A II₁ FACTOR ANTI-ISOMORPHIC TO ITSELF BUT WITHOUT INVOLUTORY ANTIAUTOMORPHISMS

V. F. R. JONES

Abstract.

We construct a type II_1 factor $\mathscr A$ which is anti-isomorphic to itself but has no involutory antiautomorphisms. The proof uses an invariant $\varkappa(\theta)$ for elements θ in Connes' group $\chi(\mathscr A)$. We use $\varkappa(\theta)$ to show that if $\mathscr M$ is a II_1 factor without non-trivial hypercentral sequences and θ is an element of $\chi(\mathscr M)$, then $\gamma(\theta) = \pm 1$, where γ is Connes' invariant for elements of Out $\mathscr M$. We give an example which shows that $\gamma(\theta)$ can be -1 for θ in $\chi(\mathscr M)$.

1. Introduction.

An antiisomorphism of a von Neumann algebra is a vector space isomorphism $\Phi: \mathcal{M} \to \mathcal{M}$ with $\Phi(a^*) = \Phi(a)^*$ and $\Phi(ab) = \Phi(b)\Phi(a)$.

If \mathcal{M} is a factor, there are many mathematical objects associated with \mathcal{M} , say $\mathcal{O}_{\mathcal{M}}$, satisfying the following type of theorem: "If $\psi \colon \mathcal{O}_{\mathcal{M}} \to \mathcal{O}_{\mathcal{N}}$ is an isomorphism preserving the structure in $\mathcal{O}_{\mathcal{M}}$, there is an isomorphism or antiisomorphism $\varphi \colon \mathcal{M} \to \mathcal{N}$ inducing ψ ". Examples for \mathcal{O} are: the projection lattice [7], the unitary group [7], the Lie algebra [12], the Jordan algebra [11] and the automorphism group [9]. It was important to know whether all von Neumann algebras were antiisomorphic to themselves or not. This question was answered in the negative by Connes in [2] and [3] where he gave first a type III factor and then a type II₁ factor which were not antiisomorphic to themselves.

If \mathcal{O} is a functor as above, there will be an exact sequence $1 \to \operatorname{Aut} \mathcal{M} \to \operatorname{Aut} \mathcal{O}_{\mathcal{M}} \to H \to 1$, where H is Z_2 when \mathcal{M} is antiisomorphic to itself and 1 otherwise. It is natural to ask the question whether this exact sequence splits when $H = Z_2$. This is equivalent to the question "Does \mathcal{M} possess an involutory antiautomorphism?". In this paper we answer this question in the negative by exhibiting a II_1 factor \mathcal{A} which is antiisomorphic to itself but has no involutory antiautomorphisms. The method we use is a development of [3] so we begin by fixing notation and explaining some terms used in [3].

If Aut \mathcal{M} is the automorphism group of a II₁ factor \mathcal{M} (always supposed to have separable predual, trace τ and trace-norm $\|-\|_2$), give it the topology of pointwise $\|-\|_2$ convergence on \mathcal{M} . The subgroup Int \mathcal{M} of inner automorphisms is not necessarily closed so let $\overline{\operatorname{Int}}\,\mathcal{M}$ be its closure. An automorphism $\psi \in \operatorname{Aut}\,\mathcal{M}$ is said to be centrally trivial if, given a $\|-\|$ -bounded sequence (x_n) in \mathcal{M} with $\|[x_n,y]\|_2 \to 0$ as $n \to \infty$ for every $y \in \mathcal{M}$ (i.e. a central sequence), we have $\lim_{n \to \infty} \|\psi(x_n) - x_n\|_2 = 0$. Centrally trivial automorphisms form a normal subgroup Ct \mathcal{M} of Aut \mathcal{M} and if ε : Aut $\mathcal{M} \to \operatorname{Out}\,\mathcal{M}$ is the quotient map onto Aut $\mathcal{M}/\operatorname{Int}\,\mathcal{M}$, we define $\chi(\mathcal{M}) = \varepsilon(\operatorname{Ct}\,\mathcal{M}\cap \overline{\operatorname{Int}}\,\mathcal{M})$. In [4] Connes shows that $\chi(\mathcal{M})$ is abelian. It is a powerful isomorphism invariant for \mathcal{M} and can be just about any abelian group.

For the most familiar II_1 factors (e.g. the hyperfinite one and those associated with free groups), $\chi(\mathcal{M})$ is trivial. The same is true for tensor products (finite or infinite) of these factors. The easiest way to construct factors \mathcal{M} with non-trivial $\chi(\mathcal{M})$ is using crossed products by actions of finite groups. This is the method we shall employ.

In section 2 we shall define a conjugacy (in Out \mathcal{M}) invariant $\varkappa(\theta)$ for elements θ of $\chi(\mathcal{M})$, which is a complex number of modulus 1 when \mathcal{M} has no non-trivial hypercentral sequences (a central sequence (y_n) is called hypercentral when $\lim_{n\to\infty} \|[y_n,x_n]\|_2 = 0$ for every central sequence (x_n)). This invariant \varkappa is sensitive to conjugation by antiautomorphisms and will be used to prove that \mathscr{M} has no involutory antiautomorphisms. It is defined using the action (or rather the lack of action) of θ on central sequences. We could have defined it for arbitrary factors, but we prefer to keep technical simplicity by supposing that \mathscr{M} is a Π_1 factor without non-trivial hypercentral sequences.

The group $\chi(\mathcal{M})$, being a subgroup of Out \mathcal{M} , gives an example of a Q-kernel in the sense of [8] or [16]. Thus one can associate an element of $H^3(\chi(\mathcal{M}), T)$ with $\chi(\mathcal{M})$, where T is the circle group and the action of $\chi(\mathcal{M})$ on T is trivial. This is done as follows. For each element θ of $\chi(\mathcal{M})$ choose an $\alpha_{\theta} \in \operatorname{Aut} \mathcal{M}$ with $\varepsilon(\alpha_{\theta}) = \theta$. Once this choise is made, we have

$$\alpha_{\theta}\alpha_{\nu} = \operatorname{Ad} u(\theta, \nu)\alpha_{\theta\nu} \quad \text{for } \theta, \nu \in \chi(\mathcal{M})$$

and unitaries $u(\theta, v)$ in \mathcal{M} . Associativity implies

$$Ad (u(\theta, v)u(\theta v, \eta)) = Ad (\alpha_{\theta}(u(v, \eta))u(\theta, v\eta)).$$

Thus

$$u(\theta, v)u(\theta v, \eta) = \gamma(\theta, v, \eta)\alpha_{\theta}(u(v, \eta))u(\theta, v\eta)$$

for some $\gamma(\theta, \nu, \eta) \in T$. The function $\gamma: \chi(\mathcal{M}) \times \chi(\mathcal{M}) \times \chi(\mathcal{M}) \to T$ is seen to be a 3-cocycle and its cohomology class $\Omega_{\mathcal{M}}$ in $H^3(\chi(\mathcal{M}), T)$ does not depend on the choices made. Hence there is a further invariant $\Omega_{\mathcal{M}}$ for \mathcal{M} .

