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POWER BOUNDED RESTRICTIONS
OF FOURIER-STIELTJES TRANSFORMS

ROGER ANDERSSON

1. Introduction.

In the present paper we give local variants of the theorems of Beurling—
Helson and Cohen, i.e. characterizations of the power bounded elements in
certain restriction algebras of Fourier—Stieltjes transforms on locally compact
abelian groups. It is well known that there are no obvious such
characterizations in general. However, we will provide a characterization,
presented in some detail below, in the case when the algebra consists of
restrictions to a set E which is compact and which is the closure of its interior.
We also obtain some results in the case where E is the closure of an open
connected set.

Let G be a locally compact abelian group with dual group I amd let M(I')
be the convolution algebra of all bounded regular Borel measures u on I such
that | ullps(r), the total variarion of y, is finite. The Fourier-Stieltjes transform
of ue M(I') is defined by

p(x) = Jr (x> du(y) .

For a closed set E in G we denote by B(E) the algebra of restrictions of
Fourier-Stieltjes transforms of elements in M (I') to E. With the norm defined
by

If e = inf{”#“M(r)I fi=f on E},

B(E) is a Banach algebra of continuous functions. The set of all functions
f€ B(E) with |f|=1 on E and sup, .z, || /"l <0c will be denoted by #(E).
By the well known theorem of Beurling and Helson [1], for G connected, any
function in #(G) is a character times a complex constant of modulus one. A
more general result due to Cohen, (See [4, Theorem 1], [12, Theorem 4.7.3])
gives a characterization of the functions in #(G), valid for any G. The main
result of this paper is a similar characterization of the functions in %#(E) when
E is compact and the closure of its interior. We will now describe this result.
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130 ROGER ANDERSSON

Let T be the group of complex numbers of modulus one and U an open
neighborhood of the identity in G. A continuous map 0: U — T is called a
local character if whenever x € U,y € U and x+y € U then 0(x +y)=0(x)0(y).
If U is compact then the continuous extrapolation to U of 0 is in #(U) (cf.
Section 2). We denote by #(E) the set of functions that locally on E agree
with translates of local characters multiplied by complex numbers of modulus
one. When E is compact, it follows by a partition of the unit that ¥ (E)= #(E).
Our characterization is that if E is compact and the closure of its interior then
B(E)=Z(E). For such sets we also give a more explicit description of the
functions in Z(E) (cf. Section 5).

We begin by proving that if V is any open set in G and fe #(V) then
fly € £ (V). This is done by structure theory using the above-mentioned result
of Cohen and a local version of the theorem of Beurling and Helson [3] in R".
Using a technique introduced by Domar in [4] we then improve this result,
showing that for some integer p not exceeding sup,.z, || /"l p(p).f agrees locally
on V with translates of just p essentially different local characters multiplied by
complex numbers of modulus one. This gives a natural partition of V in p open
subsets V,, f being locally equal to a translate of one and the same local
character times a complex number of modulus one on V,. Then, if x is a
boundary point of some V¥, we choose a small neighborhood W of the identity
in G with W compact and divide f by the x-translate of the local character. For
sufficiently small W, the quotient is in #(V, N (x+ W)) and is locally constant
in ¥, N (x+ W). The proof is finished by showing that such a function has a
finite range.

In Section 6 we first give a few examples which show that there is no simple
general characterization of the functions in #(E), when E is the closure of an
open set. However, if E is the closure of an open and connected set, the functions
in #(E) admit a simple description, similar to that given by the theorem of
Beurling and Helson (cf. Section 6). The section ends with a discussion of for
which sets E, functions of this kind are in #(E). For a positive result when E is
non-compact and disconnected we refer to Svensson [13].

I wish to thank Docent Philip Brenner for suggesting the topic and for his
kind interest in my work. I also wish to express my gratitude to Professor
Yngve Domar, whose work in the area of harmonic analysis has been a great
source of inspiration. In some of the work on the problems discussed here 1
benefited from time spent at the Mittag—Leffler Institute during the academic
year 1973-1974 and in the spring of 1977.

2. Preliminaries.
We begin by reviewing certain notions concerning topological groups. Any
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group considered in this paper, unless the contrary is explicitly stated, will be
locally compact and abelian (abbreviated LCA). With some obvious
exceptions like T, the group of complex numbers of modulus-one, all groups
will be written additively with O as identity element. ‘

A homomorphism is said to be a morphism if continuous and an epimorphism
if it is continuous, open and surjective. If U is an open neighborhood
(shortened open nbd) of 0 in G, a continuous map 0 of U into a group H is
called a local morphism if whenever xe U, ye U and x+y € U then 0(x+y)
=0(x)+0(y). A local isomorphism of G with H is a homeomorphism 6 of a nbd
of 0 in G onto a nbd of 0 in H such that 6 and 6! are local morphisms. When
such a map exists the groups are said to be locally isomorphic. Morphisms
(local morphisms) into T are called characters (local characters).

In general a local character is not a restriction of a character. However the

following device (cf. eg. [10, Theorem 18]) enables us to regard it as induced by
a character of a “larger” group.

THEOREM 2.1. Let 0: U — T be a local character in G, let G, be the open
subgroup of G generated by U and let U={(x,0(x)) e GxT | x € U}. Let G be
the subgroup of G xT generated by U and (disregarding its topology as a
subgroup of G x T) topologized by taking as a base for nbds of the origin the sets
V={(x,0(x)) e GXT ‘ x € V< U}, V ranging over the open nbds of 0 in G. If «
and P are the restrictions to G of the projection of G x T onto G and of the pro-
jection of G x T onto T, respectively, then

(1) GisLCA

(2) o:G — G, is an epimorphism and o|g: U — U is a homeomorphism,
whence G and G are locally isomorphic

(3) B is a character of G and 6=PBo(alg) ™ .

REMARK 1. The group G is minimal in the following sense: If (1), (2) and (3)
above are satisfied with G, U, o and f changed to G, U’, «’ and f' respectively,
then G is isomorphic with an open subgroup of G’ modulo a discrete subgroup.

REMARK 2. Let a: RY — R%/Z9=T? be the canonical map, U an open

connected nbd of 0 in R? contained in ]—3%,i[? and V=a(U). For any
aeR?

0,: x — e¥ri<a @) xeV,

is a local character on V ({, > is the usual inner product in R?). Conversely any
local character on V is of this form, since a local morphism in R? coincides on
some nbd of 0 with a morphism [2, p. 88]. It is readily seen that in this case Re
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is (isomorphic with) R%/Z7N (a)*, where (a)* denotes the annihilator of the
subgroup generated by a.

