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A 1I, FACTOR ANTI-ISOMORPHIC TO ITSELF BUT
WITHOUT INVOLUTORY ANTIAUTOMORPHISMS

V. F. R. JONES

Abstract.

We construct a type 11, factor o/ which is anti-isomorphic to itself but has
no involutory antiautomorphisms. The proof uses an invariant x(6) for
elements 0 in Connes’ group x (/). We use »(6) to show that if # is a 11, factor
without non-trivial hypercentral sequences and 6 is an element of y(.#), then
y(@)= + 1, where y is Connes’ invariant for elements of Out.#. We give an
example which shows that y(0) can be —1 for 0 in y(.#).

1. Introduction.

An antiisomorphism of a von Neumann algebra is a vector space
isomorphism &@: .# — # with ®(a*)=®(a)* and P (ab)=D(b)P(a).

If # is a factor, there are many mathematical objects associated with .#, say
0 4, satisfying the following type of theorem: “If y: 0, — O, is an
isomorphism preserving the structure in @ ,, there is an isomorphism or
antiisomorphism ¢: .# — A" inducing y”. Examples for ¢ are: the projection
lattice [7], the unitary group [7], the Lie algebra [12], the Jordan algebra [11]
and the automorphism group [9]. It was important to know whether all von
Neumann algebras were antiisomorphic to themselves or not. This question
was answered in the negative by Connes in [2] and [3] where he gave first a
type III factor and then a type II, factor which were not antiisomorphic to
themselves.

If 0 is a functor as above, there will. be an exact sequence 1 — Aut .#
— Aut0 , — H — 1, where H is Z, when .# is antiisomorphic to itself and 1
otherwise. It is natural to ask the question whether this exact sequence splits
when H =2Z,. This is equivalent to the question “Does .# possess an involutory
antiautomorphism?”. In this paper we answer this question in the negative by
exhibiting a II, factor & which is antiisomorphic to itself but has no
involutory antiautomorphisms. The method we use is a development of [3] so
we begin by fixing notation and explaining some terms used in [3].
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If Aut .# is the automorphism group of a II, factor .# (always supposed to
have separable predual, trace t and trace-norm || — ||,), give it the topology of
pointwise | —|, convergence on .#. The subgroup Int.# of inner
automorphisms is not necessarily closed so let Int.# be its closure. An
automorphism € Aut .# is said to be centrally trivial if, given a | —|-
bounded sequence (x,) in # with ||[x,,y]ll, = 0 as n — oo for every y € A
(i.e. a central sequence), we have lim,_ . ||[¥(x,)—X,ll,=0. Centrally trivial
automorphisms form a normal subgroup Ct.# of Aut.# and if &: Aut .#
— OQut # is the quotient map onto Aut.#/Int.#, we define y(4#)
=¢(Ct .4 NInt.#). In [4] Connes shows that y(.#) is abelian. It is a powerful
isomorphism invariant for .# and can be just about any abelian group.

For the most familiar II, factors (e.g. the hyperfinite one and those
associated with free groups), x(.#) is trivial. The same is true for tensor
products (finite or infinite) of these factors. The easiest way to construct factors
M with non-trivial y () is using crossed products by actions of finite groups.
This is the method we shall employ.

In section 2 we shall define a conjugacy (in Out.#) invariant »(0) for
elements 6 of y(#), which is a complex number of modulus 1 when .# has no
non-trivial hypercentral sequences (a central sequence (y,) is called
hypercentral when lim,_, , ||[v,, x,]ll, =0 for every central sequence (x,)). This
invariant x is sensitive to conjugation by antiautomorphisms and will be used
to prove that &/ has no involutory antiautomorphisms. It is defined using the
action (or rather the lack of action) of 8 on central sequences. We could have
defined it for arbitrary factors, but we prefer to keep technical simplicity by
supposing that .# is a II, factor without non-trivial hypercentral sequences.

