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WEAKLY ALMOST PERIODIC FUNCTIONS AND
THE IRREGULARITY OF MULTIPLICATION
IN SEMIGROUP ALGEBRAS

HENERI A. M. DZINOTYIWEYI

1. Introduction.

Let G denote a locally compact topological group throughout this
introduction. Burckel [4] proved that G is compact if and only if all the
bounded continuous functions on G are weakly almost periodic. Granirer [10]
improved the result to: G is compact if and only if all the bounded uniformly
continuous functions on G are weakly almost periodic. Their proofs are rather
deep —in particular they both rely on the fact that the weakly almost periodic
functions on G admit an invariant mean. In this paper we prove such results for
a very large class of topological semigroups from which the results of Burckel
and Granirer follow as “very” special cases. Moreover we do not invoke the
theory of invariant means in our proof.

Civin and Yood [5] proved that if G is infinite and abelian, then the two
Arens products on the second dual of L'(G) do not coincide —that is, the
multiplication in L' (G) is irregular. Young [21] improved the result to include
the case where G is not necessarily abelian. Pym [17] studied the same
problem for certain convolution measure algebras supported on semigroups.
Our second aim in this paper is to investigate this phenomenon further. In
particular the result of Young [21] and Theorem 5 of Pym [17] turn out to be
“very” special cases of our results—see section 4.

In section 2 we clarify part of our notation and include some definitions
needed in this paper. In section 3 we study the subject of weakly almost periodic
functions on topological semigroups. Some related results on the Stone-Cech
compactification of a topological semigroup are also proved in section 3.
Section 4 is devoted to a study of the irregularity of multiplication in certain
algebras of measures on topological semigroups.

2. Preliminaries.
Let A and B be any subsets of a semigroup S and x any element of S. We
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take AB, A™'B, x 'B and A !x to denote {ab: ae A and be B},
{peS: ayeB for some ae A}, {x} !B and A '{x} (respectively). By
symmetry the definitions of BA™!, Bx™! and x4~! must be clear. By a
cancellation semigroup we mean a semigroup S such that whenever xy=xz or
yx=zx then y=z, for all x,y,z € §S.

Throughout this paper, a semigroup S is called a topological semigroup if S is
endowed with a Hausdorff topology with respect to which the semigroup
operation (x,y) — xy is a jointly continuous mapping of S x S into S.

Let S be a topological semigroup, m(S) the space of all bounded complex-
valued functions on S with the usual sup-norm | |,

C(S) := {fe m(S) : fis continuous}

and M(S) the set of all bounded complex-valued Radon measures on S. For
every u € M(S) we take |u| to be the measure arising from the total variation of
u and, if E is a Borel subset of S, we take y|g to be the measure given by u|g(B):
= u(B N E) for every Borel subset B of S. For every point x in S we take x to be
the point mass at x. Let

ML(S) := {ue M(S) : the map x — |u|(x"'C) of S into R
is continuous, for every compact subset C of S},

M(S) := {ue M(S) : the map x — |u|(Cx™") of S into R
is continuous, for every compact subset C of S}

and M,(S):=M!(S)NM’(S). The set M,(S) has been studied in many
publications —see e.g. [1], [2], [7], [8], [18] and [19]. In particular for a
locally compact topological group G it is well known that M,(G) can be
identified with L!(G)— the usual group algebra of G (see e.g. [12]).

Now let o/ be any subset of M(S). For each p e & let

supp (1) := {x € § : if V is any open neighbourhood of x
then |u|(V)>0} .

The closure of the set

U {supp () : pe o}

is called the foundation of </. A Borel set EcS is said to be «/-negligible if
|ul(E)=0 for all u e .

Following [7] we say a topological semigroup S is a C-distinguished
topological semigroup if the real-valued functions in C(S) separate the points of
S. For such a topological semigroup M(S) can be identified with the strictly
continuous linear functionals on C(S)—see also [13].