It is not yet known which elements of $H^3(A, T)$ can occur as $\Omega_{\mathscr{M}}$ for $A = \chi(\mathscr{M})$ and some fixed abelian group A, but there are severe restrictions. For example, when $\chi(\mathscr{M})$ is cyclic, $\Omega_{\mathscr{M}}$ is just the invariant $\gamma(\theta)$ of θ for a generator θ of $\chi(\mathscr{M})$. The interplay between $\kappa(\theta)$ and $\gamma(\theta)$ allows us to show that $\gamma(\theta) = \pm 1$, whereas a priori one might have thought that $\gamma(\theta)$ could be any nth root of unity. So in this case $\Omega_{\mathscr{M}}$ can take at most two values. It also follows that $\gamma(\theta)$ is insensitive to conjugation by antiautomorphisms and is useless for distinguishing between an algebra and its opposite algebra, at least for $\theta \in \chi(\mathscr{M})$.

In section 6 we give an example showing that $\gamma(\theta)$ can be -1 for $\theta \in \chi(\mathcal{M})$, and hence that $\Omega_{\mathcal{M}}$ can be non-zero.

A further word about central sequences and ultrafilters is in order. Let \mathscr{I}_{∞} be the ideal of $l^{\infty}(N, \mathcal{M})$ consisting of all bounded sequences (x_n) with $\lim_{n\to\infty} \|x_n\|_2 = 0$. The quotient C*-algebra $l^{\infty}(N, \mathcal{M})/\mathcal{I}_{\infty}$ is written \mathcal{M}^{∞} . Note that \mathscr{M} is embedded in \mathscr{M}^{∞} as constant sequences. The commutant $\mathscr{M}' \cap \mathscr{M}^{\infty}$ is denoted \mathcal{M}_{∞} and is the algebra of central sequences. One may repeat this same process for a free ultrafilter ω on N instead of ∞ (i.e. the Frechet filter). One obtains algebras \mathcal{M}^{ω} with $\mathcal{M} \subset \mathcal{M}^{\omega}$ and \mathcal{M}_{ω} as $\mathcal{M}' \cap \mathcal{M}^{\omega}$. The advantage of an ultrafilter is that \mathcal{M}^{ω} and hence \mathcal{M}_{ω} are von Neumann algebras. Automorphisms α of \mathcal{M} induce automorphisms of \mathcal{M}^{∞} , \mathcal{M}^{ω} , \mathcal{M}_{∞} , and \mathcal{M}_{ω} , which will all also be written α . If (x_n) is a bounded sequence in \mathcal{M} , $[x_n]$ will denote its image in \mathcal{M}^{∞} or \mathcal{M}^{ω} . It is important to note that if $\alpha = \lim_{n \to \infty} \operatorname{Ad} u_n$ for $\alpha \in \operatorname{Aut} \mathcal{M}$ and unitaries u_n in \mathcal{M} , and if $U = [u_n]$, then $\alpha = \operatorname{Ad} U$ on \mathcal{M} $\subset \mathcal{M}^{\infty}$, i.e. if $X \in \mathcal{M} \subset \mathcal{M}^{\infty}$, $\alpha(X) = UXU^*$. The same for ω in the place of ∞ . If \mathcal{M} is an algebra, $Z(\mathcal{M})$ will denote its centre. To say that a sequence (x_n) is hypercentral is just to say that $[x_n] \in Z(\mathcal{M}_{\infty})$. To say that \mathcal{M} has no nontrivial hypercentral sequences means that if $[x_n] \in Z(\mathcal{M}_{\infty})$, then $[x_n] = [\lambda_n 1]$ for a bounded sequence of scalars $\lambda_n \in \mathbb{C}$. If ω is an ultrafilter, such a sequence has a unique limit an $n \to \omega$, so that "M has no non-trivial hypercentral sequences" is the same as saying " \mathcal{M}_{ω} is a factor" for some (and hence all) free ultrafilter ω on N.

To say that an automorphism α is centrally trivial is the same as saying α = id on \mathcal{M}_{∞} (or \mathcal{M}_{ω}).

2. An invariant for elements of $\chi(\mathcal{M})$.

In this section we shall define an invariant $\kappa(\theta)$ for elements $\theta \in \chi(\mathcal{M})$ and examine its relationship with the invariant $\gamma(\theta)$ of [6]. We also show how $\kappa(\theta)$ behaves under conjugation by antiautomorphisms. We develop the definition of κ in three lemmas.

LEMMA 2.1. Let $\alpha \in \overline{\operatorname{Int}} \, \mathcal{M} \cap \operatorname{Ct} \, \mathcal{M}$ and let $\alpha = \operatorname{Ad} \, U$ for $U \in \mathcal{M}^{\infty}$ on $\mathcal{M} \subset \mathcal{M}^{\infty}$. Then $U^*\alpha(U) \in Z(\mathcal{M}_{\infty})$.

PROOF. Let $X \in \mathcal{M} \subset \mathcal{M}^{\infty}$. Then $X = \alpha(U^*XU) = \alpha(U^*)\alpha(X)\alpha(U)$ = $\alpha(U^*)UXU^*\alpha(U)$. Thus $U^*\alpha(U) \in \mathcal{M}_{\infty} = \mathcal{M}' \cap \mathcal{M}^{\infty}$. Moreover if $Y \in \mathcal{M}_{\infty}$,

$$YU^*\alpha(U) = U^*(UYU^*)\alpha(U) = U^*\alpha(UYU^*U) = U^*\alpha(U)Y,$$

since $UYU^* \in \mathcal{M}_{\infty}$ and $\alpha \in \operatorname{Ct} \mathcal{M}$. Thus $YU^*\alpha(U) = U^*\alpha(U)Y$ for all $Y \in \mathcal{M}_{\infty}$, and $U^*\alpha(U) \in Z(\mathcal{M}_{\infty})$.

LEMMA 2.2. Let α and U be as in lemma 2.1 and suppose \mathcal{M} has no non-trivial hypercentral sequences. Then there is a $\lambda_{\alpha} \in T$ such that $\alpha(U) = \lambda_{\alpha}U$. This λ_{α} does not depend on the choice of U with $\alpha = \operatorname{Ad} U$ on $\mathcal{M} \subset \mathcal{M}^{\infty}$.

PROOF. Since there are no hypercentral sequences, we know that there is a bounded sequence λ_n with $\lim_{n\to\infty} \|\lambda_n 1 - u_n^* \alpha(u_n)\|_2 = 0$, where (u_n) is a representing sequence for U. We shall show that λ_n converges by showing that it has at most one accumulation point.

Suppose λ and μ are two accumulation points for the sequence (λ_n) . Then let (n_i) and (m_i) be infinite sequences with $\lim_{i\to\infty}\lambda_{n_i}=\lambda$ and $\lim_{i\to\infty}\lambda_{m_i}=\mu$. Let V and $W\in \mathcal{M}^{\infty}$ be defined by $V=[u_{n_i}]$ and $W=[u_{m_i}]$. Clearly $\alpha(V)=\lambda V$ and $\alpha(W)=\mu W$ so that $\alpha(VW^*)=\lambda \bar{\mu}VW^*$. But Ad V= Ad W= Ad U on $\mathcal{M}\subset \mathcal{M}^{\infty}$ so that $VW^*\in \mathcal{M}_{\infty}$. Since $\alpha=$ id on \mathcal{M}_{∞} , $\lambda \bar{\mu}=1$ so $\lambda=\mu$.

