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A SPLITTING LEMMA FOR
NON-REFLEXIVE BANACH SPACES

ROBERT MAGNUS

The original splitting lemma is a result of Gromoll and Meyer [3], about
germs of smooth functions on a Hilbert space H. It asserts thatif f: H — Risa
smooth function, and if f'(0)=0, and f"(0) is a Fredholm operator T from H
into H*, then in a neighbourhood of 0 there is a smooth change of coordinates
in H which transforms f into a function on ker T plus the quadratic form
1/2{ Tx, x>, which is non-degenerate on (ker T)*. This has been generalized by
adding parameters and replacing the Hilbert space by a reflexive Banach space
[4]. The lemma and its generalisations are useful for extending the theory of
generic/versal unfoldings to a Banach space (see [1], [2], [4], [5], [6]).
However, a reflexive Banach space other than a Hilbert space occurs in few
cases, mainly because there are no natural non-Hilbert Banach spaces which
are isomorphic to their duals. (An example is L?(Q) x L1(€2) for a measure
space Q where (1/p)+(1/g)=1 and p=+q; not a convenient example for
applications). We shall present a splitting lemma which can be used in non-
reflexive spaces, and a particular benefit will be the possibility of using spaces
of continuous or bounded measurable functions, instead of the integrable
functions.

We let X be a Banach space and suppose we have another Banach space Y
and a continuous linear operator o: Y — X*. We define M’ to be the set of
germs at 0 of C® mappings f: X — R such that f': X — X* is a composition

Jf' = oh,

where h: X — Yis a C* mapping and h(0)=0. If 4 is another Banach space
we define U9 to be the set of germs at (0,0) of C* mappings f: X x4 — R
such that D, f'is a composition

le= O'h

where h: X x A — Y is a C* mapping and h(0,0)=0. These are the unfoldings
which occur in the theory.
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The main theorem is as follows; note that the same symbol is used for a
germ as for a representative mapping.

THEOREM 1. Let fe UY, let D,f=0oh, let D,h(0,0)=T and let V=kerT.
Suppose that TX is closed in Y and that there exist closed subspaces Z< X, W
cYsuchthat X=V®Z, Y=TX®W and such that W annihilates Z. Then f is
equivalent to an unfolding (x,a) — 1/2{c6Tz,z) +g(v,a) where x=v+z, v eV,
ze€ Z, g is a real-valued C* mapping defined on a neighbourhood of (0,0) e
Vx A, and <., .) is the bilinear pairing of X* and X. The equivalence is re-
alised by a diffeomorphism

Poa: Z£,0- 20
where (z,v,a) — @, ,(2) is C* and
f(@w,a(@)+v,0) = 1/2C0Tz,z) +g(v,0a) .

If, for some a € A, D, f(v,a) annihilates Z for every v in a neighbourhood of
0 € V, then g(-,a) is the restriction of f(-,a) to V.

CoROLLARY 1. (Morse lemma). Let f € M°, let f'=ch and let ¥ (0)=T. If T is
an isomorphism of X onto a subspace of Y, and TX has a complement W such
that oW annihilates X, then f is equivalent to the germ at 0 of x +— 1/2{cTx, x)

+£(0).

The proof of Theorem 1 is really just the same as the proof of Theorem 1 of
[4], except that everything is suitably “factorized” through the space Y. This
factorisation will be explained in some detail, while the rest of the proof, based
on the “flow” technique, will be more or less sketched.

Lemma 1. Let Z, U, B, be Banach spaces and d: Z x B — U a C*® mapping
such that D.d(0,0) is an isomorphism of Z onto U. Let x be a continuous linear
mapping of U into Z* and let {-, -} be the pairing of Z* and Z. Suppose that
xD,d(z,b) is symmetric for each z € Z and b € B, that is,

{XDId(Z7 b)zx,zz} = {xD,d(z, b)zy,z,}

for all z,,z, in Z. Then given a smooth f: Z x B — R there exists a smooth k:
ZxB — Z and a smooth r: B — R (defined in neighbourhoods of the origins)
such that

f(z,b) = {xd(z,b),k(z,b)} +r(b)

whenever D, f can be factorized through y, that is, whenever D, f=yh for some
h:ZxB— U.
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ProoF. It is useful to compare this lemma with the comparatively simpler
but similar Lemma 2 of [4]. The extra assumption of symmetry is used here to
get around the lack of reflexiveness. Both lemmas are “division” results, in
which a function, f'(z, b), is “divided” by a “one-form” d(z, b), to get rid of z-
dependence.