Let S be any C-distinguished topological semigroup. We noted in [7] that
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the maps x — | f(yx)du(y) of S into C are continuous (fe C(S) and
u € M(S)). This enabled us to define a convolution operation on M (S), given by

veu(f) := ﬁf(Xy)dV(X)du(y) (v,ue M(S) and fe C(9)),

with respect to which M(S) is a normed algebra under the usual total variation
norm | ||. (We urge the reader to note the details from [7].) In particular for
every Borel subset E of S we have (as noted in [7]) that, for all v,u in M(S),

vxu(E) = fy(x‘lE)dv(x) = jv(Ex“)dy(x).

Following [7] we say &/ = M (S) is a neo-convolution measure algebra if o is a
norm closed subalgebra of M(S) such that for all v,u € M(S) if v<<|yu| and
u € o/ then v e &. In particular from [7, Theorem 4.1] we have

THEOREM 2.1. For every C-distinguished topological semigroup S, we have
M, (S) a neo-convolution measure algebra.

As remarked in [7], neo-convolution measure algebras are not necessarily
complete. Also in the case of locally compact topological semigroups our
definition of neo-convolution measure algebra coincides with that of
convolution measure algebra in the sense of Taylor [20].

3. Weakly Almost Periodic Functions.

We start by giving a lemma which we also need in section 4. The idea in the
construction of sequences of compact sets in the proof of Lemmas 3.1 and 4.2 is
taken from Young [21].

LemMmA 3.1. Let S be a topological semigroup.

(i) If S is not compact and such that C~'D and DC~' are compact for all
compact subsets C and D of S, then given any compact set K< S we can find
sequences {x,}, {y.} of distinct points of S such that

(mf:jl U {Kx,,y,,,K}) n (f:jl U {Kx,y,,,K}) -z

(ii) If S is infinite and such that x~*{y} and {y}x ™" are finite sets for all x and
y in S, we can find sequences {x,}, {ym} of distinct points of S such that

(6,0 )0 (0, 0 (xant) = &

m=1 n>m n=1 n<m
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Proor. We start proving (i) by induction. Suppose, by the induction
hypothesis, for some positive integer p we have finite sequences {x,, x,,...,X,}
and {y;,y...,y,} such that

p—1 p—1
(U U tkxnk))n (U U (ksak) = .
m=1 p2Zn>m n=1 n<ms<p

For convenience we write X ,:={x,,X,,...,X,}, Y,:={y1,V2...,V,}

p—1 p—1
L,:=U U {Kxy.K} and R,:= U U {Kxy.K}.

m=1 p2n>m n=1 n<msp

Then with this notation we can write

1) L,NR,=T.

Since (K™'R,)(Y,K)™! is a compact subset of S (by the condition stated in the
lemma) we can choose x,,, € S\ X, such that

Xpe1 & (KT'R)(Y,K) 7.
Consequently
2 Kx,.,Y,KNR, = &.
Next, noting that ((KX,)"'(L,UKx,,,Y,K))K™! is compact, we can choose
Vp+1 € S\ Y, such that
yp+1 ¢ ((KXp)—l(LpUpr+lYpK))K—l .
Consequently
3) KX, yp,+1 KN (L,UKx,,,Y,K) = .
Recalling the above definition of L, and R, and similarly defining L,,, and
R, ., we note that (1), (2) and (3) imply
L,y "R,y = (L,UKx,,,Y,K)N (R,UKX,y,,,K)
= (L,NR)U (Kx,,,Y,KNR)U ((L,U Kx,,,Y,K) N KX,y,.,K)

=g,

By repeating the above argument countably many times we thus get item (i).

Next we prove item (ii). If S has an identity element e let §':=S§, otherwise
adjoin an isolated identity element e and let S':=SU{e}. Evidently the
hypothesis of (ii) still holds with S’ in place of S. Now if in the proof of item (i)
we replace S by §', substitute the word “compact” by “finite”, take K: = {e} and
start the induction proof with x,:=e and y,:=e it is not difficult to see that we
get the conclusion of item (ii). We leave the details for the reader to check.
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Let S be any topological semigroup. For any function f defined on S and
x € S, we define the functions . fand f, on S by , f(y): =f(xy) and f,(y): =1 (yx)
(y € S). In particular when f'is in C(S) we clearly have the functions . fand f, in
C(S) for all x in S. Let

LUC(S) := {fe C(S): the map x —» .fof §
into C(S) is norm continuous}
and

RUC(S) := {fe C(S) : the map x - f, of §
into C(S) is norm continuous} .