The same argument shows that λ_{α} does not depend on U with $\alpha = \operatorname{Ad} U$ on $\mathcal{M} \subset \mathcal{M}_{\infty}$.

LEMMA 2.3. If α , U and $\mathcal M$ are as in lemma 2.2, and v is a unitary in $\mathcal M$, $\hat{\lambda}_{\alpha} = \hat{\lambda}_{\text{Ad } \nu \alpha}.$

PROOF. We have $\operatorname{Ad} v\alpha = \operatorname{Ad} (vU)$ on $\mathscr{M} \subset \mathscr{M}^{\infty}$. By definition,

$$\lambda_{\operatorname{Ad} v\alpha}vU = \operatorname{Ad} v\alpha(vU) = v\alpha(vU)v^* = vUvU^*\alpha(U)v^* = \hat{\lambda}_{\alpha}vU$$
.

Hence $\lambda_{\alpha} = \lambda_{Ad \nu \alpha}$.

DEFINITION 2.4. Let \mathcal{M} be a II₁ factor without non-trivial hypercentral sequences and $\theta \in \chi(\mathcal{M})$. Then $\varkappa(\theta) = \hat{\lambda}_{\alpha}$ for any α with $\varepsilon(\alpha) = \theta$. This means that if u_n are unitaries with $\alpha = \lim_{n \to \infty} \operatorname{Ad} u_n$, $\lim_{n \to \infty} \|\alpha(u_n) - \hat{\lambda}_{\alpha} u_n\|_2 = 0$. (Such a sequence of unitaries exists since $\alpha \in \overline{\operatorname{Int}} \mathcal{M}$.)

Each automorphism $\beta \in \operatorname{Aut} \mathcal{M}$ determines an automorphism $\overline{\beta}$ of $\chi(\mathcal{M})$ by conjugation, i.e. $\overline{\beta}(\theta) = \varepsilon(\beta)\theta\varepsilon(\beta^{-1})$. The next lemma shows that \varkappa is a conjugacy invariant.

LEMMA 2.5. If $\beta \in \text{Aut } \mathcal{M} \text{ and } \theta \in \chi(\mathcal{M}), \text{ then } \varkappa(\theta) = \varkappa(\overline{\beta}(\theta)).$

PROOF. If α is such that $\varepsilon(\alpha) = \theta$ and $\alpha = \operatorname{Ad} U$ for $U \in \mathcal{M}^{\infty}$ on $\mathcal{M} \subset \mathcal{M}^{\infty}$, then $\beta \alpha \beta^{-1} = \operatorname{Ad} \beta(U)$ on $\mathcal{M} \subset \mathcal{M}^{\infty}$, and $\beta \alpha \beta^{-1}(\beta(U)) = \lambda_{\alpha}\beta(U)$.

Each antiautomorphism Φ of \mathcal{M} determines an automorphism $\tilde{\Phi}$ of $\chi(\mathcal{M})$ by conjugation, i.e. $\tilde{\Phi}(\theta) = \varepsilon(\Phi \alpha \Phi^{-1})$ where $\varepsilon(\alpha) = \theta$.

LEMMA 2.6. If Φ is an antiautomorphism of \mathcal{M} and $\theta \in \chi(\mathcal{M})$, then $\overline{\chi(\theta)} = \chi(\tilde{\Phi}(\theta))$.

PROOF. Exactly as for 2.5 exept that $\Phi \alpha \Phi^{-1} = \text{Ad } (\Phi(U^*))$.

We will also be interested in $\varkappa(\theta^{-1})$.

LEMMA 2.7. If $\theta \in \chi(\mathcal{M})$, $\kappa(\theta^{-1}) = \kappa(\theta)$.

PROOF. If $\varepsilon(\alpha) = \theta$ and $\alpha = \operatorname{Ad} U$ on $\mathcal{M} \subset \mathcal{M}^{\infty}$, $\alpha^{-1} = \operatorname{Ad} U^*$ and $\alpha^{-1}(U^*) = \lambda_{\alpha}U^*$.

Remember that for $\theta \in \text{Out } \mathcal{M}$, $\gamma(\theta)$ is defined by $\alpha(v) = \gamma(\theta)v$ where $\varepsilon(\alpha) = \theta$ and $\alpha^n = \text{Ad } v$ with $n = \text{period of } \theta$.

LEMMA 2.8. Let $\theta \in \chi(\mathcal{M})$ have period n and suppose \mathcal{M} has no hypercentral non-trivial sequences. Then $\gamma(\theta) = \varkappa(\theta)^n$.

PROOF. If $\varepsilon(\alpha) = \theta$, $\alpha = \operatorname{Ad} U$ on $\mathscr{M} \subset \mathscr{M}^{\infty}$ and $\alpha^n = \operatorname{Ad} v$ on \mathscr{M} , then $v^*\underline{U^n} \in \mathscr{M}_{\infty}$ so $\alpha(v^*\underline{U^n}) = v^*\underline{U^n}$. But also $\alpha(v^*\underline{U^n}) = \alpha(v^*)\varkappa(\theta)^n\underline{U^n} = \overline{\gamma(\theta)}\varkappa(\theta)^nv^*\underline{U^n}$. Hence $\gamma(\theta) = \varkappa(\theta)^n$.

LEMMA 2.9. With θ and \mathcal{M} as in 2.8, $\gamma(\theta) = \kappa(\theta)^{-n}$.

PROOF. If $\varepsilon(\alpha) = \theta$, $\alpha = \operatorname{Ad} U$ on $\mathscr{M} \subset \mathscr{M}^{\infty}$ and $\alpha^{n} = \operatorname{Ad} v$, $\gamma(\theta)v = \alpha(v) = UvU^{*} = UvU^{*}v^{*}v = U\alpha^{n}(U^{*})v = \varkappa(\theta)^{-n}v.$ Thus $\gamma(\theta) = \varkappa(\theta)^{-n}$.

COROLLARY 2.10. If θ and \mathcal{M} are as in 2.8, $\gamma(\theta) = \pm 1$.

We shall see in section 6 that $\gamma(\theta)$ can be -1.

REMARK 2.11. If ω is a free ultrafilter on N, and Ad $U=\alpha$ on $\mathcal{M}\subset \mathcal{M}^{\omega}$, then as above $U^*\alpha(U)\in Z(\mathcal{M}_{\omega})$. By hypothesis $Z(\mathcal{M}_{\omega})$ is just the scalars so that $\lambda_{\alpha}=U^*\alpha(U)$. This shows that if λ_{α} had been defined with an ultrafilter, the result does not depend on the ultrafilter.