The mapping (z,b) — (d(z, b),b) is a diffeomorphism of a neighbourhcod of
(0,0) in Z x B onto a neighbourhood of (0,0) in U x B. Let its inverse be

(u,b) — (y(u,b), b)

Now

1

d

0
1

= f(y(0,b),b)+ L {xh(y(tu, b),b),[D,d(y(tu, b),b)] " 'u} dt .
To simplify things let us put
h(y(tu,b),b) = u, and y(tu,b) = z,.
The integrand is then
{xu, [Dyd(z, b)]~'u}
= {xD,d(z,,b)[D,d(z,,b)] *u,,[D,d(z,, b)] 'u}

= {X“, [Dld(zn b)] - lur}

by the symmetry property. If we now set y(u, b) =z, which implies u =d(z, b), the
integral assumes the form

{xd(z,b),k(z,b)}

where
1
k(z,b) = j [D,d(z, b)) 'u,dt
0
in which the substitution u=d(z, b) must be made. This proves the lemma.

Proor oF THEOREM 1. A comparison with [4] is again useful, since we have
to establish the following equation, which is just equation (1) of [4]:

) f(v+z,0)—40Tz,2)
= (D, f(v+z,a)+ (1 =)o Tz, k(z,v,a,t)) + Y (v,a,t) .
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The problem here is the existence of k and Y so that (2) is satisfied on the
following domain: v,z and a are in neighbourhoods of the origin in V, Z and 4
respectively, whilst ¢ is in an interval (—¢,1+¢)<R. The mapping k has range
in Z, { is real-valued, both are to be C*. We use Lemma 1 for ¢ in a
neighbourhood of each ¢, € [0,1]. A finite number of determinations of “k”
and “y” can be assembled by means of a partition of unity over [0, 1]. (It might
be possible to avoid this by adjusting Lemma 1 in order to allow the variable
“b” to occupy a “macroscopic” set).

We let Z be the space Z of Lemma 1 and V' x A x R the space B. Let 7: X*
— Z* be the linear operator which restricts functionals on X to Z. Let P: Y
— TX be the projection with kernel W. For all ze Z

Dy f(v+z,a)+ (1 —1t)oTz,2)
= {toPh(v+z,a)+ (1 —t)oTz,z)
= {ttePh(v+2z,a)+ (1 —t)16Tz,Z}

where {-, -} is the pairing of Z* and Z. Hence we can let TX be the space U of
Lemma 1, with

x=10|TX
and if b= (v,a,t)
d(z,b) = (to+t)Ph(v+z,a)+ (1 —ty—t)Tz .

Then

{xD,d(z,b)z,,2,}

= {(to+)xPDh(v+z,a)z; + (1 —to— 1)y T2y, 2,}

= {(to+t)oPDh(v+z,a)z; + (1 —ty—t)oTzy,2,)

= {to+t)Dif(v+z,a)zy + (1 =ty —1)D2£(0,0)zy, 2,)

whence the symmetry property follows because of the symmetry of second
derivatives. Furthermore D,d(0,0)= T'| Z which is an isomorphism of Z onto
U. Lastly we check that the z-derivative of f(v+2z,a)—3<oTzz) can be
factorized through y. We have for all Ze Z

{D,f(w+2za),z)—<6Tzz)
= {toPh(v+z,a)—10Tz,2} = {y[Ph(v+2za)—Tz],z}

which is what we need.
The rest of the proof is based on equation (2) and will be summarised.
Consider the differential equation in Z
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CI = —k(Ca v,a, t)

where {' =d{/dt, and v and a are parameters. Let t — &(z,v, a, t) be the solution
satisfying the initial condition {(0)=z. If

M(z,v,a,t) = tf (v+2z,a)+ (1 —1t)i<6 Tz 2>
then (2) implies

;—tM(tb(z,v,a,t),v,a,t) = Y(v,a,t) .

