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COMPACTNESS CRITERIA FOR SEMIGROUPS,
A NOTE ON A PRECEDING PAPER

HENERI A. M. DZINOTYIWEYI

This note is a sequel to matters studied in section 3 of our paper [2] and all
terms (undefined here) are as defined in [2]. We say a semigroup S is a
topological (or semitopological) semigroup if S is endowed with a Hausdorff
topology with respect to which multiplication (x,y) — xy is a jointly (or
separately, respectively) continuous mapping of SxS into S. For every
semitopological semigroup S let C(S) be the set of all bounded complex-valued
continuous functions on S,

WAP(S) := {fe C(S): the set {,f: x € S} is weakly relatively compact}
and

WUC(S) := {fe C(S) : the maps x — .f and
x — f. of § into C(S) are weakly continuous}

(Here the space C(S) has the usual sup-norm and for all f'e C(S) and x € S the
functions ,f, f, € C(S) are given by

JO) 1= f(xy) and f,(y) :=flyx) (G €S))

Generalizing results of Burckel [1] and Granirer [3] we showed in [2] that if
S is a topological semigroup supporting non-zero measures continuous under
translation (i.e. M,(S) is non-zero) and such that

(*) for all compact C,D< S we have that C™'D and DC™*
are compact,

then S is locally compact and the following items are equivalent:

(a) S is compact;
(b) WUC(S) = WAP(S);
() C(S) = WAP(S).

In [2, Item 3.4 (iii)] we gave an example of a non-compact (pseudocompact)
locally compact topological semigroup S with M,(S) zero, C(S)=WAP(S) and

Received August 14, 1979.



174 HENERI A. M. DZINOTYIWEYI

satisfying property (*). Also M,(S) played a pivotal role in our proof of the
equivalence of (a), (b) and (c). In this note we prove

THEOREM. Let S be a a-compact locally compact semitopological semigroup
such that x 'K and Kx~! are compact for all compact K< S and x € S. Then S
is compact if and only if C(S)=WAP(S).

REMARK 1. Of course there are many g-compact locally compact topological
semigroups with M ,(S) zero. For example the interval [0, c0) with maximum
operation and the usual topology.

In view of the results of [2] and the preceding theorem, the following
conjecture seems reasonable:

CoNJECTURE 1. If S is any a-compact locally compact topological semigroup
such that x 'K and Kx~' are compact for all compact K< S and x € S, then
WUC(S)=WAP(S) implies that S is compact.

If in the preceding conjecture S is a semitopological semigroup we strongly
feel that one should be able to find a counterexample though so far our efforts

in that direction have remained unfruitful.

The only examples we know of non-compact locally compact topological
semigroups S satisfying property (*) and such that C(S)= WAP(S), have M (S)
zero and are pseudocompact (see [2]). Numerous conversations with Professor
Dr. A. C. M. van Rooij and later Dr. G. L. G. Sleijpen have led us to the
following conjecture:

CoNJECTURE 2. If S is any locally compact topological semigroup satisfying
property (*), then the following items are equivalent:

(a) S is pseudocompact
(b) WUC(S) = WAP(S)
(c) C(S) = WAP(S).

(That (c) = (b) is the only (trivial) known part.)

REMARK 2. For a locally compact topological group G Granirer also studied
the set WAP(G) in [4]. (We thank the referee to our paper [2] for pointing out
the reference [4] to us.) In particular we take this opportunity to announce
that the question asked in [4, page 382] in connection with Theorem 14 of the
same paper has been answered affirmatively by us. The latter will appear
elsewhere.
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Finally we prove our theorem. That part of our proof involving construction
of sequences of compact sets is inspired by [2, lemma 3.1] and [6].

Proor ofF THEOREM. If S is compact it is easy (and well known) to show that
C(S)=WAP(S) (see for example [1]). Now suppose that S is not compact.
Then our proof will be complete if we show that C(S)\ WAP(S) is non-empty.
To this end we first note that, since S is g-compact, there is a sequence {U,} of
compact neighbourhoods such that

s=JUuU, and U,c U,,, forall neN.
n=1

We can assume, by the inductive hypothesis, that for some integer p € N we
have finite sequences {x,,x,,..,x,} and {y, y,,...,y,} in S, a finite subsequence

{Upj Uppp- - ., U, } of {U,} and {0y} sk<mspsuch thatifi,jk,me {1,2,. . ., p}
then

(¢) k<m implies U, <U,, 0, ,<U, and O, , is a
compact neighbourhood of x,y,,;

(B) i>j and k<m imply x;y; ¢ Oy p,

(y) k<m and j<m imply O, ,NU, =.

We now establish the preceding items with p+1 in place of p. Since X :

={xy,%;,...,x,}and Y,:={y,,y,,...,y,} arefinitewe have U, Y, " and X ;' U,
compact. So we can find x,,,, y,+, € S such that

(M) XY, N U, = &,

pt1ip

and X,y,,,NU, =. We can find a compact neighbourhood C of Xy, .,
and take O, ,.,=C so that

(2) Oy p+1NU, =& forall ke{l,2,...,p}.
Next we choose U, ,, to be the first member of the sequence {U,} such that

3) U,. = U, UC.

Rp+1

It is now easy for the reader to note (by using (1), (2) and (3)) that («), (8)
and (y) are still valid for i,j,k,me {1,2,...,p+1}. Hence repeating the
argument countably many times we get infinite sequences such that (), (8) and
(y) are valid for i, j,k,m € N.

Now for every m € N if m=2 we can find a function f,, in C(S) such that 0
<[l (x€S), fu(x)=0 for x¢Up !0, and f.(xp,)=1 for
ke{l,2,....m—1}.

We now consider the function f:=3Y%_, f,. To see that fis continuous let V
be any compact neighbourhood. Then for some p € N, with p=3, we must
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have V< U, , by our construction of the sequence {U,,,U
x € V we have (by (7))

.}. So for all

nyr et

p-1
C RN AT

and so f is continuous. It is trivial to note that f is bounded by 1 as a
consequence of the fact that, j+m implies that O0,;N0, ,=& for
ie{l,2,...,j—1} and ke {1,2,...,m—1} (by items («) and (y)), and our
definition of the functions f,,.

Now from (a), () and (y) we note that

) 1 if k<m
f(x"y'")‘{o if k>m .

The preceding equation together with Theorem 6 of Grothendieck [5] implies
that f¢ WAP(S). Thus fe C(S)\ WAP(S) and as remarked before this
completes our proof.
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