We say a function f'is left (or right) uniformly continuous on S if f € LUC(S) (or
f € RUC(S), respectively). We then say a function in UC(S):
=LUC(S)NRUC(S) is a uniformly continuous function on S. The set of all
weakly almost periodic functions WAP(S) on S is given by

WAP(S) := {fe C(S) : theset {,f: x€S}
is weakly relatively compact in C(S)} .

The function spaces LUC(S), RUC(S), UC(S) and WAP(S) have been studied
in many publications —see e.g. [4], [6], [10] and [15].

Equipped with the preceding notation we are now in a position to prove our
main result of this section.

THEOREM 3.2. Let S be a topological semigroup such that M,(S) contains a
non-zero measure and if C and D are compact subsets of S then C™'D and DC ™!
are compact sets. Then the following items are equivalent:

(i) S is compact;
(i) C(S)=WAP(S);
(iii) UC(S)=WAP(S) .

Proor. First we note that the hypothesis of our theorem implies that S is
locally compact. For if u is any non-zero measure in M,(S) we can choose a
compact subset C of S such that |u|(C)> 1| u|. Now for any x € S we have that

O(x) :={yeS: |p~ ' (xC)>%lul}
is an open neighbourhood of x, by the continuity of the map
y = (™ (xC)
of § into R. But
0x) s {yeS: y'xCO)NC+P} £ (xOC™*,

Math. Scand. 46 — 11
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and so (xC)C™! is a compact neighbourhood of x. It follows that S is locally
compact. (The preceding argument is similar to that used in [18, Theorem
6.16].)

That (i) implies (ii) and (iii) is well known —see e.g. [4, Theorem 1.7].

We now show that (iii) implies (i) by an argument which also shows that (ii)
implies (i), and so our proof will be complete.

We can choose a positive measure p in M ,(S) such that supp (u) is compact
(recall Theorem 2.1) and ||ul|=1. Now since S is locally compact, the maps

x — X*uxp and X — uspuxx

of S into M(S) are known to be norm continuous —see e.g. [18, Proposition
5.5] or [7, Theorem 4.9]. Let vi=puxu and K:=supp (v). Then K is compact
and |v]=1. For any h € M(S)* we define the function vohov on S by

vohov(x) := h(vxx*v) (x€S).
Since |vohov(x)—vohov(y)| < ||h| ||X*v—y*V| (x,y € S) we thus have vohov in
C(S). In fact we have vohov € UC(S) (for related remarks see also [16] and
[18]). For if x,y € S, then

I(vohov)— ,(vohov)|ls = sup {|h(vxxsxv)—h(vxys»V) : s € S}
<[kl lvex—v*y|

and so vohov € LUC(S). Similarly vohov € RUC(S) and hence vohov € UC(S).
Now suppose that (iii) holds but S is not compact. Then with K:=supp (v)
we can choose sequences {x,}, {y,,} in S such that if

Hyi= U U {Kxy,K} and Hy:i= U U {Kxy.K}
then
(1) HNH, = &

by Lemma 3.1(i). Noting that H, is s-compact (and hence a Borel set) we can
define h € M(S)* by

hn) := n(H,) (1€ M(S)).

So vohov € UC(S), by the conclusion of the preceding paragraph. We claim
that vohov ¢ WAP(S). By [11, Theorem 6] our claim follows if we can show
that

limlim vohov(x,y,) = 1
(*) . -
limlim vohov(x,y,) = 0
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Now since supp (v*x,J,*v)=Kx,y,,K and Kx,y,K<H, if n>m while
Kx,y,, K< H, if n<m, it follows from (1) that

L 1 f n>m
vohov(x,y,) = vV¥Xy,*xv(H,) = {0 it; n<m

The preceding equation clearly implies (*) and as remarked above, this
completes the proof of our theorem.

