## A NOTE ON POWER BOUNDED RESTRICTIONS OF FOURIER-STIELTJES TRANSFORMS

## **ERIK SVENSSON\***

In this note we extend the case  $R^n$  of the main result, Theorem 5.1, in Andersson [1] to some non-compact situations.

DEFINITION. If E is a subset of  $\mathbb{R}^n$ , then the supremum of all radii of closed balls contained in E is called the width of E and is written w(E). (Possibly  $w(E) = \infty$ .)

Undefined notations below are as in Andersson [1]. We shall prove the following

THEOREM. Let E be a subset of  $\mathbb{R}^n$  such that E is the closure of its interior and suppose that for each  $c \in \mathbb{R}_+$  there are only finitely many components of E of width less than c. Suppose  $\varphi \in \mathcal{B}(E)$ , i.e. suppose  $\varphi \in B(E)$ ,  $|\varphi| = 1$  on E, and  $\sup_{k \in \mathbb{Z}_+} \|\varphi^k\| < \infty$ . Then on all of E except possibly on finitely many components of finite width,  $\varphi$  equals one and the same product  $ae^{ib \cdot x}$ , where  $a \in \mathbb{C}$ , |a| = 1, and  $b \in \mathbb{R}^n$ .

We note that the theorem in particular implies that if each component of E has infinite width, then on all of E the function  $\varphi$  equals one and the same product  $ae^{ib \cdot x}$ .

PROOF OF THE THEOREM. It is sufficient to prove the theorem in the case when E is the union of infinitely many pairwise disjoint balls whose radii tend to infinity. To see this, let  $E'_1, E'_2, \ldots$  be an enumeration of E's component of finite width, and let  $E''_1, E''_2, \ldots$  be an enumeration of those of infinite width. For each  $E'_i$  choose a ball  $A'_i$  contained in  $E'_i$  and having radius equal to  $\frac{1}{2}w(E'_i)$ , and for each  $E''_i$  choose an infinite sequence  $A''_{i1}, A''_{i2}, \ldots$  of pairwise disjoint balls, each contained in  $E''_i$  and such that radius  $(A''_{ij}) = i + j$ . These choices are

<sup>\*</sup> Partially supported by the Swedish Natural Science Research Council, contract no. F2220-100.

Received August 14, 1979.

clearly possible. Then let  $B_1, B_2, \ldots$  be an enumeration of all the balls  $A'_1, A'_2, \ldots, A''_{11}, A''_{12}, \ldots, A''_{21}, A''_{22}, \ldots, \ldots$  The radii of  $B_1, B_2, \ldots$  obviously tend to infinity. Trivially  $\varphi \in \mathcal{B}(E) \Rightarrow \varphi \in \mathcal{B}(\bigcup_{1}^{\infty} B_k)$ . Now suppose we could prove that on all but finitely many of the balls  $B_1, B_2, \ldots, \varphi$  equals one and the same product  $ae^{ib \cdot x}$ . Since we know that on the whole of each of E's components,  $\varphi$  is a product  $ae^{ib \cdot x}$  (see [1, Theorem 5.1]), and since each of E's components of infinite width contains infinitely many of the balls  $B_1, B_2, \ldots$ , the theorem would then follow. From now on we suppose that E is a union of an infinite sequence  $B_1, B_2, \ldots$  of pairwise disjoint balls whose radii tend to infinity, and we want to show that on all but finitely many of the balls  $B_1, B_2, \ldots, \varphi$  equals one and the same product  $ae^{ib \cdot x}$ .

LEMMA. Let  $E_1, E_2, \ldots$  be subsets of  $\mathbb{R}^n$  having the property that there are points  $x_1, x_2, \ldots$  in  $\mathbb{R}^n$  such that each compact subset of  $\mathbb{R}^n$  is contained in every  $E_k + x_k$  if k is large enough. Suppose  $\hat{\mu} \in B(\mathbb{R}^n)$  coincides with a constant  $\hat{\lambda}_k$  on each  $E_k$ . Then  $\lim_{k \to \infty} \hat{\lambda}_k$  exists and is equal to  $\mu(\{0\})$ , the mass of  $\mu$  at the origin in  $\mathbb{R}^n$ .