In Section 3 we will need a certain type of basis at 0 in compact abelian
groups. Much more general results of this type are known [10, Theorem 69],
but for the convenience of the reader we include a direct proof of the special
case we will use.

THEOREM 2.2. For each nbd U of 0 in a compact abelian group G there is a
closed subgroup H, a morphism y: R — G for some q 20 (with R°={0}) and an
open connected nbd V of 0 in R? such that

(1) Y (V)+H is open and contained in U
(2) the map (t,h) > Y(t)+h, (t,h) € Vx H is a local isomorphism.

Proor. Since the dual group I of G is discrete there are y,,...,y,in I" and
£>0 such that U contains the open set

N(p,e) = {xe G| Kx,7;p—1l<e, 1<j<p}.

The subgroup A of I' generated by y,,....,7, is isomorphic with a quotient
group of Z? and can thus be written as a direct sum, A=A4,® A, where 4, is
isomorphic with Z? and A, is a finite group. We may assume that ¢ is so small
that N(p, &)< A3, the annihilator of A,. Let H=A". If g=0 then H=N(p,¢)
and (1) and (2) are trivially satisfied. If ¢>0 we may also assume that
Vis- - > Vg € Ay, that y,.,,... y,€ 4, and that for a suitable isomorphism
o: A, — Z% o(y;)=e;, where ¢; is the element in Z7 whose jth coordinate is 1
and the others are 0. Let 7: Z? — R? be the inclusion map. As R? is divisible
and I is discrete, we can extend tog to a morphism g of I into R% Let y: R?
— G be the dual of g, i.e.

Vyerl VteR? (Y(t),y) = emiemn

and let
1 . & .
V=<t=(t,...,1) € R"] It < ;arcsmi, 15j<q;.

Now if ¢ is small and x € N(p,¢), there is a unique t = (t,,. . .,t,) € V such that
{x,y;p=e*"j for 1 £ j<q and thus, x—y(t) € A}. But x—y () € A3 too, since
N(p,e)cA; and g(A,)={0}. Hence N(p,&)=y(V)+H and the map (t,h)
— Y(t)+h, (t,h) e Vx H is a homeomorphism, as the argument above also
shows that its continuous extension to the compact ¥V x H is injective.
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REMARK. If g=0 for each nbd U of 0 in G, then G is totally disconnected and
conversely.

In our notations we will in general follow [12] but with the roles of G and I
reversed, thus taking Fourier and Fourier-Stieltjes transforms on G of
functions and measures on I'. We will frequently use the following immediate
consequence of [12, Lemma 4.2.2].

LemMMA 2.1. If a is a morphism of the group G, into the group G,, if Ec G, is
closed and f € B(E) then foo € B(a™'(E)) and |foall g1 gy < 1 f Il 3k

The next result, due to de Leeuw and Herz [5], enables us to go in the
opposite direction.

THEeOREM 2.3. If a is a morphism of the group G, into the group G,, if EC G, is
compact and o is injective on a nbd of E, then there is a constant C such that if
f € B(E) then fo(alg)™" € B(«(E)) and | fo(alg)™ "l pamy=CIf &y

In particular this theorem and Theorem 2.1. imply that if U is an open nbd
of 0 with U compact, the continuous extrapolation to U of a local character on
U is in 2(0).

For a closed set E in G we denote by A(E) the algebra of restrictions to E of
Fourier transforms of functions in L' (I'). Thus f € A(E) if there is a ¢ € L'(I)
such that

f(x) = ¢(x) = Jr (ayye()dy, xe E

and
1 flag = iﬂf{”(P“L‘(r)| ¢=fon Ej}.

We finally remind the reader that if E is compact and ¢>0 there is a k € L'(I')
with k=1 on E and IkllL1(ry<1+e. Thus for compact sets E, we have B(E)
= A(E) and with the same norms.

3. A local result.

Let E be a closed set in a LCA group G and %(E) the set of all functions
fe€ B(E) with |f|=1 on E and sup,cz, ||/" s <0o. Though our main results
on #(E) require E to be compact or connected, in this and the next section we
only assume E to be a closed set with a non-empty interior.

TueoreM 3.1. If f € #(E) then each interior point in E has a nbd in which f
equals a translate of some local character times a constant of modulus one.
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The essential step in the proof is the following lemma.

LeMMA 3.1. Let W be an open connected nbd of 0 in RP, and H a compact
group. If g € B(W x H) then there is a piecewise affine map C: H —» T and a
piecewise constant map a: H — RP such that

g(t,h) = C(h)e®™ <m0 (t,hye WxH .

We follow [12] in the definitions and properties of affine and piecewise affine
maps. For the convenience of the reader, we repeat these definitions here.

Let G, and G, be LCA groups and E a coset in G,, i.e. a translate of a
subgroup of G,. If «: E — G, is a continuous map such that

a(x+x"—x") = a(x)+a(x)—a(x"), x,x,x"€kE,

then a is said to be affine. If S;, 1 i< m, are pairwise disjoint sets belonging to
the coset ring of G,, each S; contained in an open coset K; of G, and «;: K;
— G, is affine for each i, then the map « of U™ | S; into G, which coincides on
S; with a; is said to be piecewise affine. The coset ring of G, is the smallest ring
of subsets of G, containing all open cosets in G,. Piecewise constant maps are
defined similarly with obvious modifications.

ProoF oF THE LEMMA. First fix he H and consider the function g,:
t — g(t,h) on W. As the map ¢ — (t,h), t € R?, is affine, g, € Z(W) by Lemma
2.1. By [3, Theorem 1], which is correct for I'=R", there are C(h) € T and
a(h) € R? such that

g(t) = Che*™@ o, e W,

thus defining the maps C and a. On the other hand, for t € W fixed, the
function g,: h — g(¢,h) is in #(H), again by Lemma 2.1. By the result of Cohen
(cf. [4, Theorem 1], [12, Theorem 4.7.3]) the function g, is piecewise affine.
Choosing t=0 we see that C is piecewise affine, hence so are all the functions
h — e2"<a®)-1> This implies a to be piecewise affine. But a piecewise affine map
from a compact group into RP is piecewise constant, since the only compact
subgroup of R? if {0}.