3. Definition of \mathcal{A} .

Let F_{24} be the free group on the 24 generators g_i , $i=1,2,\ldots 24$. Let $\lambda(g_i)$ be the unitaries of the left regular representation of F_{24} , and let UF_{24} be the von Neumann algebra generated by the $\lambda(g_i)$. UF_{24} is a II_1 factor. For each 25th root μ of unity define the automorphisms $\zeta_{\mu} \colon UF_{24} \to UF_{24}$ by $\zeta_{\mu}(\lambda(g_i)) = \mu^i \lambda(g_i)$. By [13], ζ_{μ} is outer if $\mu \neq 1$ and the period of ζ_{μ} is the order of μ as a root of unity. Also $\zeta_{\mu}\zeta_{\nu} = \zeta_{\mu\nu}$.

Let $\sigma = e^{2\pi i/25}$ and $\gamma = \sigma^5$. Let \mathscr{P} be the crossed product $W^*(UF_{24}, \mathbb{Z}_5)$, where \mathbb{Z}_5 acts on UF_{24} by $n(x) = \zeta_{\gamma^n}(x)$ for $n \in \mathbb{Z}_5$. Write the elements of \mathscr{P} as sums of the form $\sum_{i=0}^4 a_i u^i$ where $a_i \in UF_{24}$ and u is a unitary, $u^5 = 1$ and $\mathrm{Ad} \ u = \zeta_{\gamma}$ on UF_{24} . Define $r_{\gamma}^{\overline{\gamma}} \in \mathrm{Aut} \mathscr{P}$ by

$$r_5^{\bar{\gamma}}\left(\sum_{i=0}^4 a_i u^i\right) = \sum_{i=0}^4 \gamma^{-i} \zeta_{\sigma}(a_i) u^i .$$

Then $(r_5^{\bar{y}})^5 = \operatorname{Ad} u$ and $r_5^{\bar{y}}(u) = \bar{y}u$. (This is just the construction of [8, theorem 2.1] in the cyclic case.)

Now choose an automorphism s_s^y of the hyperfinite II₁ factor R with $(s_s^y)^5 = \operatorname{Ad} w$ and $s_s^y(w) = \gamma w$. (See [6, proposition 1.6].) Let \mathscr{B} be the tensor product $\mathscr{P} \otimes R$ and define $r_s^y \otimes s_s^y$ on \mathscr{B} . Then $(r_s^y \otimes s_s^y)^5 = \operatorname{Ad} (u \otimes w)$ and $r_s^y \otimes s_s^y (u \otimes w) = u \otimes w$ is in the centre of the fixed point algebra \mathscr{L} of $r_s^y \otimes s_s^y$. Choose a 5th root t of $(u \otimes w)^*$ in $Z(\mathscr{L})$ and let $\psi = \operatorname{Ad} t$ $(r_s^y \otimes s_s^y)$. Then $\psi^5 = \operatorname{id}$.

The von Neumann algebra \mathscr{A} is the crossed product $W^*(\mathscr{B}, \mathsf{Z}_5)$ where ψ determines the action of Z_5 on \mathscr{B} . Since ψ^i is outer for 0 < i < 5, \mathscr{A} is a type II₁ factor.

Before going on to prove that $\mathscr A$ is antiisomorphic to itself, we prove a fact about $\mathscr P$ which allows us to control central sequences in $\mathscr P \otimes R$.

LEMMA 3.1. There is a K > 0 such that if $x \in \mathcal{P}$ satisfies $\|[x, \lambda(g_k)]\|_2 < \varepsilon$ for k = 1, 2, ... 24, then $\|x - \tau(x)\|_2 < K\varepsilon$

Here τ denotes the trace both on UF_{24} and \mathscr{P} . Thus $\tau(\sum_{i=0}^4 x_i u^i) = \tau(x_0)$.

PROOF. Write $x \in \mathcal{P}$ in the form $x = \sum_{i=0}^{4} x_i u^i$ with $x_i \in UF_{24}$. For k = 5 and 10, $[\lambda(g_k), u] = 0$ so that for these values of k,

$$\|[\lambda(g_k), x]\|_2^2 = \sum_{i=0}^4 \|[x_i, \lambda(g_k)]\|_2^2 < \varepsilon^2.$$

Thus for each i, $||[x_i, \lambda(g_k)]||_2 < \varepsilon$. Hence by [14, lemma 4.3.3], $||x_i - \tau(x_i)||_2 < 14\varepsilon$. But if $y = \sum_{i=0}^4 \tau(x_i)u^i$, then $||x - y||_2 < \sqrt{5}$ 14 ε , so that

$$\|[y, \lambda(g_k)]\|_2 < \sqrt{5} 28\varepsilon + \varepsilon$$
 for $k = 1, 2, ... 24$.

In particular

$$\|[y, \lambda(g_1)]\|_2^2 = \sum_{i=0}^4 |\tau(x_i)|^2 |1-\gamma^i|^2 < (28\sqrt{5}+1)^2 \varepsilon^2$$

(since we know how u commutes with $\lambda(g_1)$: $u\lambda(g_1)u^* = \gamma\lambda(g_1)$). Thus for $i \neq 0$,

$$|\tau(x_i)| < ((28)\sqrt{5} + 1)/|1 - \gamma|)\varepsilon$$

and

$$||x - \tau(x)||_2 \le ||x - y||_2 + ||y - \tau(x)||_2$$

$$< 14|\sqrt{5}\varepsilon + 2((28|\sqrt{5} + 1)/|1 - \gamma|)\varepsilon.$$

REMARK 3.2. Lemma 3.1 implies (by [1, lemma 2.11 and corollary 3.6]), that \mathscr{P} is full, i.e. $\overline{\text{Int }} \mathscr{P} = \text{Int } \mathscr{P}$.

4. \mathscr{A} is antiisomorphic to itself.

To prove this assertion we use the following special case of a result which must be known to many authors.

Lemma 4.1. Let \mathcal{M} be a Π_1 factor and G a (discrete) group of automorphisms of \mathcal{M} . If Ψ is an antiautomorphism of \mathcal{M} such that $\Psi g \Psi^{-1} = \varrho(g)$ for some automorphism ϱ of G, then the formula

$$\Phi\left(\sum_{g \in G} a_g u_g\right) = \sum_{g \in G} \varrho(g)^{-1} \Psi(a_g) u_{\varrho(g)^{-1}} = \sum_{g \in G} \Psi(g^{-1}(a_g)) u_{\varrho(g)^{-1}}$$

defines an antiautomorphisms of $W^*(\mathcal{M}, G)$.

Here $\{u_g\}$ is the usual unitary representation in the crossed product implementing G on \mathcal{M} .