The group x(.#), being a subgroup of Out .#, gives an example of a Q-kernel
in the sense of [8] or [16]. Thus one can associate an element of H3(y(.#),T)
with y(.#), where T is the circle group and the action of y(.#) on T is trivial.
This is done as follows. For each element 0 of y(.#) choose an oy € Aut .#
with e(xy)=0. Once this choise is made, we have

ogn, = Adu(d,v)ay, for 6,ve y(H#)
and unitaries u(6,v) in .#. Associativity implies
Ad (u(6,v)u(6v,n)) = Ad (ag(u(v, n))u(6,vn)) .
Thus
u(0, v)u(@v,n) = (0, v, nog(u(v, n)u(0, vn)

for some y(0,v,n) € T. The function y: y(#) X x(#) x y(#) — T is seen to be a
3-cocycle and its cohomology class 2 , in H?(x(.#), T) does not depend on the
choices made. Hence there is a further invariant Q , for 4.
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It is not yet known which elements of H*(4,T) can occur as Q, for A
=y () and some fixed abelian group A, but there are severe restrictions. For
example, when y(.#) is cyclic, 2 , is just the invariant y(0) of 6 for a generator 6
of x(.#). The interplay between x(6) and y(0) allows us to show that y(6)= +1,
whereas a priori one might have thought that y(6) could be any nth root of
unity. So in this case Q , can take at most two values. It also follows that y(6)
is insensitive to conjugation by antiautomorphisms and is useless for
distinguishing between an algebra and its opposite algebra, at least for
0 € x(M).

In section 6 we give an example showing that y(6) can be —1 for 0 € y(.#),
and hence that Q , can be non-zero. ’

A further word about central sequences and ultrafilters is in order. Let £
be the ideal of I*°(N,.#) consisting of all bounded sequences (x,) with
lim, , , [|x,/l, =0. The quotient C*-algebra I*(N, #)/.# ,, is written .#*. Note
that ./ is embedded in .#* as constant sequences. The commutant .4’ N .#*
is denoted .# ., and is the algebra of central sequences. One may repeat this
same process for a free ultrafilter w on N instead of co (i.e. the Frechet filter).
One obtains algebras #¢ with A4 < .#“ and A, as #' N .#“. The advantage
of an ultrafilter is that .#“ and hence .#, are von Neumann algebras.
Automorphisms « of .# induce automorphisms of .#*, #*, # ., and A,
which will all also be written . If (x,) is a bounded sequence in .4, [x,] will
denote its image in .#* or .#“. It is important to note that if a =lim,_, ,, Ad u,
for o« € Aut.# and unitaries u, in #, and if U=[u,], then a=Ad U on A4
cHM>ie if X € M= M®, a(X)=UXU*. The same for w in the place of oo.

If 4 is an algebra, Z () will denote its centre. To say that a sequence (x,) is
hypercentral is just to say that [x,] € Z(#,). To say that .# has no non-
trivial hypercentral sequences means that if [x,] € Z(#4 ), then [x,]=[4,1]
for a bounded sequence of scalars 4, € C. If w is an ultrafilter, such a sequence
has a unique limit an n — w, so that “.# has no non-trivial hypercentral
sequences” is the same as saying “.#, is a factor” for some (and hence all) free
ultrafilter w on N.

To say that an automorphism « is centrally trivial is the same as saying o
=id on A (or A ).

2. An invariant for elements of y(.#).

In this section we shall define an invariant »(6) for elements 0 € y(.#) and
examine its relationship with the invariant y(6) of [6]. We also show how x(6)
behaves under conjugation by antiautomorphisms. We develop the definition
of » in three lemmas.
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LEMMA 2.1. Let o € Int # NCt A and let a=Ad U for U € M™ on M <= M™.
Then U*a(U) € Z(M ).

PRrOOF. Let X € M < #%. Then X =a(U*XU)=a(U*)a(X)x(U)
=a(U*UXU*a(U). Thus U*a(U) € M, =4 N.#*. Moreover if Ye .4,

YU*a(U) = U¥(UYU*a(U) = U*e(UYU*U) = U*a(V)Y,

since UYU* € A, and a € Ct A. Thus YU*a(U)=U*a(U)Y for all Ye 4,
and U*a(U) € Z(A ).

LEMMA 2.2. Let a and U be as in lemma 2.1 and suppose # has no non-trivial
hypercentral sequences. Then there is a A, € T such that a(U)=4,U. This 4, does
not depend on the choice of U with a=Ad U on M < #*.

Proor. Since there are no hypercentral sequences, we know that there is a
bounded sequence 4, with lim,, 4,1 —uXa(u,)|,=0, where (u,) is a
representing sequence for U. We shall show that 4, converges by showing that
it has at most one accumulation point.

