MATH. SCAND. 46 (1980), 77-94

FINITE ALGORITHMIC PROCEDURES AND
COMPUTATION THEORIES

J. MOLDESTAD, V. STOLTENBERG-HANSEN and J. V. TUCKER*

This article analyses the relationships existing between some natural classes
of machine-theoretic computable functions on a relational system A4 and
between them and natural criteria for these classes to take on the large scale
structure of the recursive functions on the natural numbers, w. It is written in
association with our [11] with which the reader is henceforth assumed
acquainted.

The four kinds of functions on A4 considered are those functions definable by
a finite algorithmic procedure, a fap, by a fap with a stack, a fapS — these were
defined in the first section of [11]— by a fap with counting, a fapC, and by a fap
with both counting and stacking, a fapCS— these are defined in section two
here. The classes of functions over A including all numbers of arguments are
denoted FAP (A4), FAPS (A4), FAPC(A) and FAPCS (A) respectively.

The essential abstract global features of the recursive functions on w such as
the existence of codings and of universal computable functions, are invested in
the axiomatic concept of a computation theory, the subject of section one. The
principal question addressed here is What are the basic classes of machine
computable functions on a relational system A, with a finite number of
operations and relations, which take on the structure of a computation theory?
The obvious numerical coding of programmes distinguishes the class
FAPC (A4) so we prepare our algebras by adjoining arithmetic to them. In
section three, the investigation reveals the algebraic foundation of these forms
of computing and concludes with the answer that adding arithmetic is not
enough:

THEOREM. FAPCS (A) is the class of functions on A computable in the minimal
computation theory over A with code set w.

In section four the uniqueness of the operations of stacking and counting is
established by examples. And in section five we examine the situation where

* J. V. Tucker wishes to acknowledge the indispensible support of a fellowship from the
European Programme of The Royal Society, London.
Received November 21, 1978; in revised form October 10, 1979.

78 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

one wants to compute with the constant functions over the structures: here we
invent a new coding and encounter the necessity of adjoining pairing
functions to our algebras but analogous theorems are proved.

We gratefully acknowledge the hospitality of the Matematisk institutt,
Universitetet i Oslo, where these investigations were undertaken.

1. Computation theories.

Throughout we are concerned with a relational structure of the form A4
=(A; 0y,...,0,; Ry,...,R)) wherein the operations and relations are finitary;
the set of all n-ary partial functions on A is denoted P(A", A) with P(A)
=U,., P(A", A), exactly the notation of [11] in fact. 4* is the set of all finite
sequences of elements of A.

The central analytical idea in the paper is that of the computation theory which
axiomatises the experience of the theory of the partial recursive functions on w.

0 < P(A) is said to be a computation theory over A with code set C = A and its
elements said to be 0-computable functions iff associated to 6 is a surjection
a: C — 6, called a coding and abbreviated by a(e)={e} for e € C, and a length
of computation function |.|: C x A* — On, the ordinals, partially defined,
le; al] <> {e}(a)|, for which all the following properties hold.

I. Cis acceptable as a code set in that it contains (an isomorphic copy of) w
and 0 contains the (functions which correspond to) successor, predecessor
and zero on w.

II. 6 contains these generating functions:
(i) for each n and 1 Zi<n the projection function U}(a,,...,q,)=a; with
0-uniform codes p,(n,i);
(ii) each operation ¢ of A4;
(iii) for each relation R of A the definition-by-cases function defined

x if R(a)
y if 7 IR(a).

DCR(“? X,,V)

III. 6 is uniformly closed under

(i) the composition of functions: if fand g are n+ 1 and n-ary -computable
functions with codes f,§ respectively then their composition defined
C(f,8)(a)=f(g(a),a) is B-computable with H-uniform code p,(n, f,$).

(i) the permuting of arguments: let Ja=(aj a,,. . @j_1,8j41,. - -,G,) When
a=(ay,...,a,). If fis an n-ary 6-computable function with code f then, for
each 1<j<n, the function defined ’f(a)=f(‘a) is f-computable with 0-
uniform code p;(n, j, f).

(ili) the addition of arguments: if fis an n-ary 6-computable function with

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 79

code f then, for any m, the (n+ m)-ary function g defined g(a,b)=f(a) is 6-
computable with f-uniform code p,(n,m, f).
IV. 0 contains universal functions U, such that for e € C, a € A"
U,(e,a) = {e}(a)

with f-uniform codes ps(n).
V. 8 enjoys this iteration property: for each n, m there is a f-computable map,
Sy, with f-uniform code pg(n, m), such that for ee C, ae C", b e A™

{Sn(e,a)}(b) = {e}(a,b).

And finally it is required of the length function to respect the efficiency of the
functions mentioned in axioms III, IV and V.

V1. (i) Composition: l(p2(n, £, 8); a)|>max {|(f; g(a),a)l,|(g; a)|}.
(ii) Permutation: l(p3(n,j,); @)l >|(f; ‘a).
(iii) Addition: l(pa(n,m, [); a@)|>|(]; a)l.
(iv) Universality: [(ps(n); e,a)|>|(e; a)l.
(v) Iteration: |(Sh(e,a); b)l>](e; a,b)).

