ON THE EQUATION \(a(x^m - 1)/(x - 1) = b(y^n - 1)/(y - 1) \)

R. BALASUBRAMANIAN and T. N. SHOREY

1.

The equation

\[
\frac{x^m - 1}{x - 1} = \frac{y^n - 1}{y - 1}
\]

has finitely many solutions in integers \(m > 1, n > 1, x > 1, y > 1 \) with \(x \neq y \) if

(a) \(x, y \) fixed (Thue [10], Siegel [9], Baker [1])
(b) \(x, n \) fixed (Siegel [8], Schinzel [7], Coates [3])
(c) \(m, n \) fixed and \((m - 1, n - 1) > 2 \) (Schinzel [6]).
(d) \(m, n \) fixed (Davenport, Lewis and Schinzel [4]).

Let \(P \geq 2 \). Denote by \(S \) the set of all positive integers composed of primes not exceeding \(P \). Then we shall generalise (a) as follows:

Theorem 1. The equation

\[
\frac{a}{x^m - 1} = \frac{b}{y^n - 1}
\]

has finitely many solutions in integers \(m > 1, n > 1, x > 1, y > 1, a \geq 1, b \geq 1 \) with \(x, y, a, b \) in \(S \), \((a, b) = 1 \) and \(a(y - 1) + b(x - 1) \). Further bounds for \(m, n, x, y, a \) and \(b \) can be determined explicitly in terms of \(P \).

Thus there are only finitely many integers with all the digits equal to \(a \) in their \(x \)-adic expansions and all the digits equal to \(b \) in their \(y \)-adic expansions. For integers with digits equal to 0 and 1 that occur periodically in their \(g \)-adic expansions, theorem 1 gives the following:

Corollary. Let \(g > 1 \) and \(g_1 > 1 \) be multiplicatively independent integers. Then the equation

\[
\frac{g^{uv} - 1}{g^u - 1} = \frac{g_1^{uv_1} - 1}{g_1^{u_1} - 1}
\]

Received October 18, 1979.
has finitely many solutions in integers $u \geq 1$, $u_1 \geq 1$, $v > 1$, $v_1 > 1$. Further bounds for u, u_1, v, v_1 can be given explicitly in terms of the greatest prime factor of gg_1.

2.

The proof of theorem 1 depends on linear forms in logarithms. Let $\alpha_1, \ldots, \alpha_n$ be non-zero rational numbers of heights not exceeding A_1, \ldots, A_n respectively, where we assume that $A_j \geq 3$ for $1 \leq j \leq n$. (The height of a rational number m/n with $(m,n)=1$ is defined as $\max(|m|,|n|)$). Put

$$\Omega' = \prod_{j=1}^{n-1} \log A_j \quad \text{and} \quad \Omega = \Omega' \log A_n.$$

Theorem A (Baker [2]). There exist effectively computable absolute constants $c_1 > 0$ and $c_2 > 0$ such that the inequalities

$$0 < |\alpha_1^{b_1} \cdots \alpha_n^{b_n} - 1| < \exp \left(- (c_1n)^{c_2n} \Omega \log \Omega' \log B \right)$$

have no solution in rational integers b_1, \ldots, b_n with absolute values at most B (≥ 2).

Theorem B (van der Poorten [5]). Let $p > 0$ be a prime number. There exist effectively computable absolute constants $c_3 > 0$ and $c_4 > 0$ such that the inequalities

$$\infty > \operatorname{ord}_p (\alpha_1^{b_1} \cdots \alpha_n^{b_n} - 1) > (c_3n)^{c_4n} \Omega (\log B)^2 \frac{p}{\log p}$$

have no solution in rational integers b_1, \ldots, b_n with absolute values at most B (≥ 2).

We note that we could have used older results in place of theorem A and B. In fact we shall apply theorem A with n, A_1, \ldots, A_{n-1} fixed and theorem B with n, p, A_1, \ldots, A_n fixed. Further we remark that we shall use theorem A thrice and theorem B twice in the proof of theorem 1.