The equivalence of (i) and (ii) in the following corollary is due to Burckel [4]
and of (i) and (iii) due to Granirer [10].

CoroLLARY 3.3. If G denotes a locally compact topological group, then the
by taking any non-locally compact topological group.

(i) G is compact;
(i) C(G)=WAP(G);
(iii) UC(G)=WAP(G) .

EXAMPLES AND SOME REMARKS 3.4.

(i) If in Theorem 3.2 we drop the assumption that there is a non-zero
measure in M,(S) then S is not necessarily locally compact as one can easily see
by taking any non-locally compact topological group.

(i) The assumption that C™'D and DC~! are compact for all compact
subsets C and D of S, is necessary for the conclusion of Theorem 3.2 to hold.
For example let S be the set of all integers with discrete topology and
multiplication given by xy:=0 (x,y € S). Then M, (S)=M(S) and WAP(S)
=UC(S)=C(S) but S is not compact.

(iii) In the first draft of this paper, we posed the following problem: Let S be
a locally compact topological semigroup such that if C and D are compact
subsets of S then C™!D and DC ! are compact. Does C(S)= WAP(S) or UC(S)
= W AP(S) imply that S is compact when M ,(S) is zero? We thank Dr. G. L. G.
Sleijpen for pointing out to us the following example which shows that S is not
necessarily compact. In particular the example shows that a condition like
M (S) be non-zero is required for the conclusion of Theorem 3.2 to hold.

Recalling the usual well-ordering of the set of all ordinals and taking w, to
denote the first uncountable ordinal, let

S = {a: ois an ordinal and a<w,}

with the interval topology and operation xy =max (x,y) (x,y € S). Thus S is a
locally compact topological semigroup. The reader can easily check that M,(S)
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is zero and that C™'D and DC ™! are compact whenever C and D are compact
subsets of S. Now the Stone-Cech Compactification S of S is given by

BS = {a: ais an ordinal and a<w,}

—see e.g. [9, pages 74 and 88]. So BS with the operation xy=max (x,y)
(x,y € S) is a compact topological semigroup. So

*) C(BS) = UC(S) = WAP(BS)
—see e.g. [4]. One can easily deduce from (*) that
C(S) = UC(S) = WAP(S).
However S is not compact—thus completing our verification.
(iv) Let S be any topological semigroup and

AP(S) := {fe C(S) : theset {,f: xe S}
is relatively norm compact in C(S)} .

For a locally compact topological group G, Burckel [4] proved that AP(G)
=WAP(G) if and only if G is compact. We know that if S is compact then
AP(S)=C(S)—see e.g. [4]. It is interesting to note that we may have AP(S)
=WAP(S) but S not compact, even when S is a cancellation semigroup
satisfying the hypothesis of Theorem 3.2. (E.g. take S to be the additive
semigroup of positive integers with discrete topology.)

(v) The referee has commented that there is a non-commutative version of
Granirer’s result: Theorem 12 in Weakly almost periodic and uniformly
continuous functionals on the Fourier algebra of a locally compact group, by E.
Granirer, Trans. Amer. Math. Soc. 189 (1974), 371-382, to which we refer the
interested reader.

We conclude this section by shading some light on the structure of
(completely regular) topological semigroups S for which the Stone-Cech
compactification S admits a separately continuous semigroup operation such
that S is a subsemigroup of #S. Such a problem is studied in many papers —
see e.g. [3], [14] and [22].

Let S be a discrete topological semigroup and recall that x € m(S)* where
X(f):=f(x) for all fe m(S) and x € S. The w*-closure of {x : x € S} in m(S)*
is called the Stone~Cech compactification of S and denoted by 8.

THEOREM 3.5. Let S be a discrete topological semigroup such that x~'{y} and
{y}x~! are finite subsets for all x,y € S. Then the following items are equivalent :
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(i) BS admits a separately continuous multiplication with respect to which BS is
a semigroup with S as a subsemigroup;
(ii) the characteristic function of every countable subset of S is weakly alomost
periodic;
(iii) S is finite.