Notice that axiom I ensures a copy of the partial recursive functions on w is
contained within every computation theory.

There are a number of such axiomatisations, this definition is essentially that
in [5] and is in our opinion the most successful. Its evolution is rather
involved: it originates in the work of Y. N. Moschovakis [13, 14, 15] and was
first taken up by Fenstad in [4]. Its subsequent development as a method of
analysis and generalisation in Recursive Function Theory sets down roots in
the theory of recursion in higher types, as in Moldestad’s [10], and in degree
theory on the ordinals, as in Stoltenberg-Hansen’s [18]. For this paper
familiarity with Moschovakis’ [15] is invaluable but for a comprehensive
introduction the reader should consult Fenstad’s book [7] with which this
article is consistent and from which we take the following ideas and facts
without proofs.

A functional of the form ¢: P(A™, A)x - - - x P(A", A)x A" x A" — A is 6-
effective over A iff there exists a 6-code ¢ such that for any appropriate
€lse sy

o({e,},. ... {e},b,a) = {@}(ey,...,e,b,a)

and its action is consistent with length of computation: there always exist
gic{e}, 1<i<k, such that ¢(g,....8xb,a)=0({ey),...,{e},b,a) and
I(; ey,. . ., e b,a)|>max {z,,...,2,} where z;=sup {le;; b,x)| : g;(x)|}.

Such a functional ¢ arises as a functional P(A4", 4) —» P(A",A) with k
function parameters and m algebra parameters, ¢ (f, b)(a)=o(f, b, a), in section

80 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

three. In connection with Theorem 2.1 of [11] we shall assume this delicate
form of the

1.1. FIRST RECURSION THEOREM. If ¢ is O-effective and monotonic as ®(f,b),
and if the f are 0-computable, then the least fixed point @(f,b)* is 6-computable.
Moreover the fixed-point operator is a 0-effective functional.

Let 6 and & be computation theories over A with code set C. Then 6 is said
to be a subcomputation theory of @ iff 6 — @ and there exists a @-computable
map p: w x C — C such that for each e € C, a € A"{e}(a)={p(n,e)}(a) and, of
course, |(e; a)ly<|(p(n,e),a)ls.

0 is said to be a minimal computation theory over A with code set C iff
whenever @ is a computation theory over A with code set C then 0 is a
subcomputation theory of &.

2. Finite algorithmic procedures with arithmetic.

The notions of an A-register machine and an A-register machine with a stack
for a relational structure were explained in [11]. Here we consider machines
with the new capacity of performing recursive operations on the natural
numbers, the idea, along with that of the A-register machine, of H. Friedman
[8].

An A-register machine with counting (or A-register machine with counting and
stacking) sees a finite number of counting registers, designed to hold natural
numbers, added to an A-register machine (or A-register machine with stack)
with the capacity to implement the basic operations of w. Programmes for such
machines are written in the following language. Variables are ry,r,,... for
algebra registers and cy,c,,... for counting registers. s denotes the stack
register. Function and relation symbols are those in the signature of the
relational structure 4. In addition there are function symbols for successor
(+1), and predecessor (~1), and the constant zero function on the natural
numbers.

A finite algorithmic procedure with counting, or fapC, is an ordered, finite list
of instructions (I,,. . .,I,) each instruction being either a fap instruction or one
of these counting instructions:

¢,:=c,+1 meaning “add one to the contents of ¢, and place that value in

e

¢,:=c; =1 meaning “if ¢, contains 0 place 0 in c,; else subtract one from the
contents of ¢, and place that value in c,”.

¢,:=0 meaning “replace the contents of ¢, by 0”.

if ¢, =c, then i else j meaning “if registers c, and c, contain the same number

c

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 81

then the next instruction is I; otherwise if they contain distinct numbers it is
1.

Similarly, a finite algorithmic procedure with counting and stacking, or fapCS,
is defined to be a programme which interleaves fapS and these counting
instructions with the single new convention that no counting instruction may
appear in any stacking block.

Let fe P(A"x o™ A) or fe P(A"x o™ w). [is said to be fapC-computable
(fapCS-computable) if there is a fapC (fapCS) together with an associated
machine which using the following conventions computes f: Input registers are
Fise+ 3T C1s. . ., Cp and output register is rq if im ()= 4 and ¢, if im (f) S w.
Of course, all the recursive functions on w are fapC-computable.

It will be shown that fapC is too weak a notion to obtain a computation
theory over A, the problem being that a universal function may need arbitrarily
many algebra registers. One is thus naturally led to considering machines
allowing a potentially infinite number of algebra registers. The following
notions are due to Shepherdson [17] to whom reference must be made for their
formal definition.

A finite algorithmic procedure with index registers, or fapir, is the following
modification of a fapC. Algebra registers are to be indexed by counting
registers, thus r,, denotes the algebra register with subscript the content of c;.
Instructions involving counting registers remain unchanged, but instructions
involving algebra registers are modified as the following examples suggest. Let
o be a k-ary operation of 4 and R a k-ary relation of A.

ryi=o(r,,...,r,) meaning “replace the contents of r, by the result of
applying o to the contents of the registers indexed by the contents of counting
registers c;,...,c;”

if R(r,,...,r.) then i else j which takes its obvious meaning.