Suppose A and u are two accumulation points for the sequence (4,). Then let
(1)) and (m;) be infinite sequences with lim;_, , 4, =4 and lim,_, 4, =p. Let V
and We .# be defined by V=[u,] and W=[u,,]. Clearly a(V)=4V and a(W)
=uWso that a(VW*)=AaVW* But Ad V=Ad W=Ad U on # < .#* so that
VW*e M. Since a=id on A , Aji=1s0 A=pu.

The same argument shows that 4, does not depend on U with a=Ad U on
MM,

LemmA 2.3. If o, U and M are as in lemma 2.2, and v is a unitary in M, A,
= AAdver

Proor. We have Adva=Ad (vU) on # =.#*. By definition,
Aadoe?U = Adva(vU) = va(oUp* = vUpU*a(Up* = A,0U .
Hence 4,=/Aaq o
DEerFINITION 2.4. Let # be a II, factor without non-trivial hypercentral
sequences and 6 € y(#). Then »(0) = 4, for any a with ¢(x) =6. This means that

if u, are unitaries with a=lim,_  Adu,, lim,_ [|a(u,)—4i,u,|,=0. (Such a
sequence of unitaries exists since o € Int .#.)

Each automorphism B € Aut .# determines an automorphism B of x(.#) by
conjugation, ie. B(0)=e&(B)0e(f~"). The next lemma shows that x is a
conjugacy invariant.
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LEMMA 2.5. If B € Aut # and 0 € y(#), then x(6)=x(B(0)).

Proor. If a is such that ¢(x)=0 and a=Ad U for U € .4 on .# = .#*, then
Bup~'=Ad B(U) on A =4, and P (B(U)=2,B(V).

Each antiautomorphism @ of .# determines an automorphism & of y(.#) by
conjugation, i.e. ®(0)=e(Pad ') where (x)=0.

LEMMA 2.6. If @ is an antiautomorphism of # and 6 € y(.#), then x(0)
=x(P(0)).

Proor. Exactly as for 2.5 exept that dad ™! =Ad (P(U*)).
We will also be interested in »(671).
LEMMA 2.7. If 0 € y (M), %(0~*)=x(0).

ProoF. If g(@)=60 and a=AdU on MM, « '=AdU* and o~} (U*)

=i, U*.

Remember that for 6 € Out .#, y(0) is defined by a(v)=7(0)v where ¢(a)=0
and a"=Adv with n=period of 0.

LemMA 2.8. Let 0 € y(#) have period n and suppose .# has no hypercentral
non-trivial sequences. Then y(6)=x(6)".

Proor. If g(x)=0, a=AdU on A c.#* and o"=Adv on .#, then
v*U" € M, so a(v*U")=v*U". But also a(v*U")=a(v*)x(0)"U"
=y(0)»(0)"v*U". Hence y(0)=x»(0)".

LEMMA 2.9. With 0 and A as in 2.8, y(6)=x(0)"".

ProoF. If ¢(0)=0, a=Ad U on 4 < .#* and a"=Adv,
y@v = a(v) = UvU* = UvU*v*v = Ua"(U*p = x(9):."v.

Thus y(@)=x(6)"".
CoRroLLARY 2.10. If 6 and M are as in 2.8, y(0)= £ 1.

We shall see in section 6 that y(f) can be —1.
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REMARK 2.11. If w is a free ultrafilter on N, and Ad U=o on .# < #°, then
as above U*a(U) € Z(A# ). By hypothesis Z(.# ) is just the scalars so that
A,=U*a(U). This shows that if 1, had been defined with an ultrafilter, the
result does not depend on the ultrafilter.

3. Definition of /.

Let F,, be the free group on the 24 generators g, i=1,2,... 24. Let i(g;) be
the unitaries of the left regular representation of F,,, and let UF,, be the von
Neumann algebra generated by the A(g). UF,, is a II, factor. For each
25th root u of unity define the automorphisms {,: UF,, — UF,, by {,(A(g))
=u'A(g,). By [13], {, is outer if u#1 and the period of {, is the order of y as a
root of unity. Also {,{,=(,,.