PROOF OF THE LEMMA. Fix  $\varepsilon > 0$ . By Fubini's theorem

(1) 
$$\int_{\mathbb{R}^n} f(x)\hat{\mu}(x-x_k) dx = \int_{\mathbb{R}^n} \hat{f}(\gamma)e^{i2\pi x_k \cdot \gamma} d\mu(\gamma)$$

for each  $f \in L^1$  (R<sup>n</sup>). Now fix (see for example Rudin [2, p. 48, Theorem 2.6.1]) an  $f \in L^1$  (R<sup>n</sup>) with  $0 \le \hat{f} \le 1$  so that  $\hat{f}(0) = 1$  and so that the support of  $\hat{f}$  is contained in so small a neighborhood of the origin in R<sup>n</sup> that

$$\int_{\mathbb{R}^n} |\widehat{f}(\gamma)| \, d|\mu_1(\gamma)| \, < \, \varepsilon \, \, ,$$

where  $\mu_1 = \mu - \mu(\{0\})\delta_0$  and  $\delta_0$  is the Dirac measure at the origin in R<sup>n</sup>. Then also

$$\left| \int_{\mathsf{R}^n} \hat{f}(\gamma) e^{i2\pi x_k \cdot \gamma} d\mu_1(\gamma) \right| < \varepsilon$$

for each  $x_k$ . I.e.

(2) 
$$\left| \int_{\mathbb{R}^n} \hat{f}(\gamma) e^{i2\pi x_k \cdot \gamma} d\mu(\gamma) - \mu(\{0\}) \right| < \varepsilon$$

for each  $x_k$ . Now choose a compact set C in R" such that

$$\int_{\mathbb{R}^n \times C} |f(x)| < \varepsilon.$$

If k is so large that  $E_k + x_k \supset C$ , then

(3) 
$$\left| \int_{\mathbb{R}^n} f(x)\hat{\mu}(x - x_k) dx - \hat{\lambda}_k \right|$$

$$\leq \left| \int_{C} f(x)\hat{\mu}(x - x_k) dx - \hat{\lambda}_k \right| + \|\mu\|\varepsilon$$

$$= \left| \int_{C} f(x)\hat{\lambda}_k dx - \hat{\lambda}_k \int_{\mathbb{R}^n} f(x) dx \right| + \|\mu\|\varepsilon$$

$$\leq 2\|\mu\|\varepsilon.$$

Combining (1), (2), and (3) the lemma follows.

We shall now see how this lemma implies the theorem.

On each  $B_k$  the function  $\varphi$  is of the form  $a_k e^{ib_k \cdot x}$ , where  $a_k \in C$ ,  $|a_k| = 1$ , and  $b_k \in \mathbb{R}^n$ . In [1, Theorem 4.1] it is shown that the  $b_k$ 's can take only a finite number of values. We claim that in our case  $b_k$  is constant if k is large enough. If not, then there are two different values b' and b'' which occur infinitely many times among the  $b_k$ 's. Choose  $x_0 \in \mathbb{R}^n$  so that  $e^{ib' \cdot x_0} = 1$  but  $e^{ib'' \cdot x_0} \neq 1$ . Set  $\psi(x)$  $= \varphi(x + x_0) - \varphi(x)$ . Also for all but those finitely many  $B_k$  for which radius  $(B_k)$  $<|x_0|$ , let  $B_k'$  be the ball  $B_k$  with its radius decreased by  $|x_0|$ . Then  $|\psi|^2 \in B(\mathbb{R}^n)$ ,  $|\psi|^2 = |e^{ib' \cdot x_0} - 1|^2 = 0$  on all those infinitely many balls  $B'_k$  for which  $b_k = b'$ , and  $|\psi|^2 = |e^{ib'' \cdot x_0} - 1|^2 > 0$  on all those infinitely many balls  $B'_k$  for which  $b_k = b''$ . But this contradicts the lemma, and thus  $b_k$  is constant if k is large enough. It remains to show that  $a_k$  is constant if k is large enough. Suppose this is not the case. Then, exactly as in the proof of Lemma 5.2 in [1], it is possible to construct a Fourier-Stieltjes transform on R' taking constant values  $\hat{\lambda}_k$  on each  $E_k$ , where  $E_1, E_2, \ldots$  is an infinite subsequence of  $B_1, B_2, \ldots$ , and where the  $\lambda_k$ 's are such that  $\lim_{k\to\infty} \hat{\lambda}_k$  does not exist. Since this contradicts the lemma, we conclude that  $a_k$  is constant if k is large enough. The theorem is proved.

ACKNOWLEDGEMENT. I wish to think Professor Yngve Domar for suggestions making it possible to simplify my original proof.

## REFERENCES

- R. Andersson, Power bounded restrictions of Fourier-Stieltjes transforms, Math. Scand. 46 (1980), 129-153.
- W. Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics 12), Interscience Publ., New York, 1967.

ERIK SVENSSON UPPSALA UNIVERSITY DEPARTMENT OF MATHEMATICS THUNBERGSVÄGEN 3 S-75238 UPPSALA SWEDEN