The class of fapir-computable functions on A is defined in the usual fashion
and denoted FAPIR (A). In section three it is deduced that FAPCS (4) is
FAPIR (A).

Note that a fapir (as a syntactical object) is finite. The countable algorithmic
procedure, or cap, is an extension of fap allowing possibly infinitely many
instructions, the list of instructions being enumerated by a recursive function.
CAP (A) denotes the set of all cap-computable functions on A.

Each instruction I can be naturally encoded by a natural number I" thus
inducing a numerical coding of programmes (Iy,...,I,) as numbers
1,7, LTI where (. .., is some recursive pairing function. Any coding”
of these programmes which allows a recursive decomposition into programme
parameters and codes for instructions, and from these calculation of the
numerical parameters characterising the instructions listed previously may be
called a standard coding of the programmes. When formalised such a coding

Math. Scand. 46 — 6

82 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

can be shown to be unique up to recursive equivalence in the Mal’cev—Ershov
theory of computable numberings, see Mal’cev [9] and Ershov [2, 3].

Finally some Algebra. The set T[X,. .., X,] of terms in the indeterminates
X,,..., X, over a signature is inductively defined solely by the clauses (i)
X4 .., X, are terms, (i) if t,,...,t, are terms, and ¢ is an k-ary operation
symbol then o(t,,...,¢t) is a term.

T[X,,...,X,] is assumed numerically coded uniformly in n by a standard
coordinatisation y%,:Q,cw — T[X,,...,X,] in the sense that y, is a
surjection — henceforth abbreviated v} (i)=[i] — Q, is recursive, and there are
recursive functions which tell if a code labels an indeterminate and, if it does,
which or, if it does not, indicates the leading operational symbol and calculates
codes for the subterms. Such a coding is unique up to recursive equivalence in
the theory of computable algebras due to Mal’cev [9].

Each term t(X,,...,X,) defines a function A" — A by substitution of
algebra elements for indeterminates. Define E,: Q,x A" — A by E,(i,a)

=[il(a).

3. The minimal computation theory.

Our main objective is to find given an algebra A4 a machine theoretic
characterisation of the minimal computation theory over A4 allowing recursive
(sub-)computations on the natural numbers. We adjoin w to A4, to obtain the
structure A4, in order to use it as a code set for a computation theory over A.

Let A=(4; 0y,...,0,R,,...,R,) be a relational structure. Then set

A, = (AU w;0y,...,0,R,.. R, +1,+1,0,=)
where +1, =1, 0 are the successor, predecessor and constant zero function on
w, respectively, = is equality on w and all are trivially defined on 4. That the

fapC and fapCS computable functions over A can be investigated over the
extended structure A, is guaranteed by the following:

3.1. THEOREM. Suppose f € P(A" x o™, A) or f € P(A" x @™, w). Then
(i) fe FAP(A,) iff f is fapC-computable.
(i) fe FAPS(A,) iff f is fapCS-computable.

The proof of Theorem 3.1 is long and tedious and is ommitted.
Recall from section 2 that E,: Q, x A" — A is the term evaluation function.

3.2. THeoreM. FAP (A4,) is a computation theory iff E, is fapC-computable,
uniformly in n.

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 83

ProoFr. Assume FAP (4,) is a computation theory. The evaluation of a given
term is FAP (A4,)-computable using projection functions, the basic operations,
composition and permutation of arguments. In fact it is easily seen that there is
a fapC-computable function f: w — C such that if i is a code for a term then
f(i) is a FAP (4,)-index for the function evaluating the term. Thus E,(i,a)
={f(@)}(a)=U,(f(i),a) which is uniformly fapC-computable by our assump-
tion on FAP (4,).

The easy verifications that FAP (A4,) in its coding, and using step counting
as length function, satisfies all conditions of being a computation theory are left
to the reader, except that of the existence of universal functions. The problem
with the universal function, in the absence of a computable pairing scheme, is
that a machine with a fixed number of registers may not be able to simulate a
machine with a very large number of registers. This problem is avoided by
letting the simulating machine manipulate codes for terms instead of actually
performing the simulated operations, the point being that codes for terms are
natural numbers for which pairing is available. Only when simulating a
conditional instruction, and immediately before a halt instruction, is there a
need to evaluate terms and it is for this we use the computability of E,.