Hence, integrating from t=0 to t=1 gives
M(®P(z,v,a,1),v,a,1) = 36 Tz,z)+g(v,a)

where g(v,a)=[3y/(v,a,t)dt. Then @, ,,=P(-,v,a,1).

To obtain the last part of the theorem, suppose <D, f(v,a),z) =0 for all
z € Z, and all v in a neighbourhood of 0 € V. Then setting z=0 in equation (2)
gives f(v,a)=y (v, a,t). Hence g(v,a)=(} f(v,a)dt=f(v,a). This concludes the
proof of Theorem 1.

The pair of spaces X and Y form what is called a dual pair [8], provided we
add the rather natural conditions that:

(i) if <oy,x)=0 for all x € X then y=0.
(ii) if (oy,x)=0 for all y € Y then x=0.

These conditions lead to some elementary results which are useful in applying
Theorem 1. The most familiar example of a dual pair is a space and its dual, in
which case these results are so familiar that it would be unnecessary to prove
them. If asked to prove them, the Hahn-Banach theorem comes to mind at
once, which casts doubt on them in the case of an arbitrary dual pair. For this
reason the extremely elementary proofs will be given. As o plays little role we
write {y,x} for {oy, x).

LEMMA 2. Let X and Y form a dual pair and let T: X — Y be linear and
symmetric in the sense that {Tx,,x,} ={Tx,,x,} for all x,,x, in X. Let V=ker T
and suppose that Y=TX ®W where diim W< o00. Let Z={x € X : {w,x}=0 for
all we W}, that is, Z is the annihilator of W. Then

(a) dim V<oo and dim V<dim W.
(b) YNZ={0}.
() V®Z=X iff dimV=dim W.
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Proor. (a) Each v induces a linear functional § on W by the formula &(w)
={w,v}. If =0 then {w,v}=0 for all w e W. But {Tx,v}={Tv,x}=0 for all
x € X, and so {y,v}=0 for all y € TX. Therefore {y,v} =0 for all y € Y which
implies v=0. Hence linearly independent members of V induce linearly
independent functionals on W, so dim V'<dim W.

(b) If x e VN Z then Xx=0 and so x=0 as in the proof of (a).

(c) Suppose dim V=dim W. Then V induces all linear functionals on W. If
x € X the functional w +— {w,x} on W has the form w +— &(w)={w, v} for some
v e V. Hence {w,v—x}=0 for all we W and so v—x € Z. Hence x € V®Z,
and so V@®Z=X. Conversely let V®@Z=X. Now we let W induce linear
functionals on V by the formula w(v)= {w,v}. If w=0 we have {w, v} =0 for all
v e V. But {w,z}=0 for all z € Z and so {w,x}=0 for all x € X. Hence w=0.
This shows that linearly independent members of W induce linearly
independent functionals on ¥ and so dim W=dim V. This concludes the proof.

In applications of Theorem 1 it is important to have an effective knowledge
of g (I hesitate to say “calculate g”; a Taylor expansion is the best one can
hope for, but this is usually enough, combined with the theory of determinacy
and universal unfoldings). The point is that the critical points of g and their
bifurcation geometry correspond to those of f. If D, f(v, @) annihilates Z for all
v in a neighbourhood of 0 € V then g(v,a)=f(v,a). This is an exceptional
situation, but one that can be exploited to find an unfolding in V strongly
equivalent [5] to g. This results in a “reduction procedure” as in [5]. Suppose
dim V<oo and let n(x)=f(x,0). There is a germ y: V,0 — Z,0 such that
#'(v+7y(v)) annihilates Z for each v in a neighbourhood of 0 € V. Just solve
for y € Z the equation