REMARK. If a non-empty set S belongs to the coset ring of H, then it belongs
to the smallest ring of subsets of H containing all cosets of some finite family of
open subgroups of H. Hence, as H is compact. S is simply a union of cosets of
an open subgroup of H. Thus the conclusion of Lemma 3.1. could be expressed
more explicitly as follows: there are disjoint sets S,,...,S,, each a union of
cosets of some fixed open subgroup of H, with union H,and c¢; € T, a; € R? and
7; € H such that



POWER BOUNDED RESTRICTIONS OF FOURIER-STIELTJES TRANSFORMS 135

g(t,h) = cpy;(We™ e, (,hye WxS, 15

IIA

m.

Proor oF THEOREM 3.1. It is sufficient to prove that if 0 is an interior point
in E and f(0)=1, then fis equal to a local character in a nbd of 0. By a well
known theorem in structure theory (see for example [8, Theorem 24.30]) the
group G is (isomorphic with) the direct product of R™ and a LCA group
G, containing a compact open subgroup. By Theorem 2.2. there is then a
morphism ¥: R? — G, and open connected nbds U and V of 0 in R™ and RY,

respectively, such that the nbd U x (y(V)+ H) is contained in the interior of E
and the morphism

a: (x,t,h) = (x,¥(t)+h), (x,t,h)e R"xRPx H

restricted to U x V' x H is a local isomorphism. If V is chosen in such a way
that U x (y(V)+ H)<E, it follows from Lemma 2.1 that foo|gpxy € B(U
x V x H). Hence, by Lemma 3.1 and the remark following it, there is an open
nbd S of 0 in H such that foo restricted to U x V x S coincides with a character
of R™x R?x H. This proves the theorem.

4. A stronger local result.

We will show in this section that in a sense to be made precise below, the
number of local characters occurring in Theorem 3.1 is finite. The result will be
given in terms of the concept of germs of local characters that we now
introduce. If Q is the set of all local characters in G the relation “there is a nbd
of 0 in G in which 6 € Q and 6 € Q are defined and agree” is an equivalence
relation. The germs of local characters will be the equivalence classes of this
relation.

THEOREM 4.1. Let f e B(E). Then f agrees locally in the interior of E with
translates of local characters belonging to at most p different germs times
complex numbers of modulus one. Here p<C=sup,cz, II/"| sy

PrOOF. Let x,,...,x, be any p points in the interior of E. By Theorem 3.1
there are a nbd W of 0 in G, local characters 6,,. . .,0, and complex numbers
Cy5. . .,¢, of modulus one such that

If we can show that
2) 0,,...,0, all belong to different germs

implies that p<C, the theorem will follow. Assume (2) and regard G as
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R™ x G, where G, contains a compact open subgroup. We may suppose that
W is so small that for 1 k< p, 0,(W)<{e®™* | |t|<4} and hence

(3) 0, = 1 on each subgroup of G contained in W.

By Theorem 2.2. there is a morphism y: R? — G, cubes Q,=]1—r,r[? and Q,,
=]—r,r[™ and a compact subgroup H such that the set Q,, x (¥ (Q,)+ H) is
open and contained in W. Consider the morphism

o: nt,l)—> (y,¥@)+ Z Lx, yeR™ teRi,1l=(,...,1)eZ".

If e, is the element in Z? with kth coordinate equal to 1 and the others equal to
0 and if S=U}_, (Q,, x Q, x {&}), then a(5)= E. Hence, as S is compact and o
is @ morphism, it follows from Lemma 2.1 that the function g=fo0|s satisfies

@) ge AS) lgl =1 and |g"l45 = C neZ,

Since the functions (y,t) — 6,(y, ¥ (1)), (v,1) € @, x Q,=Q are local characters
in R™*? and thus restrictions to Q of characters (cf. Remark 2 in Section 2)
there are d, = (a,, b,) € R™*4 such that

0.0, ¥(t) = e(pad+<bo) (e Q.
Hence, by (1)

(5) g(U, ek) = Ckezni<dhu>’ vVE Qa 1 ékép .

By (2) and (3) all d, are different and we will now use a slight modification of
an argument due to Y. Domar (see [6, p. 4]) to show that this together with (4)
and (5) implies p=C.
Let C'> C be given and choose ¢, € L' (R* x T?), (s=m+ g), such that |, .
<C and ¢,s=g" ie.
Palv,e) = cie?™ D veQ 1 Sj<Sp.

If A@Q)=4,(8) - 41(C), £=(C1-- 18 € R®, where 4, (t)=max (1—|t|,0),
t R, then 4 eL‘(R’) and 4=4=4, where A(§)=4(—¢). For d € R%, ¢>0
and n e Z, given we form the function

Fd &, n(v 1) J‘J\ - (z(-——d))(p"(é, r’)e-Zni(V. {}.e—lni(l,'l> dé dn

on R*x ZP, i.e. the Fourier transform of the function

1
(6’ Y]) hd A(E(g—d)>(pn(é’ Y]), (é’ r’) € Rs xTP.
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By a routine calculation, (&,17) > 4((é—d)), (£,n) € R*xT? is the Fourier
transform of the function h,, € L' (R® x ZP) given by

(en)e?™i<dleemd fenu)  if m=0
h,,(u,m) = .
on {1 1) {0 if m%0 .
Thus by Parseval’s formula
Fy,av,) = Y hy(u,m)@,(u+v,m+1)du = f b, (4, 0)@, (u+v, 1) du
R meZ? R*

and hence
Fd,e,n(v’ ]) — f (Z,"(i +v, l) e2ni<d/z,u>j(u) du .
RS en
For n large u/en € Q and then by (5)
(5 _Li e (2) (0 ek)-l - eZnin(d,‘,u/an> — e21ri(d,,u/c> ,
"\en’ n
which shows that the functions u — @,(u/en, e,)9,(0,e,)”! converge to the

function u — e¥™<%%2 pointwise in R®. By the Lebesgue’s dominated
convergence theorem, for 1 <k=<p,

hm Fd,e, n(O’ ek) : (ﬁn(ov ek)_ !

n= oo
— J e2ni(dd£,u) ,e2ni<d/c, u>j(u) du = A <dk + d) )
R

€

As 4(0)=1 and |(,(0,e,)|=1, given 6>0 and ¢>0 we can choose n large
enough to have

o
Ve > 0 |F_g..(0,e] 2 1—5’ 1sk=p.