PROOF. Since Φ preserves the trace there is no problem extending it from finite sums to all of $W^*(\mathcal{M}, G)$. Thus we only need to verify the relations $\Phi(xy) = \Phi(y)\Phi(x)$ and $\Phi(x^*) = \Phi(x)^*$. By linearity it suffices to do this for a pair au_g and bu_h . Now

$$\Phi(au_g) = \varrho(g)^{-1} \Psi(a) u_{\varrho(g)^{-1}}$$

$$\Phi(bu_h) = \varrho(h)^{-1} \Psi(b) u_{\varrho(h)^{-1}}$$

so that

$$\begin{split} \Phi(bu_h)\Phi(au_g) &= \varrho(h)^{-1}\Psi(b)\varrho(h)^{-1}\varrho(g)^{-1}\Psi(a)u_{\varrho(gh)^{-1}} \\ &= \Psi(h^{-1}b)\Psi((gh)^{-1}a)u_{\varrho(gh)^{-1}} \\ &= \Psi((gh)^{-1}(ag(b)))u_{\varrho(gh)^{-1}} \\ &= \Phi(ag(b)u_{gh}) \\ &= \Phi(au_abu_b) \; . \end{split}$$

Moreover

$$\Phi(au_g)^* = u_{\varrho(g)^{-1}}^* \varrho(g)^{-1} \Psi(a^*) = \Psi(a^*) u_{\varrho(g)}$$

and

$$\Phi((au_g)^*) = \Phi(g^{-1}(a^*)u_g - 1) = \Psi(a^*)u_{\rho(g)}.$$

THEOREM 4.2. A is antiisomorphic to itself.

PROOF. We want to use lemma 4.1 so we begin by constructing appropriate antiautomorphisms of \mathcal{P} and R.

Define the involutory antiautomorphism Δ of UF_{24} by $\Delta(\hat{\lambda}(g)) = \hat{\lambda}(g)^{-1}$ for all $g \in F_{24}$; For a 25th root of unity μ , $\Delta \zeta_{\mu} \Delta^{-1} = \zeta_{\mu^{-1}}$. Now define the automorphism π : $UF_{24} \to UF_{24}$ by the permutation of the generators $\pi(\hat{\lambda}(g_i)) = \hat{\lambda}(g_{-2i \mod 25})$. One checks that $\pi^{-1}\zeta_{\mu}\pi = \zeta_{\mu^{-2}}$ so that $\Psi = \pi^{-1}\Delta$ is an antiautomorphism and $\Psi\zeta_{\mu}\Psi^{-1} = \zeta_{\mu^2}$. Thus by lemma 4.1, the formula

$$\Phi\left(\sum_{i=0}^{4} a_{i} u^{i}\right) = \sum_{i=0}^{4} \zeta_{\gamma^{-2i}} \Psi(a_{i}) u^{-2i}$$

defines an antiautomorphism Φ of $\mathcal{P} = W^*(UF_{24}, \mathbb{Z}_5)$. Also

$$\begin{split} \Phi r_5^{\bar{\gamma}} \Phi^{-1}(au^i) &= \Phi r_5^{\bar{\gamma}} (\Psi^{-1} \zeta_{\gamma^{-i}}(a) u^{2i}) \quad \text{(see below)} \\ &= \Phi (\gamma^{-2i} \zeta_{\sigma} \Psi^{-1} \zeta_{\gamma^{-i}}(a) u^{2i}) \\ &= \gamma^{-2i} \zeta_{\gamma^i} \Psi \zeta_{\sigma} \Psi^{-1} \zeta_{\gamma^{-i}}(a) u^i \\ &= \gamma^{-2i} \zeta_{\sigma^2}(a) u^i = (r_5^{\bar{\gamma}})^2 (au^i) \; . \end{split}$$

Thus $\Phi r_5^{\bar{\gamma}} \Phi^{-1} = (r_5^{\bar{\gamma}})^2$.

(To calculate $\Phi^{-1}(au^i)$, note that $\Phi(au^i) = \zeta_{v^{-2i}}\Psi(a)u^{-2i}$ so that

$$\Phi^{-1}(\zeta_{y^{-2i}}\Psi(a)u^{-2i}) = au^{i}.$$

Put $a' = \zeta_{\gamma^{-2i}} \Psi(a)$ and j = -2i. Then $a = \Psi^{-1} \zeta_{\gamma^{2i}}(a')$ and $i = 2j \mod 5$. Thus $\Phi^{-1}(a'u^j) = \Psi^{-1} \zeta_{\gamma^{-j}}(a')u^{2j}$.)

Now by [6, theorem 1.11] there is an antiautomorphism Γ of R such that $\Gamma s_{\xi}^{\gamma} \Gamma^{-1} = (s_{\xi}^{\gamma})^2$.

Remember that \mathscr{A} is the crossed product of $\mathscr{P} \otimes R$ by $\psi = \operatorname{Ad} t$ $(r_5^{\bar{\gamma}} \otimes s_5^{\gamma})$. If we define the antiautomorphism $\Phi \otimes \Gamma$ of $\mathscr{P} \otimes R$, then

$$\Phi \otimes \Gamma (\operatorname{Ad} t(r_5^{\bar{\gamma}} \otimes s_5^{\bar{\gamma}})) \Phi^{-1} \otimes \Gamma^{-1} = \operatorname{Ad} (\Phi \otimes \Gamma(t^*)) (r_5^{\bar{\gamma}} \otimes s_5^{\gamma})^2.$$

But this means that the automorphisms $(\Phi \otimes \Gamma)\psi(\Phi \otimes \Gamma)^{-1}$ and ψ^2 differ by an inner automorphism. By [6, corollary 2.6], there is an automorphism β of $\mathscr{P} \otimes R$ such that

$$\beta(\Phi \otimes \Gamma)\psi(\Phi \otimes \Gamma)^{-1}\beta^{-1} = \psi^2.$$

Thus by lemma 4.1, the formula

$$\sum_{i=0}^4 a_i z^i \mapsto \sum_{i=0}^4 \psi^{-2i} \beta(\Phi \otimes \Gamma)(a_i) z^{-2i}$$

defines an antiautomorphism of \mathscr{A} (here $a_i \in \mathscr{B} = \mathscr{P} \otimes R$ and z is a unitary with $z^5 = 1$ and Ad $z = \psi$ on \mathscr{B}).

5. \mathscr{A} possesses no involutory antiautomorphisms.

To prove the assertion of this section we shall calculate $\chi(\mathscr{A})$ and $\varkappa(\theta)$ for generator θ of $\chi(\mathscr{A})$ using the methods of [3]. We give a brief sketch of these methods.

Given a finite subgroup G of $Aut \mathcal{M}$ (\mathcal{M} a II_1 factor without non-trivial hypercentral sequences) with $G \cap \overline{Int} \mathcal{M} = \{id\}$, Connes defines $K = G \cap Ct \mathcal{M}$ and K^{\perp} , the group of homomorphisms from G to T which vanish on K. Let \mathcal{M}^G be the fixed point algebra of the group G and let F int be the subgroup of F and F and F are consisting of all those automorphisms of the form F and F with F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F and F are F are F and F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F and F are F and F are F are F and F are F are F and F are F and F are F and F are F are F and F are F are F and F are F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F and F are F are F

$$0 \to K^\perp \xrightarrow{\partial} \chi(W^*(\mathcal{M},G)) \xrightarrow{\varPi} L \to 0 \; .$$

The map ∂ comes from the dual action: write elements in the crossed product in the form $\sum_{g \in G} a_g u_g$ with $a_g \in \mathcal{M}$ and $\operatorname{Ad} u_g = g$ on \mathcal{M} . Then for each $\eta \in K^{\perp}$, $\eta: G \to T$, define

$$\delta(\eta) \left(\sum_{g \in G} a_g u_g \right) = \sum_{g \in G} \eta(g) a_g u_g.$$

One checks that $\delta(\eta) \in \operatorname{Ct} \mathcal{N} \cap \operatorname{Int} \mathcal{N}$ (\mathcal{N} is $W^*(\mathcal{M}, G)$) and ∂ is defined by taking the quotient $\varepsilon \circ \delta$. The injectivity of ∂ comes from the fact that the dual action is outer.