We shall give (macro) instructions for a programme which together with an
associated machine computes U (e, a)={e}(a). r, will, according to our usual
conventions, serve as output register and ry,...,r,,, as input registers. The
contents of the input registers will remain unchanged throughout a
computation. As working registers we use ¢, t,vy,. . ., ,, here p is the maximum
arity of a relation of A4, and sufficiently many other registers to perform term
evaluation and all recursive operations on w. Suppose e is a (valid) index for a
programme. The e, denotes "I, where "I, is a code for the ith instruction of
programme e, if register t contains i,1 <i<number of instructions in
programme e. Suppose programme e refers to the first m+1 registers, m=n.
Then ¢ will contain an m+ 1-tuple of codes for terms {c,,c;,,. . .,c,,» simulating
the contents of the registers used by a machine associated to the programme
e,m is obtained recursively from e. c¢,: =c; stands for instructions replacing the
uth component of ¢ by the ith component of ¢, and c,,: = ra(cll,. o clk)ﬂ stands
for instructions calculating a code for the term o (t,,. . .,t;) and placing it in
the uth component of c if ¢; = rtlf for j=1,...,k. Finally r,:= TE(c,) denotes
a sequence of instructions which evaluates the term coded by c, using
3. ..,Fns1 @s input registers and places the result in r,.

Initially the programme determines whether or not e is a valid index.
If not, undefined is simulated. If e is a valid index, ¢ is set to 1, the number of
registers which are to be simulated is determined and ¢ is set to
o, rxlj,. e Xpy u,..., 'u'), where “u’ is a code for the undefined or
empty term. The remaining part of the programme consists of a main

84 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

programme MP and finitely many subroutines; the main programme is
entered once for each step simulated.

MP ife=r r, then goto OP(:=)

o

if ¢, = rru = 0o(ry,. . .,r,l,f then goto OP (o)
if e, = 'if R(r;,,. . .,r;) then i else j' then goto REL(R)
ro := TE(co)
H
OP(:=) c,:= ¢,
t =1t+1
goto M P
OP(o) ¢, := ra(c,h, ,clk)ﬂ
t:=1t+1
goto MP

REL(R) v, := TE(c;,)

v‘,‘ i= TE(c,;)
if R(vy,...,v) thent :=ielset :=j
goto MP.

It is an easy matter to prove by induction on the simulated step that the
programme above with an associated machine calculates U,(e, a)={e}(a).
Furthermore an index for the above programme is obtained uniformly from n
since by assumption an index for TE is obtained uniformly from n. And the
length condition on computations is satisfied.

3.3. THEOREM. E, is fapCS-computable, uniformly in n.

Proor. In view of 3.1, of course, we prove E,, is fapS-computable over 4,,; by
Theorem 2 of [11] this is equivalent to showing it is inductively definable over
A,. Now E, is informally recursively defined in our coding by

E,(i,a) = a; if i codes the indeterminate X ;;
G(En(ila a)a~ . "En(ib a)) lf [l] =0’([i1],, LEEY [lk]),
=u if i does not code a term,

or codes the empty term.

Thus E, is defined by the induction term

FP[)'IJ’z’yl,' . 'aYn't(p’z,ylr . -,Yn)](xmxl" . .,x,,)

with the evaluation x,=i and x;=a;, 1<j<n, and t is the algebra term
informally described by

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 85

t(p7zayl5-"5yn) = yj 1f lnd (Z,j);
- g(p(zl’yl" . °’yn)" . 'sp(zk’yl" . "yn)) lf op (Z,O');
=u if empcode (z);
=u if 9 TCode (2);

where the relations ind, op, empcode, TCode are terms taking their obvious
meaning and where z; is the term for the appropriate recursive function which
calculates i; from i, for 1<j<k; a rather complicated definition-by-cases
construction over 4 and w. The uniformity required is that of a recursive
function p: w — C which computes the fapCS-code p(n) for E,: this follows
from the constructiveness of proposition 3.1 of [11] expressed in terms of godel
numbering of the induction terms, a point more carefully discussed in Theorem
3.5 later.

3.4. THeoreM. FAPS (A4,) is a computation theory.

Proor. Theorem 3.3 expresses the key property that term evaluation is
uniformly fapCS-computable. It therefore suffices to append the proof of
Theorem 3.2 by adding blocks to simulate store and restore instructions and
the halting block. For this we add a working register w initialised to {) which
is to simulate the stack by “stacking” codes for terms. In the main programme
we delete the last two imstructions and add the following conditional clauses.

-

ife, = s := (i;ry...,7r,) then goto STORE
if e, = "restore (ro,. . NN TN TR .,r,) then goto RESTORE
if e, = "if s= then H else *" then goto HALT.

In the customary notation for pairing and unpairing on w we add the
following subroutines.

STORE w = (e, w)
t =1t+1
goto M P
RESTORE v, := (w),
w = (w),
v, 1= ¢
¢ = (v
cj 1=,
goto M P
HALT if w = () then H1 else H2
H1. ro := TE(cy)
H
H2. t := *in block i where (w), = {i,c)

goto MP.

86 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

Notice that, by adding an independent counter to MP, the step counting
function Step (e, a)=|e; a| becomes fapCS-computable over A.