Proor. Evidently (iii) implies (i) and (ii). Now [22, Theorem 2] says that for
any pair of sequences {x,}, {y,,} in S, if item (i) of our theorem holds then we
cannot have
) (0,0 o) (00 txamd) -

So, by Lemma 3.1 (ii), (i) implies (iii).

Finally we show that (ii) implies (iii). If S is infinite, then Lemma 3.1 (ii)
allows us to choose sequences {x,}, {y,} in S such that equation (1) holds.
Now if fis the characteristic function of the countable set

00 00

U U {xm»

m=1 n>m

we have (by (1))
limlim, f(y,) = limlim f(x,y,) = 1

) limlim ,_{(y,) = limlim f(x,) = 0

Hence, by [11, Theorem 6] we have that (2) implies f ¢ W AP(S). Consequently
(ii) implies (iii).

REMARK 3.6. We note that if S is a cancellation semigroup then x~'{y} and
{y}x~! are finite (x,y € S). Of course there are many non cancellation
semigroups S such that x™'{y} and {y}x ! are finite sets (x,y € §)—e.g. take §
to be the positive integers with maximum operation.

Macri [14] gave a long proof to show that if S is a cancellation semigroup
with every characteristic function of a countable subset of S in AP(S) then fS is
a topological semigroup with S as a subsemigroup.

(Here S is assumed to be a discrete topological semigroup and AP(S) is a
defined in item 3.4 (iv).) Now noting that AP(S)c WAP(S) it follows from
Theorem 3.5 that the conditions imposed on § (by Macri [14]) imply that S is
finite and his conclusion follows trivially.

4. Irregularity of multiplication in semigroup algebras.
Let S be a C-distinguished topological semigroup and &/ a norm closed
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subalgebra of M(S). We denote the first and second dual spaces of o by o/ *
and o/ **, respectively. For ¢ € /** h e o/* and v € o we define h,, h", h,, h*
in &* by

hy(p) := h(v+p) and h'(p) := h(u*v) (1€ )

h,(w) := @(h*) and h*(y) := @(h,) (ne o)
We then define the Arens products © and ©' on H/** by

eOY(h) := y(h,) and @O'Y(h) := @(h*)

for all o, € o/** and h e A*.

With respect to either product © or ©’, &/ ** is a Banach algebra into which
o/ is embedded isometrically by the canonical homomorphism v — n(v)
(v € &) where

I

n(v)(h) := h(v) (he AL*).

If the two Arens products coincide (i.e. pOY =@ Q'Y for all ¢, € A **) we
say multiplication in </ is regular. Multiplication in &/ is said to be irregular if it
is not regular. It is immediate from the definitions that either Arens product on
S/ ** is separately continuous for o(&/**, o/ *). Any pair {n(v,)},{n(u,)} of
bounded sequences in (/) will have cluster points ¢, respectively in .o/ **
for o (o **, o *). If multiplication in &/* is regular, it follows that if h € o/ * is
such that both repeated limits of the double sequence {h(v,*pu,)} exist, then
these two limits are equal (being in fact @ Oy (h)).

The preceding remarks are similar to those given in [21] and we summarise
in

Lemma 4.1. If S denotes a C-distinguished topological semigroup and o a
norm closed subalgebra of M(S), then the following items are equivalent:

(i) o/ has regular multiplication;

(i) if {v.}, {um} are any sequences in o/ and he * such that b:
=lim,, lim, h(v, *u,) and c:=lim,lim, h(v,*p,) exist, then b=c.

For a locally compact topological group G our next lemma is an
improvement of that given by Young [21]. Recall that by a non-</-negligible
set EcS we mean a Borel set E such that |u|(E)> 0 for some u € /. We also
take

dy(E) := {x € S : if O is any open neighbourhood of x
then ONE is not «/-negligible} .