Let 0 =¢*>"/2% and y=0°. Let 2 be the crossed product W*(UF,,, Z5), where
Z; acts on UF,, by n(x)={,»(x) for n € Z5. Write the elements of & as sums of
the form Y!_, au' where a; € UF,, and u is a unitary, u>=1 and Adu={, on
UF,,. Define r} € Aut 2 by

- 4 . 4
rV5<Z aiu') =Y y i, (a)u.
i i=0

i=0

Then (r})®=Adu and r%(u)=7ju. (This is just the construction of [8, theorem
2.1] in the cyclic case.)

Now choose an automorphism s} of the hyperfinite 11, factor R with (s%)’
=Ad w and s%(w)=yw. (See [6, proposition 1.6].) Let & be the tensor product
P®R and define ri®s% on #. Then (rl®s%)°=Ad (u®w) and ri®sk(u@w)
=u®w is in the centre of the fixed point algebra % of ri®s%. Choose a 5th
root t of (U@w)* in Z(%) and let y=Adt (ri®sl). Then y° =id.

The von Neumann algebra ./ is the crossed product W*(4%,Z,) where
determines the action of Z on 4. Since ¥/’ is outer for 0<i<5, .o is a type II,
factor.

Before going on to prove that &/ is antiisomorphic to itself, we prove a fact
about 2 which allows us to control central sequences in Z®R.

LEMMA 3d. There is a K> 0 such that if x € P satisfies ||[x, 4(g)]|l, <& for k
=1,2,...24, then |x—1(x)||,<Ke¢

Here 7 denotes the trace both on UF,, and 2. Thus 1(X¢_ x;u) =1(x,).

Proor. Write x € 2 in the form x=3Y}_, xu' with x; € UF,,. For k=5 and
10, [A(g),u1=0 so that for these values of k,
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4
ITAG), XT3 = Y I0x0A(g)]I3 < €.
i=0
Thus for each i, ||[x;,A(gy)]ll, <e. Hence by [14, lemma 4.3.3], ||x;—1(x)l,
<14e. But if y=37_,t(x)u’, then |x—yl,<]/5 14, so that

Iy, A(g1ll, < |/528e+¢ for k=1,2,...24.

In particular
4
1Dy, 20113 = X ltCa)lPIl =y < 28)/5+1)%?
i=0

(since we know how u commutes with 4(g,): ui(g,)u* =y4(g,)). Thus for i +0,

el < ((28)/5+1)/11—7l)e

and
[x=t), = lIx=yl2+ly=1X)

< 14)/56+2((28)/5+ 1)/)1 —y))e .

REMARK 3.2. Lemma 3.1 implies (by [1, lemma 2.11 and corollary 3.6]), that
P is full, ie. IntZ=Int 2.

4. o is antiisomorphic to itself.

To prove this assertion we use the following special case of a result which
must be known to many authors.

LEMMA 4.1. Let M be a 11, factor and G a (discrete) group of automorphisms
of M. If ¥ is an antiautomorphism of .M such that Yg¥ ~'=0o(g) for some
automorphism ¢ of G, then the formula

4’(2 ) Z eg)” lII(a Upe)! = Z P(g '(a ))“e(g)"

geG

defines an antiautomorphisms of W*(#,G).

Here {u,} is the usual unitary representation in the crossed product
implementing G on ..

PRrOOF. Since @ preserves the trace there is no problem extending it from
finite sums to all of W* (4, G). Thus we only need to verify the relations @ (xy)
=& (y)@(x) and P(x*)=P(x)*. By linearity it suffices to do this for a pair au,
and bu,. Now
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D(auy) = 0(g) 'V (@uyy -
D(buy) = o(h) ™" (b)uygy-

so that
@ (bu,)®(au,) = o(h)™ ¥ (ble(h)™'o(g) ™' ¥ (@)uyun -

= ¥(h™'b)¥((gh)™ " a)uygn -

= ¥((gh)~" (ag(b))uyiem

= D(ag(b)ug,)

= ®(aubu,) .
Moreover

Plauy)* = ugy-10(8) "' W(a*) = ¥(a*)uyg,

and

O((au)*) = D(g™ @*)uy—1) = ¥(a*)u

e(®) *

THEOREM 4.2. &/ is antiisomorphic to itself.

Proor. We want to use lemma 4.1 so we begin by constructing appropriate
antiautomorphisms of 2 and R.