With n chosen in this way, by the definition of F, , ,,
P P 1/¢
p_6 é Z IF-—dk,s,n(O’ek)l é Z J‘j a4 - _+dk |(pn(é’ r’)l dé d?’, .
k=1 k=1 JJRxT? \&\N

But A(1/e(¢/n+d,))=0 if not all coordinates of £/n+d, have modulus at most
¢. As all d, are different, we can choose ¢ so small that for each n the functions
& — A(1/e(E/n+d})), € € RS, 1 £k <p have disjoint supports. This implies that

i ﬂ A<~l-<§+dk)>l<p,.(é,n)ld€dn = leall = C.
k=1 JJRxTr \E\N
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Thus p<C'+6 and as >0 and C'> C was arbitrary, we have proved that p
<C.

5. The characterization.

In this section we will assume that E is compact and the closure of its
interior. Let £ (E) be the set of all complex-valued functions on E with the
following property: for each x € E there is a nbd U of 0 in G, a local character
0: U — T and a c € T such that

VyeEN(x+U): f(y) = c(y—x).

We will now prove our main result, i.e. that #(E)= % (E), and describe the
structure of the functions in £ (E). We start with a simple lemma concerning
Diophantine approximation.

LemMMA 5.1, Let 0<e<4 and 1,,. . .,1, be real numbers such that
€ € .
0<r1 < 5 and 0 < 1; < Etj_l, 25j<k.

Then there are infinitely many positive integers n such that the distance from nt;
to the nearest odd integer is less than ¢ for 1< j<k.

ProoF. Let h be any positive odd integer and n, be the first positive integer
for which n,t,>h—e¢. Then for each integer | with 0=1<[2¢/7,] -2, we will
have |(n,+ ), — h| <e. As the length of the interval I,_, =[n,t,_,, (n,+[2¢/7,]
—2)t, -] is at least ((2¢/t) —3)t,—, >4 —31,_, 222 there is an odd integer, say
h,_,, such that [h,_, —¢&,h,_,+el=l,_y. If n_y=n,+1,_, is the first integer
among the integers n,+1, 0=<1=<[2¢/1,] —2 for which n,_,7,_,>h,_,—¢, we
will have |(n,_,+ 0Dt -, —hi_,|<e whenever 0=1=[2¢/r,_,]—2. Thus the
argument can be repeated. Continuing in this way we finally find at least 3
consecutive integers n among the integers n,+1I, 0<1<[2¢/7,]—2 and odd
integers h,,...,h,_, such that

Int;—hj <e 1= k-1,
Since h was arbitrary, the lemma is proved.

LEMMA 5.2. If U is an open set in G with K =U compact, and if f € #(K) and
flu is locally constant, then f(K) is finite.

Proor. Suppose that f(K) is infinite. As f|; is locally constant, there is a
sequence (x,,)x-, in U and a sequence (V,,)¥_, of compact symmetric nbds of 0
in G such that
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2Vm‘kl < Vm9 xm+Vm < U9 f(X) =f(xm) on xm+Vm

and such that the points f(x,) € T are distinct. Let H=¥_, V,,, which is a
closed subgroup of G. For each open nbd W of 0 in G there is a k € Z, such
that V, =« W+ H; otherwise, the sequence V, \ (W+ H) of compact sets has the
finite intersection property and hence a non-void intersection, which is
impossible. Thus if a: G — G/H is the canonical map, the sets a(V;)=
{x+H | x eV}, ke Z,, form a basis at the origin in G/H. Since K is com-
pact, a(K) is compact and therefore the sequence (x,,+ H)yx-, in G/H has a
convergent subsequence. By choosing a subsequence of (x,)x-, we may if
necessary thus assume that (x,+ H)%-, is convergent and

(1) if 6 = £(%) and & = <2, then 0 < 7, < } and 0 < 7, < UL

b
Caj+1

ifjz2.

From (1) it follows by Lemma 5.1. that there is an infinite sequence (n,);%, of
positive integers such that

(—c“—)k—l‘ >1 if1<jgk.

Caj+1

2

Since f € #(K) there is a bounded sequence (u)i~, in M(I') such that [, (x)
=c™ if x € x,+V,. Now let u be a weak*-clusterpoint of (u);%,. For any
finite set of functions g € L!(G), vanishing outside x,,+ V,, it follows by
Parseval’s formula that there is a clusterpoint d,, of (cy)i%, such that

JG g(x)[i(x)—d,]dx = 0.

As [i is continuous, this implies that ji(x)=d,, in the interior of x,,+ V,, and by
(2) we have

dy;

-1
daj+1

, JeEZ,.

N

2

But if V is the interior of the set U®_, (x,,+ Vp+y), the function h: x+H
— fi(x), x e V is well defined and uniformly continuous on a(¥). Since
h(x,,+H)=d, and (x,+H)Z-, converges as m— oo we have reached
a contradiction.

THEOREM 5.1. If E is compact and the closure of its interior then #(E)= % (E).
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Proor. Suppose that f € #(E) and let U be the interior of E. By Theorem 4.1
there are p local characters 0,: W, — T belonging to different germs such that
the open sets

U, = {xe U| Inbd Wof0in G such that W< W,, x+WcU and
Vyex+W, f(y) = f(x)0,(y—x)}

form a partition of U.

Let x, € U, and let ¥, be an open nbd of 0 in G with ¥V, compact and
contained in W,. The function

x—»ak—(-fx—(?@, x € (xo+Vy) N U,
is in B((xo+ Vo)NU,) and is locally constant in (x,+ V,)N U, Hence, by
Lemma 5.2, it has a finite range and this implies that the function is constant in
U, N (xo+ V), for some nbd V, of 0 in G. If x, also belongs to U, for some Ik,
there is an open nbd V of 0 in G with ¥ compact such that if Q, = (x,+ V)N U,
and Q,=(xo,+ V)N U, then there are ¢, and ¢, in T such that

9 = {c,‘()k(x—xo) if xeQ,

cl(x—x,) if xeQ,.

Thus, if 6=0,/0, and c=c,/c,, the function g defined on Q, UQ, by
It if xeQ,

g(x) = {c@(x—xo) if xeQ,

is in #(Q,UQ)). Hence there is a sequence (u,)3%, in M(I') such that fi,(x)
=g"(x) if x € Q,UQ, and with C=sup,cz, u,lpry<0c. With =35y, the
Dirac measure at 0, let 4,=2""Y7_, (D a sequence in M (I') bounded by C
and such that

[ 1 if xeQ,
l (——-——1 “9(2"_""))" if xeQ,.