3.5. THeoreM. FAPS (A4,) is the minimal computation theory over A,

Proor. By Theorem 2 in [11], FAPS (4,)=IND (4,). Moreover there is a
recursive function g such that if e is a code for a fapS then g(e) is a godel
number for the term which is equivalent to the fapS. If ¢ is an algebra term with
free function variables among p,,. . ., p,, free algebra variables among x,,. . .,x,
then let ¢, be the following functional: ¢,(f},. . ., f» ay,- - ., a;) =the value of ¢
when f,,. .., f,,a,,. . ., a, are substituted for p,,...,p, X;,. . ., x;. By [11, section
2] ¢, is monotonic. Let 6 be a computation theory over 4,,. We will define a -
computable function h such that if e is a godel number for a term ¢ then h(e) is
a f-index for ¢,. This will prove the theorem, for the length condition follows
from the fact that the length function in FAPS (A4,) is there computable.

Let ¢t be a term. Then t is of the form u, x, ¢, a(ty,...,t),
DCR(tys. . s by tig1s tiw2)s P(ty,. o5 t) OF FPLAp, xy,. .., X to](Ey,- - ., 1.

(i) t=a(ty,...,t;). Let ¢; be the functionals associated to ¢, i=1,...,k.
O (1 s S @1re o 5a)=ZG(@1(f1s- - s frasre v 5@y s @15+ o5 S Q1se - -, @),
By several applications of composition and the iteration property a 6-index for
¢, can be found uniformly from 6-indices for ¢,....,@;.

(i) t=FP[Ap,Xy,. .., X to](ty,. . ., t,). It suffices to find a 6-index for the
functional ¥ defined by FP[Ap,x,,...,X,.to] as a 6-index for ¢, can then be
constructed as in (i). Let ¢ be the functional defined by t,, ¢ is effective by the
induction hypothesis. It follows from the First Recursion Theorem that ¥ is
effective.

3.6. THEOREM. FAPS (4,)=FAPIR (4,)=CAP (4,).

Proor. First we sketch a proof of FAPS (4,) < CAP (4,,). Given a fapS P we
need construct a cap P’ simulating P. The only problematical point is to
simulate store and restore instructions and halting blocks. To the usual
similation and instructions for the w-recursive operations needed append
infinitely many store and restore blocks, each block using storing registers not
used elsewhere in the programme. Index the store and restore blocks by (a
register) q. The store part of a block will simply consist of instructions storing
the marker i and registers ry,. . .,r, into distinct registers used only by that
block and the restore part will restore the registers into r,,. .,r,, except for r;,
the j being indicated to the block in some way. q will contain a number
indicating the depth of the simulated stack and is used to find the correct store
and restore block. The simulation of a halting block will, of course, use g to
determine what action to take.

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 87

The proof of CAP(A4,)< FAPIR (4,,) is given in Shepherdson [16]. Thus it
remains to prove FAPIR (4,) € FAPS (4,). The ideas of the proof are based
upon those of 3.2: when simulating a fapir, codes for terms are manipulated
and term evaluation is invoked when necessary. Suppose P is a fapir
programme using counting registers c,,. . .,c, and suppose P is to calculate an
n-ary function. We construct a fapCS programme P’ simulating P. P’ will use
algebra registers ro,. . .,r,,v,,...,v, and counting registers c,,. . .,c, and d. In
addition P’ will use sufficiently (but finitely) many other registers to be able to
perform the required operations. d will play the same role as ¢ in Theorem 3.2
and will be initialised with ("u', x, ..., x, >. TE denotes instructions for
term evaluation just as in 3.2.

Each instruction in P is simulated by a block of instructions in P'. Below we
give samples of how instructions in P (on the left) are translated to blocks of
instructions in P’ (on the right). Given Theorem 3.2 the notation for
“instructions” in P’ should be self-explanatory noting that the tuple in d will be
extended whenever necessary by inserting “u’ in the new components.

¢, :=c;+1 c, = c;+1
Te, 1= O(Fepse - sTey, d, = "old,....d,)
if R(r,,...,r,) then i else j v, := TE(W,,)
vy := TE(d,,)
if R(v,,...,v,) then (block) i else
(block) j
H ro := TE(d,)
H.

An easy induction argument shows that P’ and P compute the same n-ary
function.

The proof of Theorem 3.6 actually shows that for an arbitrary relational
structure A, FAPCS (4)=FAPIR (4)=CAP (4).

3.7. CoroLLArY. If E, is fapC-computable for each n then FAPC(4)
=FAPIR (A).

PrOOF. Note that the constructed fapCS P’ simulating the fapir P in the
proof of 3.6 contains stacking instructions only in the routines evaluating
terms. If term evaluation can in fact be performed using fapC instructions then
P is a fapC programme.

88 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

4. Examples.

Obviously, the four types of functions discussed in these papers are related
thus

FAPC (4)
FAP (4)

/
FAPCS (4)
TNFAPS (A)/

The question arises, Are these inclusions strict?

In his original article [8, p. 376) Friedman showed that FAP(A4) and
FAPC(A) were distinct; the relational structure he constructed is now
superseded by the general analysis of [19] where examples of groups and fields
A are given for which FAP(4)EFAPC(4). However, we begin by using
Friedman’s structures A to separate FAPS (4) and FAPC (A), in this we are
indebted to our colleague, D. Normann, for his observations reported in [6].

