A NOTE ON POWER BOUNDED RESTRICTIONS OF FOURIER-STIELTJES TRANSFORMS ## **ERIK SVENSSON*** In this note we extend the case R^n of the main result, Theorem 5.1, in Andersson [1] to some non-compact situations. DEFINITION. If E is a subset of \mathbb{R}^n , then the supremum of all radii of closed balls contained in E is called the width of E and is written w(E). (Possibly $w(E) = \infty$.) Undefined notations below are as in Andersson [1]. We shall prove the following THEOREM. Let E be a subset of \mathbb{R}^n such that E is the closure of its interior and suppose that for each $c \in \mathbb{R}_+$ there are only finitely many components of E of width less than c. Suppose $\varphi \in \mathcal{B}(E)$, i.e. suppose $\varphi \in B(E)$, $|\varphi| = 1$ on E, and $\sup_{k \in \mathbb{Z}_+} \|\varphi^k\| < \infty$. Then on all of E except possibly on finitely many components of finite width, φ equals one and the same product $ae^{ib \cdot x}$, where $a \in \mathbb{C}$, |a| = 1, and $b \in \mathbb{R}^n$. We note that the theorem in particular implies that if each component of E has infinite width, then on all of E the function φ equals one and the same product $ae^{ib \cdot x}$. PROOF OF THE THEOREM. It is sufficient to prove the theorem in the case when E is the union of infinitely many pairwise disjoint balls whose radii tend to infinity. To see this, let E'_1, E'_2, \ldots be an enumeration of E's component of finite width, and let E''_1, E''_2, \ldots be an enumeration of those of infinite width. For each E'_i choose a ball A'_i contained in E'_i and having radius equal to $\frac{1}{2}w(E'_i)$, and for each E''_i choose an infinite sequence $A''_{i1}, A''_{i2}, \ldots$ of pairwise disjoint balls, each contained in E''_i and such that radius $(A''_{ij}) = i + j$. These choices are ^{*} Partially supported by the Swedish Natural Science Research Council, contract no. F2220-100. Received August 14, 1979. clearly possible. Then let B_1, B_2, \ldots be an enumeration of all the balls $A'_1, A'_2, \ldots, A''_{11}, A''_{12}, \ldots, A''_{21}, A''_{22}, \ldots, \ldots$ The radii of B_1, B_2, \ldots obviously tend to infinity. Trivially $\varphi \in \mathcal{B}(E) \Rightarrow \varphi \in \mathcal{B}(\bigcup_{1}^{\infty} B_k)$. Now suppose we could prove that on all but finitely many of the balls $B_1, B_2, \ldots, \varphi$ equals one and the same product $ae^{ib \cdot x}$. Since we know that on the whole of each of E's components, φ is a product $ae^{ib \cdot x}$ (see [1, Theorem 5.1]), and since each of E's components of infinite width contains infinitely many of the balls B_1, B_2, \ldots , the theorem would then follow. From now on we suppose that E is a union of an infinite sequence B_1, B_2, \ldots of pairwise disjoint balls whose radii tend to infinity, and we want to show that on all but finitely many of the balls $B_1, B_2, \ldots, \varphi$ equals one and the same product $ae^{ib \cdot x}$. LEMMA. Let E_1, E_2, \ldots be subsets of \mathbb{R}^n having the property that there are points x_1, x_2, \ldots in \mathbb{R}^n such that each compact subset of \mathbb{R}^n is contained in every $E_k + x_k$ if k is large enough. Suppose $\hat{\mu} \in B(\mathbb{R}^n)$ coincides with a constant $\hat{\lambda}_k$ on each E_k . Then $\lim_{k \to \infty} \hat{\lambda}_k$ exists and is equal to $\mu(\{0\})$, the mass of μ at the origin in \mathbb{R}^n . PROOF OF THE LEMMA. Fix $\varepsilon > 