Since 6, and 6, belong to different germs, the set

F = {erk| c(x—xo)=1}

An(x) =

is of Haar measure 0, and

lim Z,(x) =

n—oo

1 ifxeQUF
0 if xeQ\F.
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Now let 2 € M(I') be a weak *-clusterpoint of (2,);%,. It is easy to see that

W= {xeQUQ | i(x)%lim 1,(x)}

is of Haar measure 0. Hence 4(x)=0 or 1 for each x € Q, UQ, by continuity.
Thus

(xeQ | 2x)*0} = {xe Q| i(x)=1}
= {xeF[ Ax)=1} U {er,\Fl A(x)=0} « FUW

which shows that £(x)=0 on Q,. In the same way it is shown that £(x)=1 on Q,
and the continuity of 4 implies that 0, N Q,= . This shows that if x, € U,,
then x, ¢ U, for any I+k. Thus #(E)c %(E). Since E is compact we have
L (E)y=H(E) (cf. the introduction).

REMARK. The proof actually shows that if E is the closure of its interior
(compact or not) and if '€ #(E) then f agrees locally on E with translates of p
Ssup,ez, /"l local characters belonging to different germs times
constants of modulus one. However, a function with such a representation
need not even belong to B(E) if E is non-compact. As an example. the function

f defined by
) = -1 if x20
S =21 it

does not belong B(]—o00,0]U[1,00[). If it did, there would be a measure
u € M(R) with i(x)=0if x<0and f(x)=1if x= 1. Thus the measure v=pu+4,
satisfies v(x)=0 for x <0 and ¥(x)=2 for x> 1. But by the theorem of F. and
M. Riesz (see for example [12, Theorem 8.2.7]), a v € M(R) with ¥(x)=0 if
x<0 is absolutely continuous. Hence by the Riemann-Lebesgue lemma
lim,, , , v(x)=0, a contradiction.

The rest of this section will be devoted to an explicit description of the
functions in Z(E) for a set E which is compact and which is the closure of its
interior. We start with a definition.

DEFINITION 5.1. If U is an open nbd of 0 in a LCA group G, a function w: U
— T is said to be a local quasi-character if there are open nbds Ve W< U of 0
in G such that

(1) wly is a local character

) VxeU3x,,...,x, € W such that x = x; and o(x) = [] w(x)
=1

i i=1
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3) VxeUVx eV: x+x' e U = w(kx+x) = oxw(x).

The next simple lemma shows that the class of local quasi-characters
coincides with that of functions in G, induced of characters of groups, locally
isomorphic with G. More precisely:

LemMA 5.3. The function w: U — T is a local quasi-character in G if and only
if there is a LCA group G', an open morphism o: G' — G a € G' and open nbds
VieW' cU' of 0 in G’ such that

(1) o W — a(W') is a local isomorphism of G’ with G.
(2) U’ is contained in the subgroup of G' generated by W'.
(3) a is injective on U'+ V', a(UY=U and w=Bo(a|y) .

Proor. Suppose that w: U — T is a local quasi-character. We introduce the
group G and the maps o and B constructed from G and the local character w|y,
in Theorem 2.1. If U is the graph of w, then U =G by (2) in Definition 5.1.
From (3) it follows that U is open in G, that a(U)= U and that w=fo(a|g)".
Furthermore, (3) implies that if ¥ is the graph of w|y, then (U —U + V)N Kera
={0}. Hence « is injective on U+ V,, for each open nbd ¥, of 0 in G that
satisfies ¥, — ¥, V. This proves the necessity. The sufficiency is established by
a straightforward inspection.

It is readily seen that a local quasi-character is a uniformly continuous
function. If w: U — T is a local quasi-character and U is compact, then the
continuous extension of w to U is in #(U) by Theorem 2.3 and the preceding
lemma. However, if U is non-compact, w will in general not even belong to
B(U). We will give an example of this in the next section where a main point is
to seek conditions, less restrictive than compactness of U, which imply that
w e #(0).

THEOREM 5.2. Suppose that E is a compact set which is the closure of its
interior. Then fe ¥ (E) if and only if there is a partition of E into disjoint
compact sets E,,. . .,E,, each E; contained in an open set U, x; € E and local
quasi-characters w;: U;—x; — T and c; € T, 1 Si<m, such that

fx) = cw(x—x;), x€kE;.
Proor. As it is immediately seen that a function with the indicated

representation is in % (E) it is enough to show the converse statement. Suppose
that fe #(E). From the definition of #(E) it follows, by compactness, that
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there are x,,...,x, € E, open nbds V,,..., ¥, of 0 in G, local characters 0,: V;
— T and ¢; € T such that

M) Ec U (x+V)
i=1
and
) f(x) = ¢bi(x—x;) if xe EN (x;+V,).

Let Q be the interior of E and Q;=Q N (x;+ V,). Assume that Q;NQ;=+ & and
choose a x, € Q;NQ;. As x, € E we have x, € x, + V, for some k with 1<k<n
by (1) and since x,+ V) is a nbd of x,, we have

etV NEN(x+V) + &, (x+V)NQN (xj+ Vj) + .

Since these intersections are open, (2) implies that 0; and 0, belong to the same
germ. Hence, if g,,...,9, are all the different germs to which the local
characters 0, (1<i<n) belong and M ;={i I 0; € g;}, then E is decomposed into
the disjoint compact sets E;=U;.p 0, 1<j<p. If x€E; then x€Q,
=[Q N (x;+ V)] for some i € M; and by (1), there is a k such that x € x,+ V.
As x,+ V, is a nbd of x we have (x,+ V,)N QN (x;+ V;)+ &, which implies that
6; and 0, are in the same germ. Thus k € M; and therefore
A3) Eic U (x+V).

ieM;
By using a refinement of the cover (x;+ V) of E; if necessary, we may assume
that there is an open nbd W; of 0 in G and a local character x;: W; — T such
that U,y Vic W, and 0,=x; on V,, ie M,

Now let G, be the open subgroup of G generated by W, If K,,. . ., K, are all
the different cosets of G; to which x;, ie M; belongs and M
={ie M, | x; € K}, then E; is decomposed into the disjoint compact sets
Ey=E;NK;, 1=k<gq. Since

Ej = ieLAJl,-, Qi c ieyl,. (x;i+ V),
to finish the proof, it is sufficient to show that if M =« M, and f coincides with a
local quasi-character on the compact nbd F=U; 3 0; of 0in G and F meets Q,,
| € Mj,, then f coincides with a local quasi-character on F uao,

Let G; be the group and a; and B; be the maps constructed from the local
character 6;: W; — T, as in Theorem 2.1. If F and N are the graphs of f|r and
flg, respectively, the hypothesis implies that F and N are compact sets in G
and
B;(X) if xe F

Joa;(¥) = {C,B,(fc) if $e N
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for some constant C; € T. By the definition of «; and B,
(3) Kera; N Ker B; = {0} .