Define the involutory antiautomorphism 4 of UF,, by 4(4(g))=4(g)~ " for
all g e F,,; For a 25th root of unity u, 4{,47'={,-.. Now define the
automorphism n: UF,, — UF,, by the permutation of the generators n(4(g,))
=A(8_2imod2s)- One checks that n~'{,n={,-» so that Y=n"'4 is an
antiautomorphism and ¥{,¥~'={,.. Thus by lemma 4.1, the formula

4 4
4’(2 aiu() = Y (¥
i=0 i=0
defines an antiautomorphism @ of Z=W*(UF,,,Z,). Also
orid ! (au')

Dri(Y 1L, (au*) (see below)
¢(y‘2iCaw—1Cy“(a)u2i)
YRR AL SO Su g ()7

Y (ap’ = (F})(au) .

]

Thus &rid 1= ()%
(To calculate @~ (au'), note that @(au')={,-2¥ (a)Ju™* so that
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-1 -2i i
o7 (,-aP(@u™?) = au' .

Put @'={,-2¥(a) and j=—2i. Then a=¥"'{(a’) and i=2jmod5. Thus
@~ a' W)=Y, -i(a)u?)

Now by [6, theorem 1.11] there is an antiautomorphism I' of R such that
Istr~'=(s})%

Remember that o/ is the crossed product of Z@QR by y =Ad t (ri®s%). If we
define the antiautomorphism ®®I of Z®R, then

PRI (Adt(ri@si)e @I ™! = Ad(PRI (t*)(ri®s})2.

But this means that the automorphisms (®® 'y (®®T')~! and y? differ by an
inner automorphism. By [6, corollary 2.6], there is an automorphism f§ of
2®@R such that

B@RNY (@R~ = y?.
Thus by lemma 4.1, the formula

4 4
Z a;z' Z Yy HB(P®T)(a)z ™%
i=0 i=0
defines an antiautomorphism of &7 (here a; € #=2®R and z is a unitary with
z5=1 and Adz=y on A).

5. o/ possesses no involutory antiautomorphisms.

To prove the assertion of this section we shall calculate y(s#) and »(6) for
generator 0 of y(&/) using the methods of [3]. We give a brief sketch of these
methods.

Given a finite subgroup G of Aut.# (# a II, factor without non-trivial
hypercentral sequences) with G N1Int.# = {id}, Connes defines K =GN Ct.#
and K*, the group of homomorphisms from G to T which vanish on K. Let .#€
be the fixed point algebra of the group G and let Fint be the subgroup of
Aut # consisting of all those automorphisms of the form Ad x with x € .#€.
Let Fint be its closure in Aut.#. Connes defines L=¢(G Ct.# NFint), a
subgroup of Out .#. He shows that there is an exact sequence

0—> K+ -2 y(W*(#,G) 15 L—>0.

The map & comes from the dual action: write elements in the crossed
product in the form Y, ; a,u, with a, € .# and Adu,=g on .#. Then for each
neK* n: G— T, define

5(11)(2 agug) = ZG n(gagu, .

g8eG



112 V. F. R. JONES

One checks that d(n) € Ct & NInt A (A is W*(#,G)) and 0 is defined by
taking the quotient god. The injectivity of & comes from the fact that the dual
action is outer.

The map I1: y(A") — L is defined as follows. Given « € Ct 4" NInt 4", one
can show, using the detailed knowledge of central sequences in 4" coming from
the hypothesis G N Int.# = {id}, that there is a unitary v € .#" and a sequence
u, of unitaries in .#° such that a=Advlim,_  Adu,. Let y,= (Ad v*a)| ,. By
construction ¥, € Fint and one checks that i, € G Ct .# (use Galois theory on
M ). The image of Y, in Out .# depends only on ¢(«), so we may define a map
II: x(#) — L by II(0)=¢(y,) with g(a)=0.

The surjectivity of IT involves constructing a set-theoretic section for IT. This
will be the most important construction for this paper. It is done as follows:
given pe L, let o, € Fint NG Ct .# be such that (o, )=p. This «, commutes
with G since it is the limit of such automorphisms. Thus we may define an
automorphism f, of W*(.#,G) by

ﬁu(Z ae“s) = Z o, (ag)uy -
geG geG

One checks that g, e Ct & NInt 4" and it is clear that IT (e(B)=p. Thus u
~ &(B,) provides the required section.