Ph(v+7y,0) = 0

which defines y by the implicit function theorem. (This is connected with the
Liapunov-Schmidt reduction, but is slightly simpler because the bifurcation
parameters are suppressed). Then f is strongly equivalent to the unfolding

(x,a) = f(v+y(v)+240)
which is in turn strongly-equivalent to
(x,a) = 3o Tz,z) +£(v,0)

where g(v,0)=n(v+7(v)), by Theorem 1, and note how the last clause of the
theorem is used. It follows that f'is versal within the class U% if and only if g is
versal. To decide on the latter we need to know g(v,0)=n(v+7y(v) to
sufficiently high order only, and also the linearised part D,g(v,0)-a. But as
shown in the proof of Theorem 2 of [5]
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D,g(v,0)-a = D,g(v,0)-a

where g(v,a)=f(v+y(v),a).

Thus only a knowledge of f(v+y(v), a) to first order in a and to sufficiently
high order in v is needed. For more details see [5] and [6], (these deal with a
reflexive Banach space only because the splitting lemma used is valid only in
this case; with any splitting lemma there is a reduction procedure provided the
term “versality” is understood in connection only with those unfoldings which
can be split).

We now consider some examples.

ExampLE 1. Let E: R2 — R be a C* mapping. We wish to define a function

1
3) n(x) = j E(t, x(t)dt .

0
Without growth restrictions on E this does not in general define a function on
L?[0,1], and even with growth restrictions such a function cannot, with one
kind of exception, be in C2, (it can be in C! if D,E(t,u) has at most linear
growth in u for large |u|). The exception is

E(t,u) = a(t)+b(t)u+c(u® .
This is the only kind of integrand for which (3) defines a C™, or even a C?,
function on L2[0,1].
However (3) does define a C* function on C[0, 1] and on L*[0,1] and then

the results of the present paper can be used. Let us consider X =C[0,1]=Y,
and define g: Y—> X* by

1

{oxy,X,) = j xy ()x, (1) dt .

0

In this way X forms a dual pair with itself. Since

1

M'(x), x> = I D,E(t, x(1)x (1) dt
0

we set h(x)=D,E(-,x(-)). Then A (x) is just multiplication of functions in
C[0,1] by DZE(t,x(1)). So K (x) is an isomorphism iff D2E(t,x(t))+0 for all
t € [0,1]. If h(x,)=0 and h'(x,) is an isomorphism we can apply the Morse
Lemma (Corollary 1) and find that the germ at 0 of

X jx E(t,xo(2)+x(t)) dt
0

is equivalent to the germ at 0 of
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1
x4 j D3E(t, xo(t))(x (1)) dt + constant .
0

It would of course be quite easy to prove this directly.

If DZE(t,x(t))=0 for some t € [0, 1] there is no application of Theorem 1
since the range of h'(x,) is then not closed. It is still, however, possible to
discuss the question of universally unfolding such a singularity, and to describe
the singularities which occur generically in a p-parameter family, if only the
integrand E is allowed to vary. On this matter see [7]. If we have a Morse point
Xo, that is, h(x,)=0 and h'(x,)= T is an isomorphism, Theorem 1 implies that
any unfolding of », whose x-derivative may be factorized through o is
equivalent to the “constant” unfolding x — 4{6Tx, x)>. This class of unfoldings
of n includes, and is strictly larger than, the class obtained by incorporating
parameters in E.

ExampLE 2. Let E: R* — R be a C* mapping. We wish to define a function
1
4) n(x) = j E(t, x(¢), x' (1) dt .