3.

In this section, we shall prove theorem 1. Let m, n, x, y, a, b be as in the theorem. Assume that they satisfy (1). Write

$$x = p_1^{s_1} \cdots p_s^{s_1}, \quad y = p_1^{s_1} \cdots p_s^{s_2},$$

$$a = p_1^{s_1} \cdots p_s^{s_n}, \quad b = p_1^{b_1} \cdots p_s^{b_n}.$$
Here p_1, \ldots, p_s are primes $\leq P$ and the exponents of p_1, \ldots, p_s in the factorisation of x, y, a, b are non negative integers not exceeding $2 \log x, 2 \log y, 2 \log a, 2 \log b$ respectively. It is no loss of generality to assume that $m \geq n$. Further the equation (1) gives

$$ax^{m-1} < nby^{n-1}, \quad by^{n-1} < max^{m-1}.$$ \hspace{1cm} (2)

Denote by c_5, c_6, \ldots effectively computable positive constants depending only on P. Then we have:

Lemma 1. $\max (\log a, \log b) \leq c_5 (\log (m \log x))^2$.

Proof. First we prove the inequality for $\log b$. Suppose that a prime p divides b. Then, by (1), we have

$$\text{ord}_p (b) \leq \text{ord}_p \left(a \frac{x^{m-1}}{x-1} \right) \leq \text{ord}_p (x^{m-1}) = \text{ord}_p (p_1^{mx_1} \cdots p_s^{mx_s} - 1).$$

Now we apply theorem B with $n= s \leq P, \ A_1 = A_2 = \ldots = A_s = P$ and $B = 2m \log x$ to the right hand side of the above inequality. We obtain

$$\text{ord}_p (b) \leq c_6 (\log (m \log x))^2,$$

and hence

$$\log b = \sum_{p \mid b} \text{ord}_p (b) \log p \leq c_7 (\log (m \log x))^2.$$

Similarly

$$\log a \leq c_8 (\log (n \log y))^2.$$

In view of (2), the lemma follows immediately.

Lemma 2.

$$\min (\log x, \log y) \leq c_9 \log m.$$ \hspace{1cm} (3)

Proof. We prove the lemma when $x \leq y$. The proof is similar for the case $x \geq y$. Let δ be the smallest positive integer such that $ax^{m-\delta} + by^{n-\delta}$. Observe that $\delta \leq n$, since $(a, b) = 1$. Now it follows from (1) and (2) that

$$0 < |ax^{m-\delta} - by^{n-\delta}| \leq max^{m-1-\delta} + nby^{n-1-\delta} \leq 2m^2ax^{m-1-\delta}.$$

Thus we have

$$0 < |p_1^{\delta_1} \cdots p_s^{\delta_s} - 1| \leq 2m^2x^{-1}.$$ \hspace{1cm} (4)
where \(u_i = b_i - a_i + (n - \delta)y_i - (m - \delta)x_i \) for \(i = 1, \ldots, s \). By lemma 1 and (2), we find that the integers \(|u_i| \) do not exceed \(c_{10}m \log x \). Now apply theorem A with \(n = s \leq P, A_1 = A_2 = \ldots = A_s = P \) and \(B = c_{10}m \log x \) to obtain

\[
|p_1^{u_1} \cdots p_s^{u_s} - 1| > (m \log x)^{-c_{11}}.
\]

Now by combining (5) and (4), we get (3). This completes the proof of lemma 2.

Lemma 3. \(\max (\log x, \log y) \leq c_{12}(\log m)^2 \).