ReMARK 5.1. A bonus of this description is that we can easily calculate
%(&(B,)- For if u}, are unitaries in .4 G with lim,, ,, Ad u# =0, in Aut ./, then B,
=lim,., Adu4 in Aut.# so that we only need to calculate

lim (uf)*B,(uf) = lim (u)*o, (u¥)

n=oo n-=o00

and this is x(e(B,)).

We want to show that if & and # are as in section 3, y(o/)=2Z,5 and if
o=e>"2% a generator 0 of y(s#) satisfies x(6)=6. To do this we whall show
that K=Z,, L=Z and that a lifting to y(s) of a generator of L satisfies 05+ 1
and x(0)=g.

To apply [3, theorem 4] we need to know that # has no non-trival
hypercentral sequences. Together with our lemma 3.1, [1, lemma 2.11] shows
that all central sequences in Z® R come from R and it it is well known that R
has no non-trivial hypercentral sequences. We also need to know that
GNInt#= {id}. Here G is the group generated by ¥ =Adt (ri®s}). It suffices
to show that y ¢ Int #. This follows immediately from [5, 3.3] and our remark
3.2. Thus we may apply [3, theorem 4] with impunity.

We need to know K=GNCtA.
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LemMA 5.2. T he group K=GNCt A is just the identity.

Proor. It suffices to show that y ¢ Ct . Bu s is not in Ct R (see [6]) and if
(x,) is central in R, (1®x,) is central in @R so that ri®s} ¢ CtA.

Next we determine L and a lifting of a generator.

LEMMA 5.3. With notation as above, £(G Ct # ﬂFi—nt);ZS, and a generator is
u = e(id®(Ad vst))

where v is a unitary in R such that s§(v)=ov.
If B, € Ct.of NInt.of is a described above, then x(¢(B,))=6.

Proor. Note first that such a v exists by [6, corollary 2.6].
We now want to show that id® (Ad vs%) € G Ct # N Fint. Consider first of all
G Ct #: multiplication of id® (Ad vst) by ¥ ' =(Ad t(ri®s%)) ! yields
Adt*(1®@v)((r]) ' ®id)
which is certainly in Ct 4. Thus id® (Ad vs) € G Ct#. To show that
id® (Ad vsi) € Fint

we must exhibit a sequence {u,} of unitaries in 4 with y(u,)=u, and

id®(Advsl) = lim Adu, .

n—oo

We begin by showing the existence of a sequence x,, of unitaries in R with s
=lim,_,, Ad x, and s}(x,)=6x,. Since Int R = Aut R, there is a sequence y, of
unitaries of R such that s} =lim,_  Ad y,. Choose a free ultrafilter w on N and
let Y=[y,] € R®. By the same calculation as in lemma 2.1, W=Y*s{(Y) € R,
Moreover

Wsy(W)... (W) = Y*(sL)*(Y),
and since (s%)° =Adw with s}(w)=YwY*=y, we obtain
(@W)si(aW) . .. (s (eW) = 1,

and by [6, corollary 2.6], cW=Z*s.(Z) for Z € R,,. If (z,) is a representing
sequence of unitaries for Z, then

lim Ady,z¥ = st  (since (z,) is w-central),

n-+w

and

lim |55 (yazy) — 6yazsll, = 0.

n-w

Math. Scand. 46 — 8
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By standard approximation arguments (e.g. [10, 3.5], we may assume s%(y,z¥)
=ay,z¥. Putting x,=y,z¥ gives the required result.
Now put u,=vx,. Then Advs}=Ilim,_,Adu, with s!(u,)=u,, so that
resi(1®u,) = 1Qu,,
and since ¢ was chosen in the centre of the fixed point algebra for ri®s?,
Y(1®u,) = Adt(ri®si)(1®u,) = 1Qu, .
Thus 1®u, is the desired sequence and id® (Ad vst) e Fint.

Let us now calculate x(e(f,)). Choosing a subsequence we may assume

id®(Advst) = lim Ad 1®u, .

By remark 5.1, to calculate x(e(8,)) we need only calculate
(id® (Ad vs%))(1 ®u,). But
d@si(1Qu,) = 1®u,
$O
id®(Advs})(1®u,) = 1@uu,v* .
Now lim,_, , Adu,=s% and s(v)=ov. Thus lim,_, ,, u,v*u}=60v*, and

lim [id® (Ad vs})(1®u,)—61®u,l, = 0.
By definition x(e(f,)=6.