0

This is the classical case of the calculus of variations. If x is to belong to a
Hilbert space the only reasonable candidate is H![0, 1], and then we need E to
be quadratic in x’ in order to get a C*® function. Instead we choose x=C*[0,1].
Then 5 is C* and

1
n'(x), x> = J [D,E(t, x(2), X' ()% (1) + D3 E(t, x (1), X' ()X (1)] dt
0

= Jl X' (t)B,(t)dt +x(1) Jl D,E(t,x (1), x' (1)) dt
0

0
where

t

B.(0) = DaE(t,x(r),x'(t»—j D, E(s, x(s),x'(5)) ds .
0

So we take Y=C[0,1] xR and define 6: Y —» X* by

1

Co(f, ), %) = J (@) (0)dt+ix(1) .
0

It is rather easy to see that this makes X and Y form a dual pair. Thus

h(x) = (,Bx, ‘r D,E(t, x(¢), x'(t))dt)
0

and T=H (0) is the linear map x — (f, A) where
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f(t) = D,D;E(t,0,0)x(t)+ D3E(t,0,0)x'(¢)
- J :) [D2E(s,0,0)x(s)+ D3D,E(s,0,0)x (s)] ds
and
A= J: [D3E(t,0,0)x(t) + D3 D, E(t,0,0)x'(t)] dt .
T is a Fredholm operator of index 0 whenever D2E(t,0,0)0 for all ¢ € [0,1].
For the mapping x +— fis Fredholm of index 1, being a differential operator

without singular point plus an integral operator which is compact. Assuming
that this condition holds, T is an isomorphism if the boundary value problem

—(a@®x’y +b()x =0
)] px(1)+gx'(1) = rx(0)+sx’(0) = 0

has only the solution x=0, where

a(t) = D3E(t,0,0)

b(t) = D2E(t,0,0)— D,D,D,E(t,0,0)
p = D,D,E(1,0,0)
q = D2E(1,0,0)
r = D,D,E(0,0,0)
s = D2E(0,0,0).

The condition h(x)=0 for x to be a critical point of # is equivalent to the
Euler-Lagrange equations

%D3E(t, x,x)—D,E(t,x,x') = 0

D,E(0,x(0),x'(0) = D;E(1,x(1),x'(1)) = 0

of which (5) constitute the linearisation at x=0. If x=0is a critical point and T
=Hh'(0) is an isomorphism then # is equivalent to the germ at 0 of the quadratic
form {(6Tx,x) which is

1 Jl Le (@) (x(1)? +2d()x (8)x' (t) +a(t)(x' (1)*] dt
0

where a(t) is defined above and
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c(t) = D2E(t,0,0)
d(t) = D,D,E(t,0,0) .

T fails to be an isomorphism when (5) has non-trivial solutions. The kernel of
T then has dimension 1 or 2, the latter only occurring if p=q=r=s=0.
Consider the case dimker T=1. If (f;4) € Y the equation

Tx = (f,4)

has a solution if and only if {o(f,4),v,)=0 where v, spans ker T. (This is
clearly necessary, and so sufficient, since the range of T has codimension 1).
Hence we can take W to be spanned by (w,,0) where

wol(t) = J‘ vo(s)ds/jl (vo(5)* ds ,
0 0

since then (a(w,,0),v,>=1. The projection P: Y — TX with kernel W is then
given by

(L) = (f=<a(f, ), v0>Wo, 4)
and Z is the annihilator of W so that x € Z if and only if

r x(to(t)dt = 0.
0

The equations determining y are complicated and will not be given here. We
conclude by giving the condition for a fold singularity at x=0 (assuming T is
Fredholm, dimker T=1, h(0)=0 so that x=0 is critical). This is that the third
derivative of v — n(v+7y(v)) is not 0 at v=0. In view of the properties y(0) =0,
7'(0)=0 of y this third derivative is just the number n®(0)v3, which is
independent of v, (in fact, to calculate n(v+7(v)) to nth order we need to know
y to (n—2)-th order). The condition is therefore

1
J' LA () (vo () + 3B () (v (1)) (1) + 3C (1)ve (1) (v (1))
0

+D(0)(v(0)*]dt * 0
where

A(t) = D3E(1,0,0)

B(t) = D%D4E(1,0,0)

C(t) = D,D3E(t,0,0)

D(t) = D3E(t,0,0) .
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