LemMA 4.2. Let S be a C-distinguished topological semigroup with identity
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element e and o/ a neo-convolution measure algebra with foundation equal to S.
Let W be a subset of S such that e is not isolated in W and W<d 4,(W). Then

there exist sequences {C,}, {D,,} of non-sf-negligible compact subsets of W such
that

(0 0 o) (0, § tcon) - o
ProOF. We prove the lemma by induction. Suppose, by the induction
hypothesis, that for some positive integer p we have finite sequences

{C),Cy,...,C,}, {Dy,D,,...,D,} of non-o/-negligible compact subsets of W
such that if

p p p—1
Xp = Ul Cp’ Yp = Ul Dm’ Lp:= Ul U {Can}
n= m= n= n<m<p
and
p—1
Rp = Ul U {Can}
m=1 p2n>m
then
(® e¢X,UY,UL,UR,
B x,NYy, =g
(yl) Lp n Yp = Q
() R,NX, =g
6 L,NR, =

We now prove the inductive step, that is to choose C,.,, D,,, and verify
items (o) to (6) with p+1 in place of p. (Note that all sets mentioned in items
(o) to () are compact.)

We can choose a non-o/-negligible compact set C,, S W such that
(1) e¢C,uyUC,.,Y, by ()
2 C,syN(Y,UR,) = & by ()
3 Cop Y, N(L,UX,UC,.y) = & by (B),(y;) and since e ¢ Y, .

Next we can choose a non-«/-negligible compact set D,,; = W such that

4 eé¢D,,,UX,D,,, by ()
(5) Dpyy N (XD, UL, UX,,,) = & by («) and since e ¢ C,,,,
(note that

Xp+l=XpUCp+l')
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(6) X,Dpes N (CpuyY,UR,UY,UD,.;) = & by (), (7,), () and ().
We now establish items («) to (9) with p+1 in place of p.
Noting that L,,,=L,UX,D,,, and R,,;=R,UC,,,Y,, it follows from
(o), (1) and (4) that

e¢ X, UY,,,UL,,;UR,,,.
From (B), (2) and (5) we get
Xy N Ypey = (X, NY)U (X, ND,uy) = &
From (y,), (5) and (6) we get
L,,,NY,y = L,UX,D, ) NY, 4,
= (L,NY,y DU (X, D, NY, ) =T
From (y,), (2) and (3) we get
R,yiy N X, = (R,UC, Y)N X,y
= (R,NX,1)) U (C,s Y,NX,,) = .
From (9), (3) and (6) we have
L.y "R,y = (L,UX,D,,,) N (R,UC,,,Y),)
= (L,NR) U (L,NC,;,Y)U (X, D,.;N(R,UC,,,Y))
=g
This completes our proof for the inductive step. By repeating the argument

countably many times we note, in particular, that item (J) leads to the
conclusion of our lemma.

Our next Theorem contains the result of Young [21] as a special case.

THEOREM 4.3. Let S denote a C-distinguished topological semigroup with an
identity element e and o/ a neo-convolution measure algebra with foundation
equal to S. Then

(i) If e is not an isolated element in S, then multiplication in s is irregular.

(ii) If the foundation of M,(S) coincides with S and the sets x~{y} and
{y}x~1 are finite (x,y € S), then o/ has regular multiplication if and only if S is
finite.

Proor. To prove (i) we suppose that e is not isolated in S and choose
sequences {C,}, {D,,} of compact subsets of S as stated in Lemma 4.2 (with W
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=3S). By our definition of a neo-convolution measure algebra we can choose
positive measures v, u,, in & such that

Ivall = va(C) = 1 and gl = pp(Dy) = 1

for all positive integers n,m. Since H:=Ug, U, {C,D,,} is g-compact, we
can define h € &/* by

h(n) :=n(H) (ne ).
By Lemma 4.2 and our definition of v, and u,, we have that

lifn<m
B ) = Vo (H) = {0 o
and so lim, lim,, h(v,*pu,)=1 and lim,, lim, (v, * u,,) =0. Recalling Lemma 4.1,
our proof for item (i) is complete.

To prove item (ii) we first note that if S is finite then it is trivial to see that &/
has regular multiplication. For the converse we first consider the case where S
is discrete. Now if S is discrete and infinite, then recalling Lemma 3.1 (ii), an
argument similar to that used in the proof of (i) (which we omit) easily shows
that «/ has irregular multiplication. So S must be finite if &/ has regular
multiplication. Finally we consider the case where S is not discrete. In view of
item (i) our proof will be complete if we can show that e is not isolated in S.
Since S is the foundation of M,(S), if e is isolated in S then & € M,(S). Now
¢ € M,(S) implies that S is discrete—see e.g. [2, Proposition 2.8]. By this
conflict if S is not discrete then e is not isolated in S.