The map $\Pi: \chi(\mathcal{N}) \to L$ is defined as follows. Given $\alpha \in \operatorname{Ct} \mathcal{N} \cap \operatorname{Int} \mathcal{N}$, one can show, using the detailed knowledge of central sequences in \mathcal{N} coming from the hypothesis $G \cap \operatorname{Int} \mathcal{M} = \{ \operatorname{id} \}$, that there is a unitary $v \in \mathcal{N}$ and a sequence u_n of unitaries in \mathcal{M}^G such that $\alpha = \operatorname{Ad} v \lim_{n \to \infty} \operatorname{Ad} u_n$. Let $\psi_{\alpha} = (\operatorname{Ad} v^*\alpha)|_{\mathcal{M}}$. By construction $\psi_{\alpha} \in \operatorname{Fint}$ and one checks that $\psi_{\alpha} \in G \operatorname{Ct} \mathcal{M}$ (use Galois theory on \mathcal{M}_{ω}). The image of ψ_{α} in Out \mathcal{M} depends only on $\varepsilon(\alpha)$, so we may define a map $\Pi: \chi(\mathcal{N}) \to L$ by $\Pi(\theta) = \varepsilon(\psi_{\alpha})$ with $\varepsilon(\alpha) = \theta$.

The surjectivity of Π involves constructing a set-theoretic section for Π . This will be the most important construction for this paper. It is done as follows: given $\mu \in L$, let $\alpha_{\mu} \in \overline{\operatorname{Fint}} \cap G \operatorname{Ct} \mathscr{M}$ be such that $\varepsilon(\alpha_{\mu}) = \mu$. This α_{μ} commutes with G since it is the limit of such automorphisms. Thus we may define an automorphism β_{μ} of $W^*(\mathscr{M}, G)$ by

$$\beta_{\mu} \left(\sum_{\mathbf{g} \in G} a_{\mathbf{g}} u_{\mathbf{g}} \right) = \sum_{\mathbf{g} \in G} \alpha_{\mu} (a_{\mathbf{g}}) u_{\mathbf{g}} .$$

One checks that $\beta_{\mu} \in \operatorname{Ct} \mathcal{N} \cap \overline{\operatorname{Int}} \mathcal{N}$ and it is clear that $\Pi(\varepsilon(\beta_{\mu}) = \mu)$. Thus $\mu \mapsto \varepsilon(\beta_{\mu})$ provides the required section.

REMARK 5.1. A bonus of this description is that we can easily calculate $\varkappa(\varepsilon(\beta_{\mu}))$. For if u_n^{μ} are unitaries in \mathscr{M}^G with $\lim_{n\to\infty} \operatorname{Ad} u_n^{\mu} = \alpha_{\mu}$ in Aut \mathscr{M} , then $\beta_{\mu} = \lim_{n\to\infty} \operatorname{Ad} u_n^{\mu}$ in Aut \mathscr{M} so that we only need to calculate

$$\lim_{n\to\infty} (u_n^{\mu})^*\beta_{\mu}(u_n^{\mu}) = \lim_{n\to\infty} (u_n^{\mu})^*\alpha_{\mu}(u_n^{\mu})$$

and this is $\varkappa(\varepsilon(\beta_u))$.

We want to show that if $\mathscr A$ and $\mathscr B$ are as in section 3, $\chi(\mathscr A)=\mathsf Z_{25}$ and if $\sigma=e^{2\pi i/25}$, a generator θ of $\chi(\mathscr A)$ satisfies $\varkappa(\theta)=\bar\sigma$. To do this we whall show that $K=\mathsf Z_5,\, L=\mathsf Z_5$ and that a lifting to $\chi(\mathscr A)$ of a generator of L satisfies $\theta^5 \neq 1$ and $\varkappa(\theta)=\bar\sigma$.

To apply [3, theorem 4] we need to know that \mathscr{B} has no non-trival hypercentral sequences. Together with our lemma 3.1, [1, lemma 2.11] shows that all central sequences in $\mathscr{P} \otimes R$ come from R and it it is well known that R has no non-trivial hypercentral sequences. We also need to know that $G \cap \overline{\operatorname{Int}} \mathscr{B} = \{ \operatorname{id} \}$. Here G is the group generated by $\psi = \operatorname{Ad} t \ (r_{\overline{s}}^{\overline{s}} \otimes s_{\overline{s}}^{\overline{s}})$. It suffices to show that $\psi \notin \overline{\operatorname{Int}} \mathscr{B}$. This follows immediately from [5, 3.3] and our remark 3.2. Thus we may apply [3, theorem 4] with impunity.

We need to know $K = G \cap \operatorname{Ct} \mathcal{B}$.

LEMMA 5.2. The group $K = G \cap \text{Ct } \mathcal{B}$ is just the identity.

PROOF. It suffices to show that $\psi \notin \operatorname{Ct} \mathscr{B}$. Bu s_5^{γ} is not in $\operatorname{Ct} R$ (see [6]) and if (x_n) is central in R, $(1 \otimes x_n)$ is central in $\mathscr{P} \otimes R$ so that $r_5^{\gamma} \otimes s_5^{\gamma} \notin \operatorname{Ct} \mathscr{B}$.

Next we determine L and a lifting of a generator.

Lemma 5.3. With notation as above, $\varepsilon(G \operatorname{Ct} \mathscr{B} \cap \overline{\operatorname{Fint}}) \cong \mathbb{Z}_5$, and a generator is

$$\mu = \varepsilon (\mathrm{id} \otimes (\mathrm{Ad} \, vs_5^{\gamma}))$$

where v is a unitary in R such that $s_5^{\gamma}(v) = \sigma v$.

If $\beta_{\mu} \in \operatorname{Ct} \mathscr{A} \cap \operatorname{Int} \mathscr{A}$ is a described above, then $\varkappa(\varepsilon(\beta_{\mu})) = \bar{\sigma}$.

PROOF. Note first that such a v exists by [6, corollary 2.6].