Proof. We prove the lemma when \(x \leq y \). The proof is similar for the case \(x \geq y \). From (1), lemma 1 and (2), we have

\[
0 = \frac{ax^m}{x-1} - by^n = \frac{a}{x-1} + b(y^{n-2} + \ldots + 1)
\leq a + nby^{n-2} \leq y^{n-2}\exp(c_{13}(\log(n\log y))^2).
\]

Thus

\[
0 \geq (p_1^{u_1} \cdots p_s^{u_s}(x-1)^{-1} - 1) \leq y^{-1}\exp(c_{13}(\log(n\log y))^2),
\]

where \(u_i = a_i - b_i + mx_i - (n-1)y_i \) for \(i = 1, \ldots, s \). From lemma 1 and (2), we observe that the absolute values of \(u_i \) with \(i = 1, \ldots, s \) do not exceed \(c_{14}m \log x \) which, in view of lemma 2, is less than \(c_{15}m \log m \). Now apply theorem A with \(n = s + 1 \leq P + 1, A_1 = A_2 = \ldots = A_s = P, A_{s+1} = x \leq m c_{15} \) and \(B = c_{15}m \log m \) to conclude that

\[
(p_1^{u_1} \cdots p_s^{u_s}(x-1)^{-1} - 1) \geq \exp(-c_{16}(\log m)^2).
\]

Observe that we have used lemma 2 for a bound for \(A_{s+1} \). Now the lemma follows immediately from (6) and (7).

Proof of theorem 1. From (1) and lemma 1, we have

\[
0 \geq \left| \frac{ax^m}{x-1} - \frac{by^n}{y-1} \right| = \left| \frac{a}{x-1} - \frac{b}{y-1} \right| \leq \exp(c_{17}(\log(m\log x))^2).
\]

Thus

\[
0 < \left| p_1^{w_1} \cdots p_s^{w_s} \frac{x-1}{y-1} - 1 \right| \leq c_{18}x^{-m+1},
\]

where \(w_i = b_i - a_i + ny_i - mx_i \). Observe that the absolute values of the integers \(w_i \) do not exceed \(c_{19}m \log m \). Now apply theorem A with \(n = s + 1 \leq P + 1, A_1 = A_2 = \ldots = A_s = P, B = c_{19}m \log m \) and \(A_{s+1} = \max(x-1, y-1) \leq \exp(c_{12}(\log m)^2) \).
The last inequality follows from lemma 3. We obtain

\begin{equation}
\left| p_1^{w_1} \ldots p_s^{w_s} \frac{x-1}{y-1} - 1 \right| > \exp \left(-c_{20}(\log m)^3 \right).
\end{equation}

Combining (9) and (8), we find that \(m \leq c_{21} \). Now the proof of the theorem is complete in view of lemma 2 and lemma 1.

 Remark. The proof of theorem 1 depends on three approximations that the equation (1) provides. If \(a = 1, b = 1 \), it is sufficient to use only one approximation. Rewriting the equation

\[x \frac{x^{m-1} - 1}{x-1} = y \frac{y^{n-1} - 1}{y-1}, \]

observe that \(\text{ord}_p(x) = \text{ord}_p(y) \) for every prime \(p \) dividing \((x, y) \). Thus we can write \(x = dx_1, y = dy_1 \) with \((x_1, y_1) = (d, x_1) = (d, y_1) = 1 \). From the equation

\[x^{m-1} + \ldots + x^n = (y-x) \left(\frac{y^{n-1} - x^{n-1}}{y-x} + \ldots + 1 \right) \]

and theorem B, we show that \(\log d \leq c_{22}(\log \log y)^2 \). Now using the equation

\[x_1 \frac{x_1^{m-1} - 1}{x-1} = y_1 \frac{y_1^{n-1} - 1}{y-1} \]

and theorem B along with the above bound for \(\log d \), we find that \(\log y \leq c_{23}(\log m)^2 \). This is lemma 3. Now use an approximation, as in theorem 1, to complete the proof.

REFERENCES

9. C. L. Siegel, *The integer solutions of the equation* \(y^2 = ax^n + bx^{n-1} + \ldots + k \) (Under the pseudonym \(X \)), J. London Math. Soc. 1 (1926), 66–68.

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
BOMBAY 400 005
INDIA