0$. By Fubini's theorem (1) $$\int_{\mathbb{R}^n} f(x)\hat{\mu}(x-x_k) dx = \int_{\mathbb{R}^n} \hat{f}(\gamma)e^{i2\pi x_k \cdot \gamma} d\mu(\gamma)$$ for each $f \in L^1$ (Rⁿ). Now fix (see for example Rudin [2, p. 48, Theorem 2.6.1]) an $f \in L^1$ (Rⁿ) with $0 \le \hat{f} \le 1$ so that $\hat{f}(0) = 1$ and so that the support of \hat{f} is contained in so small a neighborhood of the origin in Rⁿ that $$\int_{\mathbb{R}^n} |\widehat{f}(\gamma)| \, d|\mu_1(\gamma)| \, < \, \varepsilon \, \, ,$$ where $\mu_1 = \mu - \mu(\{0\})\delta_0$ and δ_0 is the Dirac measure at the origin in Rⁿ. Then also $$\left| \int_{\mathsf{R}^n} \hat{f}(\gamma) e^{i2\pi x_k \cdot \gamma} d\mu_1(\gamma) \right| < \varepsilon$$ for each x_k . I.e. (2) $$\left| \int_{\mathbb{R}^n} \hat{f}(\gamma) e^{i2\pi x_k \cdot \gamma} d\mu(\gamma) - \mu(\{0\}) \right| < \varepsilon$$ for each x_k . Now choose a compact set C in R" such that $$\int_{\mathbb{R}^n \times C} |f(x)| < \varepsilon.$$ If k is so large that $E_k + x_k \supset C$, then (3) $$\left| \int_{\mathbb{R}^n} f(x)\hat{\mu}(x - x_k) dx - \hat{\lambda}_k \right|$$ $$\leq \left| \int_{C} f(x)\hat{\mu}(x - x_k) dx - \hat{\lambda}_k \right| + \|\mu\|\varepsilon$$ $$= \left| \int_{C} f(x)\hat{\lambda}_k dx - \hat{\lambda}_k \int_{\mathbb{R}^n} f(x) dx \right| + \|\mu\|\varepsilon$$ $$\leq 2\|\mu\|\varepsilon.$$ Combining (1), (2), and (3) the lemma follows. We shall now see how this lemma implies the theorem. On each B_k the function φ is of the form $a_k e^{ib_k \cdot x}$, where $a_k \in C$, $|a_k| = 1$, and $b_k \in \mathbb{R}^n$. In [1, Theorem 4.1] it is shown that the b_k 's can take only a finite number of values. We claim that in our case b_k is constant if k is large enough. If not, then there are two different values b' and b'' which occur infinitely many times among the b_k 's. Choose $x_0 \in \mathbb{R}^n$ so that $e^{ib' \cdot x_0} = 1$ but $e^{ib'' \cdot x_0} \neq 1$. Set $\psi(x)$ $= \varphi(x + x_0) - \varphi(x)$. Also for all but those finitely many B_k for which radius (B_k) $<|x_0|$, let B_k' be the ball B_k with its radius decreased by $|x_0|$. Then $|\psi|^2 \in B(\mathbb{R}^n)$, $|\psi|^2 = |e^{ib' \cdot x_0} - 1|^2 = 0$ on all those infinitely many balls B'_k for which $b_k = b'$, and $|\psi|^2 = |e^{ib'' \cdot x_0} - 1|^2 > 0$ on all those infinitely many balls B'_k for which $b_k = b''$. But this contradicts the lemma, and thus b_k is constant if k is large enough. It remains to show that a_k is constant if k is large enough. Suppose this is not the case. Then, exactly as in the proof of Lemma 5.2 in [1], it is possible to construct a Fourier-Stieltjes transform on R' taking constant values $\hat{\lambda}_k$ on each E_k , where E_1, E_2, \ldots is an infinite subsequence of B_1, B_2, \ldots , and where the λ_k 's are such that $\lim_{k\to\infty} \hat{\lambda}_k$ does not exist. Since this contradicts the lemma, we conclude that a_k is constant if k is large enough. The theorem is proved. ACKNOWLEDGEMENT. I wish to think Professor Yngve Domar for suggestions making it possible to simplify my original proof. ## REFERENCES - R. Andersson, Power bounded restrictions of Fourier-Stieltjes transforms, Math. Scand. 46 (1980), 129-153. - W. Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics 12), Interscience Publ., New York, 1967. ERIK SVENSSON UPPSALA UNIVERSITY DEPARTMENT OF MATHEMATICS THUNBERGSVÄGEN 3 S-75238 UPPSALA SWEDEN