Ar has domain w, the relation of equality on w, and a single unary operation
o defined as follows. First we define a partition C of w by C, ={0}, C,={1,2},
C3;={3,4,5} and, in general, C, consists of the first n numbers not in
C,U...UC,_,. The action of ¢ is to permute these disjoint cycles so ¢|C,
={a,,...,a,} maps a; = a;,,, if i<n, and a, — a,; here are formulae for C
and for o.

The first number in the nth cycle is in(n—1) and the last is $(n—1)(n+2),
and the number a lies in cycle numbered |a|=max {z : $z(z—1)<a}. So

o(a) = a+1 if ax3(n—1)(n+2),
= }lal(lal—1) otherwise .

Clearly, o is a recursive function on w. Ar= (w,0).
4.1. THEOREM. FAPS (Af) § FAPC (Af)=FAPCS (4p).

Proor. It is straight forward to verify that term evaluation is fapC-
computable and so it is enough for us to define a function g: A — Af which is
fapC-computable but not fapS-computable.

4.2. LEMMA. The domain of a fapS-computable function on Af is a recursive
subset of w.

First, observe that a fapC-computable function on Ay is recursive as a
function on w because o is recursive on w. Secondly, we take a theorem from
[19], if A is a locally finite algebraic system, then the halting problem for fapS’s is

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 89

fapCS-decidable. Thus FAPS (Af) has fapC-decidable halting problem and, in
particular, the relation

H(e,a) < {e}(a)|

is recursive on w, hence 4.2.
So let R=w which is r.e. but not recursive and define g: Ap — Ay by

a iflaeR
=1 ifla ¢R

g(a)

the domain of which is r.e. and not recursive: by 4.2. g cannot be fapS-
computable on A, but it is fapC-computable since |.|: Ar — w is fapC-
computable over Af (as ¢'“(a)=a!).

From the point of view of computing it is necessary to establish the
incomparability of the storing facility of the stack and that of counting which,
in fact, no ordinary algebraic structure will exemplify; we have these examples.

4.3. THEOREM. There is a relational system A where

FAPC(A) = FAP (4) § FAPS(A) = FAPCS(A) .

ProOF. Let @, and w, be copies of the natural numbers and set N=w, Uw,,
the system has the form A= (N; S, P, 0, 0,,6,,03, =,R) where 0 € w, and

S =a+1 ifaew, Pla=a-1 ifaecw,,
=0 if a € w,, =0 if a € w,

where ¢,,0, are unary operations, o5 is binary and R is a unary relation. We
shall show how to define these operations so that the function with term

f(x) = FP[ip,y.DCg(y,,05(po, (), pa,(»)1(x) = t(x)

is not fap-computable over 4 —it is fapS-computable by [11, 3.1] of course;
these operations will be trivial on w,, and defined in an irregular way on w, by
means of 4.1. This establishes 4.3 as FAPC(4)=FAP (A) is the observation
that counting is possible in FAP (A4) by using fap instructions on (w,; S, P,0).

Give w, the partition C;,C,,... of 4.1. For each k € w choose n=n(k)
sufficiently large (>2**!+2*) and fix the kth element g, of C,. Define a, ¢ R,
thus to calculate t(a,) one has to calculate po,(a,) and pa,(a,) whence t(a,)
=a,(po, (a,), po,(ay). We now define g, (a,) and o,(a,) to be distinct elements
of C,—{a,} and, whatever the choice, define them to be in —IR. Thus to
continue to calculate t(a,), in computing po,(a,), po,(a,) one must first

90 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

compute po?(a,), ps,0,(a;) and pai(a,), po,0,(a,). This regression is continued
into this tree of polynomials g, of degree <k, for which one must calculate
pq(a,) in computing t(a,); call it the kth tree:

[] []
[] []
k. [)
o.l—l a.k—l
[] [[]
ot o0k7! o068 ok

6,,0, are defined so that for each k, q,(a,)=*q,(ay) for q,,q, different
polynomials in the tree (for this n(k)=2**!) and ¢,(a)=0,(a)=0 when
a#+q(ay) for q in the kth tree. R is defined by taking for each k, RN C,,
to consist of the values of the polynomials in the kth row on g, and no other
elements; with this R, tq(a,)=q(a,) when g is in the kth row. We have
only to define ;. For each ¢ not in the lowermost row assume tg,q(a,),
to,q(a,) to be defined and take o5(to,q(ay),to,q9(a)))=tq(a,) to be a new
element in C,g,, not any value of operations so far defined (this requires the
further 2* elements); elsewhere o, takes the value 0.

Assume f is fap-computable by programme P involving m registers, we
obtain a contradiction in showing that f(a,,) requires at least m+ 1 registers to
fap-compute. Let a;; be the value of the jth polynomial in the ith row of the mth
three. Consider the stage where a,, =f(a,,) first appears in the registers of the
machine M™ implementing P: by construction it arises from an instruction of
the form r.;:=0;(r,r) with a,, €r; and a,, e r;— P involves at least two
registers. Now consider the stage where the last of a,,,q,, first enters the
machine, say it is a,,: prior to this the distinct elements a,, and a,,,q,, lie in
the machine for a,,=03(a,,,a,,)—P involves at least three registers.
Considering the stage of which the latest of a,,,a,,,q,, first appears one can
continue this regression until at least m+ 1 elements have been found necessary
to have stored as may be easily verified.