We now want to show that $id \otimes (Ad vs_5^{\gamma}) \in G \operatorname{Ct} \mathscr{B} \cap \overline{\operatorname{Fint}}$. Consider first of all $G \operatorname{Ct} \mathscr{B}$: multiplication of $id \otimes (Ad vs_5^{\gamma})$ by $\psi^{-1} = (Ad t(r_5^{\gamma} \otimes s_5^{\gamma}))^{-1}$ yields

Ad
$$t*(1\otimes v)((r_5^{\bar{\gamma}})^{-1}\otimes id)$$

which is certainly in Ct \mathscr{B} . Thus id \otimes (Ad vs_3^{γ}) \in G Ct \mathscr{B} . To show that

$$id \otimes (Ad vs_5^{\bar{\gamma}}) \in \overline{Fint}$$

we must exhibit a sequence $\{u_n\}$ of unitaries in \mathcal{B} with $\psi(u_n) = u_n$ and

$$id \otimes (Ad vs_5^{\gamma}) = \lim_{n \to \infty} Ad u_n$$
.

We begin by showing the existence of a sequence x_n of unitaries in R with $s_5^x = \lim_{n \to \infty} \operatorname{Ad} x_n$ and $s_5^x(x_n) = \bar{\sigma}x_n$. Since $\overline{\operatorname{Int}} R = \operatorname{Aut} R$, there is a sequence y_n of unitaries of R such that $s_5^x = \lim_{n \to \infty} \operatorname{Ad} y_n$. Choose a free ultrafilter ω on \mathbb{N} and let $Y = [y_n] \in R^{\omega}$. By the same calculation as in lemma 2.1, $W = Y^* s_5^x(Y) \in R_{\omega}$. Moreover

$$Ws_5^{\gamma}(W) \dots (s_5^{\gamma})^4(W) = Y^*(s_5^{\gamma})^5(Y)$$
,

and since $(s_5^{\gamma})^5 = \operatorname{Ad} w$ with $s_5^{\gamma}(w) = YwY^* = \gamma$, we obtain

$$(\sigma W)s_5^{\gamma}(\sigma W)\ldots(s_5^{\gamma})^4(\sigma W)=1,$$

and by [6, corollary 2.6], $\sigma W = Z^* s_5^{\gamma}(Z)$ for $Z \in R_{\omega}$. If (z_n) is a representing sequence of unitaries for Z, then

$$\lim_{n\to\omega} \operatorname{Ad} y_n z_n^* = s_5^{\gamma} \quad \text{(since } (z_n) \text{ is } \omega\text{-central)},$$

and

$$\lim_{n \to \infty} \|s_5^{\gamma}(y_n z_n^*) - \bar{\sigma} y_n z_n^*\|_2 = 0.$$

By standard approximation arguments (e.g. [10, 3.5], we may assume $s_5^{\gamma}(y_n z_n^*) = \bar{\sigma} y_n z_n^*$. Putting $x_n = y_n z_n^*$ gives the required result.

Now put $u_n = vx_n$. Then Ad $vs_5^\gamma = \lim_{n \to \infty} \operatorname{Ad} u_n$ with $s_5^\gamma(u_n) = u_n$, so that

$$r_5^{\bar{\gamma}} \otimes s_5^{\gamma} (1 \otimes u_n) = 1 \otimes u_n$$

and since t was chosen in the centre of the fixed point algebra for $r_5^{\bar{\gamma}} \otimes s_5^{\gamma}$,

$$\psi(1 \otimes u_n) = \operatorname{Ad} t(r_5^{\bar{\gamma}} \otimes s_5^{\gamma})(1 \otimes u_n) = 1 \otimes u_n$$
.

Thus $1 \otimes u_n$ is the desired sequence and $id \otimes (Ad vs_3^v) \in \overline{Fint}$.

Let us now calculate $\kappa(\varepsilon(\beta_u))$. Choosing a subsequence we may assume

$$id \otimes (Ad vs_5^{\gamma}) = \lim_{n \to \infty} Ad 1 \otimes u_n$$
.

By remark 5.1, to calculate $\varkappa(\varepsilon(\beta_{\mu}))$ we need only calculate $(id \otimes (Ad \, vs_s^{\chi}))(1 \otimes u_n)$. But

$$id \otimes s_5^{\gamma} (1 \otimes u_n) = 1 \otimes u_n$$

so

$$id \otimes (Ad vs_5^{\gamma})(1 \otimes u_n) = 1 \otimes vu_n v^*$$
.

Now $\lim_{n\to\infty} \operatorname{Ad} u_n = s_5^{\gamma}$ and $s_5^{\gamma}(v) = \sigma v$. Thus $\lim_{n\to\infty} u_n v^* u_n^* = \bar{\sigma} v^*$, and

$$\lim_{n\to\infty} \|\mathrm{id} \otimes (\mathrm{Ad} \, v s_5^{\gamma}) (1 \otimes u_n) - \bar{\sigma} 1 \otimes u_n\|_2 = 0.$$

By definition $\varkappa(\varepsilon(\beta_{\mu})) = \bar{\sigma}$.

Thus far we know that $\varepsilon(id \otimes (Ad vs_5^2))$ is an element (of period 5) of $L = (G \operatorname{Ct} \mathscr{B} \cap \overline{\operatorname{Fint}})$. We want to show that it generates L. This means that if $\varphi \in G \operatorname{Ct} \mathscr{B} \cap \overline{\operatorname{Fint}}$ then it differs by an inner automorphism from a power of $id \otimes (Ad vs_5^2)$. By the same argument as in [2, theorem 3.2 a)], if $\alpha \in \operatorname{Ct} \mathscr{B}$, then $\alpha = \operatorname{Ad} z(v \otimes \operatorname{id})$ for some unitary $z \in \mathscr{B}$ and an automorphism v of \mathscr{P} (basically because otherwise α would act on central sequences coming from R). Thus since $\varphi \in G \operatorname{Ct} \mathscr{B}$, there is an $n \in \{0, 1, 2, 3, 4\}$ such that $\varphi \operatorname{Ad} t^n(r_5^2 \otimes s_5^2)^n$ is of the form $\operatorname{Ad} z$ ($v \otimes \operatorname{id}$). Solving for φ gives

$$\varphi = \operatorname{Ad} x (v(r_5^{\overline{i}})^{-n} \otimes (s_5^{\overline{i}})^{-n})$$

for some $x \in \mathcal{B}$. Since $\varphi \in \text{Int } \mathcal{B}$ and \mathcal{B} is full we may apply [5, corollary 3.3] to conclude that

$$\varphi = \operatorname{Ad} x' (\operatorname{id} \otimes (s_5^n)^{-n})$$

(or argue as in [2, 2.1]). Thus $\varepsilon(\varphi) = \mu^{-n}$, and μ generates L.

LEMMA 5.4. We have $\chi(\mathscr{A}) \cong \mathbb{Z}_{25}$ and $\Omega_{\mathscr{A}} = 0$.

PROOF. By 5.2, 5.3 and [3, theorem 4], we have an exact sequence

$$0 \to Z_5 \to \chi(\mathscr{A}) \to Z_5 \to 0$$
.

A lifting to $\chi(\mathscr{A})$ of a generator of Z_5 is defined on $\mathscr{A} = W^*(\mathscr{B}, Z_5)$ by $\varepsilon(\alpha)$ where

$$\alpha\left(\sum_{i=0}^4 a_i z_i^i\right) = \sum_{i=0}^4 \operatorname{id} \otimes (\operatorname{Ad} v s_5^{\gamma})(a_i) z^i.$$

Since 5 is a prime number, to prove that $\chi(\mathscr{A}) \cong \mathbb{Z}_{25}$, it suffices to show that $\varepsilon(\alpha)^5 \neq 1$, i.e. $\alpha^5 \notin \text{Int } \mathscr{A}$.