Since a;(F)Na;(N)=FNQ,+ &, by (3) there is a unique & € Ker« such that
h+N meets F. As this h satisfies §;(h)=C, it follows that

4 fou;(X) = B;(x) if xe FU (h+N).

By (3) it follows from (4) that «; is injective on F U (h+ N). Since this set is
compact, there is a nbd ¥ of 0 in G such that a; is injective on [F U (h+ N)] + V.
If 7, is a nbd of 0 in G with 2V, cVand U=F + (h+ N)+ ¥, then Lemma 5.3.
implies that Bjo(a;lp)”" is a local quasi-character on o j(U), which by (4)
coincides with fon FUQ,.

6. Some results for non-compact sets.

In all of this section it will be assume that E is the closure of its interior
and, in general, is not compact. We first show that additional conditions on E
are needed to have a representation of the functions in #(E) resembling that in
Theorem 5.2., with a finite number of constants. One sufficient condition is that
the interior of E is connected. In that case we show that a functions in %#(E)
coincides on E with a translate of a local quasi-character times a complex
number of modulus one.

However, local quasi-characters are in general not even restrictions of
Fourier-Stieltjes transforms. We end this section with a discussion of the
conditions on a closed nbd E of 0 in G, under which any local quasi-character
defined on a nbd of E belongs to #(E). We begin with some examples.

ExaMPLE 6.1. Let G be a discrete group and E a Sidon set in G (see [12, p.
1217). Then there is a constant C such that

fe L¥(E) = fe B(E) and | flpg < Clfll~) -
Thus any fe L*(E) with |f|=1 on E is in #(E).
The next two examples depend on properties of certain discrete subsets in
LCA groups, studied in detail in [9]. A subset L of a LCA group G is a coherent

set of frequencies if there exists a C>0 and a compact set K in I'=G such that
for each trigonometric polynomial P(y) with frequencies in L we have

sup|P(y)| £ C sup|P(y) .
yel yeK

When this holds, the pair (K, C) is said to be suitable for L. If Hom (L, T)
denotes the group of restrictions to L of all homomorphisms of the group G
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with the discrete topology into T, an equivalent condition is that
Hom (L, T) « B(L).

The following result, due to Y. Meyer, is the reason for our interest in
coherent sets of frequencies. We refer to [9, p. 126] for the proof.

THEOREM 6.1. Let L be a coherent set of frequencies in G and assume that
I'=G is metrizable and separable. Then there is a compact nbd V of 0 in G
such that the sets |+ V, | € L, are pairwise disjoint and such that if H is the
homeomorphism of L+ V onto Lx V given by H(I+1t)=(l,t),l € L, t € V, there is
C >0 such that,

g€ B(LxV) = goH e B(L+V) and |goH|lg1y) S Clglpwxy) -

ExampPLE 6.2. Let G be a LCA group, with I separable and metrizable, and
let L be a coherent set of frequencies in G. By Theorem 6.1 there is a compact
nbd V of 0 in G such that for any b € Hom (L,, T) the function f defined on E
=L+V by

fx)y=»5b( 1ifxel+V, leL,
is in A(E).

A set S of real numbers is a topological Sidon set if each f e L*(S) is the
restriction to S of the Fourier-Stieltjes transform of a u € M(R) (see [9, p.
183]). As an example, the set L={a" | neZ,} where aeR, a>1, is a
topological Sidon set (see [9, Theorem II]). We finish our set of examples of
functions in #(E) with those immediately derived from the following result,
borrowed from [9, Theorem VI, p. 192].

THEOREM 6.2. Let L be a topological Sidon set of real numbers and d; the
infimum of the distances between two distinct point of L. For each d in ]0,d;/2[
there is a constant C(d), which is an increasing function of d, such that any
bounded function b: L+[—d,d] — C which is constant on each interval [l —d,
1+d), is the restriction to L+ [ —d,d] of the Fourier transform of a measure with
norm not exceeding C(dysup,; |b(}).

We will now assume that U, the interior of E, is connected. Without loss of
generality we may also assume that U is a nbd of 0 in G, that f(0)=1 and that
the group G is connected. It is then of the form R™ x K where m20 and K is a

compact connected group (cf. for example [8, Theorem 9.8]).

THEOREM 6.3. Let U be an open connected nbd of 0 in the connected LCA

Math. Scand. 46 — 10
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group G and let E=U. Suppose that f € #B(E) and f(0)=1. Then there are a
connected LCA group G, an epimorphism a: G' — G, a f € G' and an open
connected nbd U’ of 0 in G’ such that with E'=U".

(1) thereisag e B(G') withg=1o0n E and g=0 on E'+h for each h € Ker a,
h=+0,

(2) Kera N Kerp = {0} .
() E = a(E) and [ = Bo(alg)".

REMARK. Since g is uniformly continuous, (1) implies that there is a nbd W’
of 0 in G’ such that « is injective on E’'+ W’. Hence, by Lemma 5.3, the theorem
shows in particular that if f € #(E), then f coincides on E with a local quasi-
character.

Proor. As U is connected there is, by Theorem 4.1., a local character 6: W,
— T such that for each x € U, there is a nbd W, of 0in G with W, c W, x+ W,
< U and such that f(x+y)=f(x)0(y) for all y e W,. Let U, be the set of all
x € U for which there are x,...,x, € W, such that x=3)_, x; and f(x)
=TT, 6(x)). Of course, k may vary. Then U, oW, and if x € U, and W, is a
nbd of 0 such that W, c W,, x+ W,c U and f (y)=f(x)8(y) for all y € W,, then
trivially x+ W, U,. Hence U, is a non empty open subset of U. As it is
equally simple to show that U, is closed in U, the connectedness of U implies
that U, =U.

Let G be the group and « and B be the maps constructed from the local
character 6: W, — T as in Theorem 2.1. and let U be the graph of f|,. By what
has been shown above, U <G, a(U)=U and foa=f on U. Since Kera N Ker f
= {0}, which proves (2), this implies that «| is injective and thus a|g: U- Uis
a homeomorphism. Hence U is connected and as G is generated by U, it is also
connected.