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 91

4.4. CorOLLARY. Term evaluation E, is not fapC-computable over A.
Now combining 4.1 and 4.3 we can prove

4.5. THEOREM. There is a structure A where the following inclusions are strict

FAPC (A)

/ ™~
FAP ()
\FAPS(A)/

FAPCS (4)

Proor. Clearly it is sufficient to construct an A where FAPC (4)¢ FAPS (4)
and FAPS (4)&FAPC (A). Let w; and w, be copies of the natural numbers
and set N=w, Uw,: such a structure is 4= (N; 0, 00,04, 04,03, =, R) wherein
g, is the cycle translation function ¢ of 4.1 defined on w,, and trivially extended
to w, and 0, g,, 7,, 05 and =, R are the operations and relations defined on N
in 4.3. Since 0,,0,,0; can be chosen recursive and A is locally finite the
argument of 4.1 produces a function which is fapC-computable but not fapS-
computable. And the argument of 4.3 applies directly to A4 to yield a function
which is fapS-computable but not fapC-computable.

Actually, the customary situation in Algebra is

FAP (4) = FAPS (4) = FAPC (4) = FAPCS (4)

because term evaluation is fapC-computable for semigroups, groups,
associative rings, Lie rings, lattices and so forth. This fact can be expressed as a
general theorem about varieties of algebraic systems, see Tucker’s [19].

5. Computing with constants.

To compute with the constant functions on the relational structure 4 is to
use programmes which allow them as basic combinational operations. In this
final section we reconsider the preoccupations of our two papers with the new
requirement that the constant functions be computable; as we are interested in
the ideas and results for comparison the details of our proofs are not included.

f€ P(A", A) is fapg-computable if there is a fap-computable g € P(4"*", A)
and b € A™ such that for each a € A", f(a)=g(a,b). The class of all fapy-
computable functions on A4 is denoted FAPy (A4). Clearly FAPy (A4) contains
every constant function on A. Corresponding to fapC, fapS and fapCS there
are the classes FAPCg (4), FAPSk(A4) and FAPSg (A): The relationships

92 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

between the computing power of the considered classes determined in section
four extend to our present setting.

The classes INDy (4) and DINDy (A4) are defined in an analogous manner
from IND (4) and DIND (A), i.e. using parameters. The main results from [11]
lift directly as

5.1. THEOREM.
i) FAPg (A)=DINDg (A)
(ii) FAPSk (4)=INDg (A).

In section three we gave a machine-theoretic characterisation of the minimal
computation theory over A or, strictly speaking, 4,. In order to obtain a
similar characterisation of the minimal computation theory containing all
constant functions it seems necessary to assume a computable pairing scheme.

(M, K, L)is a pairing scheme on A if M is an injection A x A — A and K and
L are the inverse functions of M, i.e. K(M(a,b))=a and L(M (a,b))=0», for all
a,b € A. (Observe that pairing schemes exist only on infinite structures.)

A, is obtained from A by adjoining a pairing scheme (M,K,L) to 4. A
moderate aim is to find a machine-theoretic characterisation of the minimal
computation theory over A, containing all constant functions. We now
assume equality on A4 is among the basic relations of A.

Assume there are at least two constants in FAP (4,) say 0 and 1. Define
inductively 0= M (1,0) and n+ 1= M (0, n). It is easily seen that the elements of
w={0,1,2,...} are distinct and, furthermore, the sucessor and predecessor
operations on @ can be expressed respectively as n+1=M(0,n) and n=1
=DC_(n,0,0,L(n): it follows that all the recursive functions on w are in
FAP (A,). Also it is easily verified that the storing operations invested in a
stack can be performed by a fap over 4,. This proves

5.2. THEOREM.
(i) FAP(A,)=FAPC(A4,)=FAPS(4,)=FAPCS(4,).
(i) FAPg (A4,)=FAPCy (4,)=FAPSk (4,)=FAPCSy (4,).

Thus if there is a fap-computable pairing scheme on A4 then all classes
coincide.

The transformation from A to A,, necessary for Theorem 5.3, is not very
satisfactory for not only does the transformation obliviate the distinction
between the various types of functions, but the computing power is directly
dependent on the particular choice of pairing scheme.

FINITE ALGORITHMIC PROCEDURES AND COMPUTATION THEORIES 93

5.3. THeoREM. FAPy (A,) is the minimal computation theory over A,
containing all constant functions.

Proor. Code all fap instructions by elements of w< 4, (using computable
pairing {,. . .,», on w) as in section two. Suppose for each a € A", f(a)=g(a, b),
where g € FAP (4 ,) is computable by a fap (Iy,...,I,). Then we code f by
<ﬂ’<r111" . "rlkﬂ>w,b>'

It is easily seen that term evaluation is fap-computable over 4, where an
index for a term carries along the parameter b using pairing. Now we can
imitate the proof of 3.2 to show that FAPg (A4,) is a computation theory. The
proof of minimality is similar to that of 3.5.