By definition,

$$\alpha^{5} \left(\sum_{i=0}^{4} a_{i} z^{i} \right) = \sum_{i=0}^{4} \operatorname{Ad} (1 \otimes v^{5} w) (a_{i}) z^{i} = \operatorname{Ad} (1 \otimes v^{5} w) \left(\sum_{i=0}^{4} \gamma^{2i} a_{i} z^{i} \right).$$

To see this last step, remember that $r_5^{\bar{\gamma}} \otimes s_5^{\gamma} (1 \otimes v^5 w) = \sigma^5 \gamma (1 \otimes v^5 w)$, so that

$$Ad t(1 \otimes v^5 w) = 1 \otimes v^5 w$$

and

Ad
$$t(r_5^{\bar{\gamma}} \otimes s_5^{\gamma})(1 \otimes v^5 w) = \gamma^2 (1 \otimes v^5 w)$$
.

Also Ad $z = \operatorname{Ad} t(r_5^{\bar{\gamma}} \otimes s_5^{\gamma})$ on \mathscr{B} . Thus α^5 is a dual action times an inner automorphism, which is outer. Hence $\chi(\mathscr{A}) \cong \mathbb{Z}_{25}$.

The H^3 obstruction $\Omega_{\mathscr{A}}$ is represented by $\gamma(\theta)$ for generator of $\chi(\mathscr{A})$. But from the above calculation, the period of θ is 25, and if $\theta = \varepsilon(\beta_m)$, we may suppose, by lemma 5.3, that $\varkappa(\theta) = \bar{\sigma}$. By lemma 2.7, $\gamma(\theta) = 1$, which means $\Omega_{\mathscr{A}} = 0$.

THEOREM 5.5. A possesses no involutory antiautomorphism.

PROOF. If Φ were such an antiautomorphism, conjugation by Φ would induce an automorphism of period 1 or 2 of $\chi(\mathscr{A})$. Since $\chi(\mathscr{A}) = \mathbb{Z}_{25}$, the only such automorphisms are the identity and the map $\theta \mapsto \theta^{-1}$. By lemmas 2.6 and 2.7, neither of these is possible since $\kappa(\theta) = \bar{\sigma}$, and $\sigma \neq \bar{\sigma}$.

REMARK 5.6. Since everything happened in Out \mathscr{A} , it follows from the above that \mathscr{A} has no antiautomorphism whose square is an inner automorphism. This may also be deduced from [15, theorem 5.5 and theorem 4.4].

Remark 5.7. It is clear that \mathcal{A} is not the von Neumann algebra generated by the left regular representation of a discrete group. Thus a modernised version of [14, problem 4.4.30] would be: "If \mathcal{M} is a II₁ factor with an involutory antiautomorphism, is there a discrete group G such that $\mathcal{M} = U(G)$?"

6. Example of a II₁ factor \mathcal{M} with $\Omega_{\mathcal{M}} \neq 0$.

We have seen that for an element $\theta \in \chi(\mathcal{M})$, $\gamma(\theta) = \pm 1$ (if \mathcal{M} has no non-trivial hypercentral sequences). We shall give an example of such a factor with $\chi(\mathcal{M}) = \mathsf{Z}_2 \oplus \mathsf{Z}_2$ and an element $\theta \in \chi(\mathcal{M})$ with $\gamma(\theta) = -1$. This also implies $\Omega_{\mathcal{M}} \neq 0$.

The example is obtained by replacing 5 by 2 and 24 by 3 in the above construction of $\mathscr A$ and $\mathscr B$. (If one doesn't believe lemma 3.1 any more, just add a few dummy generators to F_3 .) Now γ will be -1 and σ will be i. All the calculations work in the same way up to 5.4. Thus we obtain a $\theta \in \chi(\mathscr A)$ lifting a generator of $\varepsilon(\operatorname{Ct} \mathscr B \cap \overline{\operatorname{Fint}}) \cong \mathbb Z_2$ with $\varkappa(\theta) = i$. But in the calculation of 5.4, we notice that

$$\alpha^2 \left(\sum_{i=0}^2 a_i z^i \right) = \operatorname{Ad} (1 \otimes v^2 w) \left(\sum_{i=0}^2 \gamma^{2i} a_i z^i \right).$$

And now $\gamma^{2i} = 1$, so that $\varepsilon(\alpha)^2 = 1$. Thus the sequence $0 \to \mathbb{Z}_2 \to \chi(\mathscr{A}) \to \mathbb{Z}_2 \to 0$ is split, and since $\theta^2 = 1$ and $\varkappa(\theta) = i$, by 2.8. $\gamma(\theta) = -1$.

That \mathscr{A} has no non-trivial hypercentral sequences follows from the fact that \mathscr{B} has none and the control over central sequences given by the hypothesis $G \cap \overline{\operatorname{Int}} \mathscr{B} = \operatorname{id}$ (see [5, theorem 3.1]).

The author would like to thank Alain Connes for explaining some of the proof of [3, theorem 4].

REFERENCES

- A. Connes, Almost periodic states and factors of type III₁, J. Functional Analysis 16 (1974), 415-445.
- 2. A. Connes, A factor not anti-isomorphic to itself, Ann. of Math. 101 (1975), 536-554.
- A. Connes, Sur la classification des facteurs de type II, C.R. Acad. Sci. Paris Sér. A-B 281 (1975), 13-15.
- A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 4ème Série 8 (1975), 383–420.
- 5. A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 73-115.
- A. Connes, Periodic automorphisms of the hyperfinite factor of type II₁, Acta Sci. Math. (Szeged) 39 (1977), 39-66.
- 7. H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. 61 (1955), 73-89.
- 8. V. F. R. Jones, An invariant for group actions, in Algèbres d'Opérateurs (Lecture notes in Mathematics 725) Ed. P. de la Harpe, pp. 237-253, Springer-Verlag, Berlin Heidelberg New York, 1979.
- 9. V. F. R. Jones, On the automorphism groups of type II factors, Preprint.
- 10. V. F. R. Jones, Actions of finite abelian groups on the hyperfinite II, factor, Preprint.

- 11. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
- 12. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735.
- 13. W. L. Paschke, Inner product modules arising from compact automorphism groups of von Neumann algebras, Trans. Amer. Math. Soc. 224 (1976), 87-102.
- S. Sakai, C* and W* algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60), Springer-Verlag, Berlin - Heidelberg - New York, 1971.
- E. Størmer, On anti-automorphisms of von Neumann algebras, Pacific J. Math. 21 (1967), 349– 370.
- 16. C. Sutherland, Cohomology and extensions of operator algebras II, Preprint.

UNIVERSITÉ DE GENÈVE SECTION DE MATHÉMATIQUES 2-4 RUE DU LIÈVRE CASE POSTALE 124 1211 GENÈVE 24 LA SUISSE