We will now prove (1) from which (3) easily follows. Since fe #(E),
the function foa is in #(a~'(E)) by Lemma 2.1. and as f is a character,
(foa/B) € #(a~'(E)). Hence as

U (O+h =« '(U) c a”X(E),
heKera
there is a C>0 and a sequence y, € M (I"), where G is the dual group of I', such
that,
fa(X) = B(R)™" if xe U+h
and

sup lluallmey S C.
neZ,
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If po=3, and if

o [n
vn = 2 " Z <k>#k
k=0

then ||v,| p#=C and for each X € U+h
R &\, o~ 1+ B(h)~ 1\
B =27 (k>ﬁ(h) b= <~#—> .
k=0
Since KeraNKer f={0} it follows that
{1 if xeU

lim $.(%) = PO
im v, (X) 0 ifxeU+h heKera, h + 0.

n—oo

Let v be a weak*-clusterpoint of (v,)}~,. As ¥ is continuous and U+Ah,
h € Kera, is open it follows (cf. the proof of Lemma 5.2) that

5@ = if xeO
"0 ifxeU+h heKera, h + 0.
ExampLE 6.3. Let G=R x T and a: R* - Rx T be the map given by

a(x,y) = (x,y+Z), (x,y)eR?.

Furthermore, let g: R — R be the function defined by

_fo itxso
8 =px ifx>0 beR, |

and let B € R? be defined by B(x, y)=e*™, (x,y) € R2, where a is irrational. If
U = {(xy) eR?| |y—g(x)|<d)

and 0> 0 is sufficiently small, then there is a nbd V' of 0 in R? such that a is
injective on U'+ V",

In this case, the function f=fo(a|y) "' is a local quasi-character, defined on
U=a(U'). However f ¢ B(U). If f € B(U), then foa € B(a«™'(U)) by Lemma 2.1
and hence, by the theorem above, the function which is 1 on U’ and 0 on U’
+(0,k), k € Z, k%0, would belong to B(U’+ ({0} x Z)). Since U’ + ({0} x 2)
contains the set

k
{(x,O) € R? I x<0 or x=r, ke Z+},
this implies that the function which is 1 if x<0 and is O if x=k/b, ke Z,,

would belong to B(]—o00,0]Ub~'Z,). If it did, we could find a u € M(R) such
that fi(x)=1 if x<0, u(x)=0 if x=k/b, ke Z,. Then the measure v=p—4§,
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satisfies v(x)=0 if x£0, v(x)= —1 if x=k/b, k € Z ., which contradicts the F.
and M. Riesz theorem (cf. the remark following Theorem 5.1).

If the conditions (1), (2) and (3) of Theorem 6.3 are satisfied, does the
function f=fo(x|g) ! then belong to B(x(U))? As a corollary to the theorem
below, we show that in a special case, these conditicns are also sufficient. For

the theorem, we need some new notations.

Let G be a LCA group with dual group I" and let H be a discrete subgroup of
G, isomorphic with some subgroup of T, and with annihilator A in I'. The
Haar measure dh of H will be normalized so that each point of H has mass one.
The Haar measure di of A is chosen in such a way that Poisson’s formula
holds (cf. for example [11, 5.1 p. 120]).

If V is an open subset in G we denote by S(V) the subspace of L!(I)
consisting of all continuous functions ¢ such that supp ¢, the support of ¢, is a
compact subset of V. We simply write S for S(G).

THEOREM 6.4. Let U be an open nbd of 0 in G and o: G — G/H be the
canonical map. Then the following conditions are equivalent
(a) there is a B e I with B|y injective for which Bo(alg)™ "' € B(a(U)) and
sup,.z, (Be(@lg) ™)'l sEmy=C. ~
(b) there exists a v e M(I') such that ¥(x)=1 if x € U and ¥(x)=0 if x €
U+h, he H, h+0, and such that for each ¢ € S(U+H) and € S

UA e(=AW*)(A)dz| = Cllolls ¥l -

(c) for each f € B(U) we have fo(alg)~" € B(a(U)) and-
I fo(lg)™ sy = ClLf a0y

It is convenient to preceed the proof with a lemma, enabling us to work in G
rather than in G/H. For a proof, see for example [7, Theorem 5.3].

LEmMA 6.1. Let H be a closed subgroup of G and o: G — G/H be the canonical
map. Suppose that V is an open set in G/H, that E=V and that f € C(E). Then
f € B(E) if and only if foo € B(a™'(E)), and in this case || f || pigy= |l foull Bx~ " (E))

We will also use the following result, essentially an easy consequence of the
Hahn-Banach theorem (see for example [9, Proposition 8]).

LEMMA 6.2. Let V be an open subset in G and f be a continuous function on
E=V. If there is a constant C such that |[¢ f(x)¢(x)dx|SCl|¢|l, for each
@ € S(V), then f € B(E) and | f| g =C.
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PROOF OF THE THEOREM. Since H is isomorphic with a subgroup of T,, there
isa f e I' with B|y injective. Hence (c) = (a) is trivial and it is enough to show
that (a) = (b) and that (b) = (¢).

(a) = (b): Assume that (a) holds and choose a § € I' that satisfies (a). Then
there is a v e M(I') such that ¥(x)=1if x e U and ¥(x)=0if xe U+h, he H
and h=0, as was shown in the last part of the proof of Theorem 6.3. This
implies that for each subset S of H, the set U, ¢ (U +h) is closed, that o (D) is
closed and that if g € C(U), then go(ag)~! € C(a(U)). Moreover, if g € C(U)
and Pg denotes the function defined on U+ H by Pg(x)=g(x—h)if x e U+h,
then Pg is a well defined continuous function on U+ H. By Lemma 6.1,

go(alg) ™" € B(a(U))

if and only if
Pge BU+H) and |go(alg)™ sy = IPgls0+n) -
Since sup,.z, |l (ﬁo(a|g)")"“3(m)§C, by Parseval’s identity,

(1) VneZ Vo eSU+H): j P(nPlg(x)¢(x)dx| = Cllol -
G

But if 2 € A then P(A+np)|g(x)=<{4,x>P(nP)|y(x) and hence, (1) also holds
with nf replaced by A+npf. If BZ denotes the subgroup of G generated by B,
then the annihilator of A+ BZ is H N Ker B. As B|y is injective, A + BZ is dense
in I' and this implies by approximation that (1) holds with nf replaced by any
rerl.

