘l' S €8x

where w; = b, — a; + ny;— mx;. Observe that the absolute values of the integers w;
do not exceed ¢, omlogm. Now apply theorem A with n=s+1<P+1,4,=4,
=...=A,=P, B=c,gmlogm and A,,,=max (x—1, y—1)<Zexp (c,,(log m)?).
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The last inequality follows from lemma 3. We obtain

x.—-
) Py :’;:‘1‘_1 > exp (—cyo(logm)’) .
Combining (9) and (8), we find that m<c,,. Now the proof of the theorem is
complete in view of lemma 2 and lemma 1.

REeMARK. The proof of theorem 1 depends on three approximations that the
equation (1) provides. If a=1, b=1, it is sufficient to use only one
approximation. Rewriting the equation

xm—l__l yn-l_l

o1 TV

’

observe that ord, (x)=ord, (y) for every prime p dividing (x,y). Thus we can
write x=dx,, y=dy, with (x,,y,)=(d,x,)=(d,y,)=1. From the equation

n=1__,n—1
X"y 4 X" = @—x)(L——L+...+1>
y—x
and theorem B, we show that logd <c,,(loglogy)®>. Now using the equation
xm—l -1 yn—l —1

=W y_l

and theorem B along with the above bound for logd, we find that logy
<c,;(logm)*. This is lemma 3. Now use an approximation, as in theorem 1, to
complete the proof.

x
1 x—1
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