One major difference between Lemma 3.1 and Lemma 4.2 is that in Lemma
3.1 the choice of the sequences {x,}, {y,} is not restricted to a special portion of
the semigroup S where as in Lemma 4.2 the sequences {C,},{D,} are chosen
within a given “vicinity” of the identity element of S. Our next Theorem partly
shows how such a choice in Lemma 4.2 can be exploited to give certain general
results.

Let G be any topological group. (Of course the topology on G is assumed to
be Hausdorff) As such G is uniformizable, whence G is completely regular. In
particular G is a C-distinguished topological semigroup—so we always have a
convolution multiplication on M(G), as defined in section 2. With these
remarks in mind we prove the following generalization of Theorem 5 of Pym

[17.

THEOREM 4.4. Let of be a neo-convolution measure algebra whose foundation
(semigroup) S is a Borel subsemigroup of a topological group G. Then the
following items are equivalent:
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(i) Multiplication in </ is regular;
(ii) S is finite.

Proor. Of course (ii) implies (i). We now prove that (i) implies (ii). Suppose
on the contrary (i) holds but S is infinite. Then S is not discrete, by an
argument similar to the proof of Theorem 4.3 (ii). So G is not discrete. We can
choose two distinct elements x, y in S such that every neighbourhood (in S) of x
is infinite and every neighbourhood (in S) of y is infinite. Let U and V be
disjoint open neighbourhoods (in S) of x and y, respectively. So if W’:
=(x"'U)N(Vy~1), where x~! and y~! denote the inverses of x and y
(respectively) in G, then the identity element e of G is not isolated in W’ when
W’ has the restriction topology (though the interior of W’ in G may be empty).

With x and y as above, we consider the subsets

xVasd = {x"Txv: ve o}

and

A ryl = {vxy~! : ve o}

of M(G). (Recall that M(S)< M(G) since S is a Borel subset of G.) Since U
and V are open subsets of S and S is the foundation of &, a standard argument
easily shows that W’ is contained in the foundation of x Tx.o/ and o/ xy .
Now a similar argument to that used in the proof of Lemma 4.2 with W’
replacing the W of Lemma 4.2 shows that we can choose sequences {C,}, {D,,}
of compact subsets of W’ such that each C, is not negligible with respect to

x~'xaf, each D, is not negligible with respect to & *y~* and

U (0 0 tcom)n(0, U tcon) -2
(We omit the details which the reader can easily supply by conveniently
adjusting the proof of Lemma 4.2.)

Thus in particular we can choose sequences {v,}, {#,.} of positive measures in
&/ such that

) {IIV..II = v,(xC,) = x" v, (C,) = 1

Itml = Bm(Dwy) = pu*y~ (D) =1
xC,cx(x"'U)cS and D,yc(Vy ')ycS, and (by cancellation) (1) implies
that

© (G U {(xcn)wmy)}) n (D U {(xc,)(Dmy)}) -z

n=1 n<m >m
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Using (2) and (3) we can define h € &/* such that lim,lim,, h(v,*u,)=1 and
lim,, lim, h(v,*p,)=0, in a way similar to the first paragraphy of the proof of
Theorem 4.3. Recalling Lemma 4.1, we have a contradiction. By the conflict
our proof is complete.

SOME REMARKS 4.5.

(i) The reader can easily supply a counter-example to show that the
hypothesis of Theorem 4.4 does not necessarily require S to have non-empty
interior in G.

(ii)) From our Lemma 4.2 and Theorem 2 of Young [22] it follows that if S is
a non-discrete C-distinguished topological semigroup with an identity element
e such that e is not isolated in S, then if S, denotes S with discrete topology we
have that BS, (the Stone-Cech compactification of S, does not admit a
separately continuous multiplication with respect to which S, is a semigroup
containing S, as a subsemigroup.
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