For each ¢,y € S and y eI, the function 2 — @(—2AW(41—y), 4 € A,
belongs to L'(A) and by Poisson’s formula

() J. P(—=1W(A—y)dr = J U <X,X+h>'/3(X+h)dh]¢(X)dx
A G LJH
(cf. for example [11, 5, § 5]).
Now let ¢ € S(U + H) be fixed and K =supp ¢. By the compactness of K,
there are h,,...,h, € H such that KcUp_ (U+h,). Let K,=KN(U+h)

and K'=Ur_, (K, —h,), a compact subset of U. Choose any ¢, € S such that
0;(x)=11if x € K’ and let g=g, *v. For each x € K and y € I' we have

Pylg(x) = J (b x+h)o(x +h)dh
H
and thus, by (1) and (2),

3)

J <p(—it)e(ft—x)dl\ < Clolly -
A
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Since §,(x)=1 if x € K’, for each ¢ € S we have by (2)

L P(= AW *v)(A)di = L (=AY *) (D dA

U lﬂ(v)U ¢(—l)e(l—v)di]d11
r A

L ¢(—l)e(l—7)d/1" Il »

and as

'L o(=AY *Q)(i)dll

IIA

sup
vel

the proof is completed by using (3).
(b) = (c): Suppose that (b) holds and choose a v e M(I') such that ¥(x)=1 if
xe U and v(x)=0if x € U+h, h e H, h+0. Then if fe B(U), the function

xr—»J fx+hp(x+hdh if xe U+H,
H

is well defined, continuous and equals f on U. By Lemma 6.1 it is enough to
show that this function is in B(U + H) and has norm at most C|| f||g). To this
end, it is sufficient by Lemma 6.2 to show that for each ¢ € S(U + H)

f [f f(x+h)ﬁ(x+h)dh]qb(x)dx
6 LJH

Let £¢>0 and choose a ¢ € M(I') such that ¢(x)=f(x) if x € U and such that
lolpmn= 1S p@)+e For ¢ € S(U+H) let K’ be as in the proof of (a) = (b)
and choose ¥ € S such that P(x)=1 if x € K’ and ¥l ry<1+e Then the
function Yy *v+o € S and by (2) it follows that

4 < Clfllsulele -

(S)f o(— (Y xa*V)(A)di = f [j 6(x+h)\l7(x+h)fl(x+h)dh](b(x)dx.
A GLJH

Since Y(x)=1if x € K’ and 6(x)=f(x) if x € U,
6) J l:[ &(x+h)t//(x+h)ﬁ(x+h)dh](ﬁ(x)dx
GLJu

= j U f(x+h)ﬁ(x+h)dh]q‘)(x)dx.
G H

By the assumption

UA @ (= 2L *0)xv](2)dx

= Cllol~nlly *allpyr
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and as

Wxolry = Wlenllolme £ A+e)(f 5o +e)

and &>0 was arbitrary, (4) follows from (5) and (6).

REMARK. As a result of the proof, (b) <> (c) for any discrete subgroup H of G.
This can be used for a proof of the weak form of Theorem 2.3 that results, when
o: G, — G, is assumed to be an epimorphism. In the earlier sections, we have
only used this weak form. So suppose that E is a compact subset of G and that
the canonical map «: G — G/H is injective on a nbd V of E. By compactness,
we can find an open nbd W of 0 in G with W compact such that if U=E + W,
then U < V. Hence, there is a ¢ € S with §(x)=1if x € U and supp ¢ < V. There
is also a constant C such that for each y e I'

J le(A—pldi = C
A

(cf. for example [11, 5, § 5]). Thus, for each ¢ € S(U+H) and y € S

< llelliexwle*¥ln S Cllol=al¥liLiry

L o(—A)(Q*P)(3) di

which implies that if f € B(E), then fo(x|g) ' € B(«(E)) as well as

I fo(alp)™ By < CIf s -

If 6: W, — T is a local character in G=R™ x K, where K is compact and
connected, there are nbds Wy of 0 in R™ and Wy of 0 in K and local charac-
ters 60': Wy — T and 6”: Wy — T such that Wyx Wy W, and 0(x,y)
=0'(x)0"(y) for each (x,y) € Wy x Wg. As Wy <R, we may assume that (' is a
restriction of a character. Thus the group G, constructed from G and the local
character 6 in Theorem 2.1. is (isomorphic with) R™ x K, where K is the group
constructed from K and the local character 6.

If o is the usual epimorphism of G onto G, its kernel H is of the form H = {0}
x H", where H" is a discrete subgroup of K. Thus the annihilator A of H in
(G) =R™x (R) is of the form A =R™x A", where A" is the annihilator of H” in
(R)". By the corollary below, it follows that if JcR™xC, where Cc<K is
compact and if there is a v € M((G)") such that ¥(x)=1if xe U and $(x)=0 if
xe€ U+h, h e H and h+0, then for each § € (G), the function f=fo(alg)™"
is a function with bounded powers in B(a(0)).

COROLLARY. Suppose that H' is a discrete subgroup of the LCA group G', let G
=R™x G and H={0} x H' and let a: G — G/H be the canonical map. Assume
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that U is an open nbd of 0 in G such that for some compact subset C' in G', U
cR™x C'. If there exists av € M(I') with ¥(x)=1if x € U and ¥(x)=0if x e U
+h for each h € H with h=%0, then there is a constant C such that

feB(0) = fo(alg)™* € B(a(U)) and | fo(alg) lsamy < CIf s -

Proor. By Theorem 6.4. and (2), it is sufficient to show that if Y € S and if
o € S satisfies 9(x)=1 for x € suppy N U, then

L le*y*v|()di = CllYllir -

Since U< R™ x C', with Y € S given, we can choose a compact subset L in R™
such that suppy NU =L x C'. As C' is a compact subset of G’, we can choose a
2, € S(G') such that g,(t)=1 if t € C'. Hence there is a constant C, such that
for each y € I'=(G'),

J lo, (' =)dx < C, .
A
As L<R™ is compact, we can choose a ¢, € S(R™) such that g,(s)=1ifse L

and |g,llprrm<2. Thus, as A=R™x 4, if we let ¢=0,®¢g, then §(x)=1 if
x € LxC' and for each y € I, [4|o(+—x)|dA<2C,. This implies that

L lexy*vldi = LUA le(A—) di]llﬂ*VI(v)dv = 2GIvImn¥ Ly »

and with C=2C,||v| pr) the proof is complete.
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