Thus far we know that e(id® (Ad vst)) is an element (of period 5) of L
=(GCt#NFint). We want to show that it generates L. This means that if
¢ € GCt#NFint then it differs by an inner automorphsism from a power of
id® (Ad vs%). By the same argument as in [2, theorem 3.2 a)], if o € Ct &, then
o=Ad z(v®id) for some unitary z € # and an automorphism v of 2 (basically
because otherwise a would act on central sequences coming from R). Thus
since ¢ € GCt A, there is an n € {0, 1,2, 3,4} such that ¢ Ad t"(r{®s%)" is of the
form Ad:z (v®id). Solving for ¢ gives

¢ = Adx(v(ry) " "®(s) ")

for some x € #. Since ¢ € Int # and # is full we may apply [5, corollary 3.3]
to conclude that

¢ = Adx'(id®(s¥)™")
(or argue as in [2, 2.1]). Thus e(p)=u"", and u generates L.

Lemma 54. We have y(H)=Z,5 and Q. =0.
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Proor. By 5.2, 5.3 and [3, theorem 4], we have an exact sequence
0> Zy—> () > Z5- 0.
A lifting to yx(/) of a generator of Zs is defined on o/ =W*(%,Z;) by ¢(«)

where
4
oz( y
i=0

Since 5 is a prime number, to prove that y(&/)=Z,,, it suffices to show that
e(@)’*1,ie o ¢ Int oA,
By definition,

4 4
i i=0

i=0

4

i=0

To see this last step, remember that r§®s§(l®v5w)=05y(l®05w), so that
Adt(1®@v°w) = 1@v°w

and
Adt(r%@s’é)(l@vsw) = 'yz(l@[)sw) .

Also Adz=Adt(ri®s%) on #. Thus o’ is a dual action times an inner
automorphism, which is outer. Hence y(#)=Z,;.

The H? obstruction Q, is represented by y(0) for generator of y(</). But
from the above calculation, the period of 0 is 25, and if 6=¢(f,), we may
suppose, by lemma 5.3, that %(6)=4. By lemma 2.7, y(6)=1, which means Q,
=0.

THEOREM 5.5. o/ possesses no involutory antiautomorphism.

Proor. If & were such an antiautomorphism, conjugation by @ would
induce an automorphism of period 1 or 2 of (). Since y ()= Z,s, the only
such automorphisms are the identity and the map 6 — 6~'. By lemmas 2.6
and 2.7, neither of these is possible since %(0) =g, and o+a.

REMARK 5.6. Since everything happened in Out &/, it follows from the above
that ./ has no antiautomorphism whose square is an inner automorphism.
This may also be deduced from [15, theorem 5.5 and theorem 4.4].

REMARK 5.7. It is clear that o/ is not the von Neumann algebra generated by
the left regular representation of a discrete group. Thus a modernised version
of [14, problem 4.4.30] would be: “If # is a II, factor with an involutory
antiautomorphism, is there a discrete group G such that 4 =U(G)?”
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6. Example of a II, factor .# with Q ,=+0.

We have seen that for an element 6 € y(.#), y(0)= +1 (if .# has no non-
trivial hypercentral sequences). We shall give an example of such a factor with
x(M)=Z,DZ, and an element O € y(.#) with y(6)= — 1. This also implies Q ,
*0.

The example is obtained by replacing 5 by 2 and 24 by 3 in the above
construction of &/ and #. (If one doesn’t believe lemma 3.1 any more, just add
a few dummy generators to F5.) Now y will be —1 and ¢ will be i. All the
calculations work in the same way up to 5.4. Thus we obtain a 6 € y() lifting
a generator of ¢(Ct # N Fint)~ Z, with %(0)=i. But in the calculation of 5.4, we
notice that

2 2
a2<z aizi) = Ad (1®v2w)<z yziaiz‘>.
i=0 i=0

And now y*'=1, so that &(x)>=1. Thus the sequence 0 - Z, — y() > Z,
— 0 is split, and since 0*=1 and %(0)=i, by 2.8. y(6)= —1.

That ./ has no non-trivial hypercentral sequences follows from the fact that
# has none and the control over central sequences given by the hypothesis
GNInt#=id (see [5, theorem 3.1]).

The author would like to thank Alain Connes for explaining some of the
proof of [3, theorem 4].
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