The application of a pairing hypothesis, as above, has many precedents, but
remains suspect. For example, it is not difficult to find a structure A where
FAPCSk (4) & FAPg(4,)

all pairings*
and where, indeed, any pairing implies computable search for A.

It seems to us that the natural class of functions making up a “computation
theory” over A containing all constant functions is FAPIR* (4): not in the
strict sense of section one for the code set for the “computation theory” would
be w x A* where A* is the set of all finite sequences of 4. However, this will
not be pursued further here.

Readers of [11] and this paper may care to know that several other
disparate methods of defining computability in the setting of an indefinite
algebraic system have beeen identified in terms of the fap formalism. These
include, most notably, equational definability; the set recursion of D. Normann
[16]; the program schemata of Theoretical Computer Science, see Constable
and Gries [1]. For a systematic treatment of this classification and a discussion
of the resulting Church-Turing Thesis, which distinguishes the fapCS-
computable functions as the definitive characterisation of those functions on an
algebraic structure calculable by finite, deterministic algorithms, see [12].

REFERENCES

1. R. C. Constable and D. Gries, On classes of ptrogram schemata, SIAM J. Comput. 1 (1972), 66—
118.

2. Y. L. Ershov, Theorie der Numerierungen 1, Z. Math. Logik Grundlagen Math. 19 (1973), 289
388.

3. Y. L. Ershov, Theorie der Numerierungen 11, Z. Math. Logik Grundlagen Math. 21 (1975), 473-
584.

94 J. MOLDESTAD, V. STOLTENBERG-HANSEN AND J. V. TUCKER

4. J. E. Fenstad, On axiomatising recursion theory, pp. 385-404 of J. E. Fenstad and P. G. Hinman

(eds.) Generalized recursion theory, North-Holland, Amsterdam, 1974.

5. J. E. Fenstad, Computation theories: an axiomatic approach to recursion on general structures,

pp. 143-168 of G. Miiller, A. Oberschelp and K. Potthoff (eds.) Logic conference, Kiel 1974,
Springer-Verlag, Berlin - Heidelberg - New York, 1975.

. J. E. Fenstad, On the foundation of general recursion theory: computations versus inductive
definability, pp. 99-111 of J. E. Fenstad, R. O. Gandy and G. E. Sacks (eds.), Generalized
recursion theory 11, North-Holland, Amsterdam, 1978.

7. J. E. Fenstad, General recursion theory. An axiomatic approach, Springer-Verlag, Berlin -

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

Heidelberg - New York, 1980.

. H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elementary recursion
theory, pp. 316-389 of R. O. Gandy and C. M. E. Yates (eds.), Logic colloquium *69, North-
Holland, Amsterdam, 1971.

. A. 1. Mal’cev, Constructive algebras 1, pp. 148-212 of A. 1. Mal’cev The meta-mathematics of

algebraic systems. Collected papers: 1936-1967, North-Holland, Amsterdam, 1971.

J. Moldestad, Computations in higher types, Springer-Verlag, Berlin - Heidelberg - New York,
1977.

J. Moldestad, V. Stoltenberg-Hansen and J. V. Tucker, Finite algorithmic procedures and
inductive definability, Math. Scand. 46 (1980), 62-76.

J. Moldestad and J. V. Tucker, On the classification of computable functions in an abstract
setting, Mathematical Centre Report, Amsterdam, 1979.

Y. N. Moschovakis, Abstract first-order computability 1, Trans. Amer. Math. Soc. 138 (1969),
427-464.

Y. N. Moschovakis, Abstract first-order computability 11, Trans. Amer. Math. Soc. 138 (1969),
465-504.

Y. N. Moschovakis, Axioms for computation theories — first draft, pp. 119-225 of R. O. Gandy
and C. M. E. Yates (eds.), Logic colloquium *69, North-Holland, Amsterdam, 1971.

D. Normann, Set recursion, pp. 303-320 of J. E. Fenstad, R. O. Gandy and G. E. Sacks (eds.),
Generalised recursion theory 11, North-Holland, Amsterdam, 1978.

J. C. Shepherdson, Computation over abstract structures: serial and parallel procedures and
Friedman’s effective definitional schemes, pp. 445-513 of H. E. Rose and J. C. Shepherdson
(eds.), Logic colloquium *73, North-Holland, Amsterdam, 1975.

V. Stoltenberg-Hansen, Finite injury arguments in infinite computation theories, Ann. Math.
Logic 16 (1979), 57-80.

. J. V. Tucker, Computing in algebraic systems, Matematisk institutt, Universitetet i Oslo,

Preprint Series, No. 12 (ISBN 82-553-0358-8), Oslo, 1978.

UNIVERSITETET I OSLO, MATEMATISK INSTITUTT
BLINDERN, OSLO 3
NORWAY

UPPSALA UNIVERSITET, MATEMATISKA INSTITUTIONEN
THUNBERGSVAGEN 3, $-752 338 UPPSALA
SWEDEN

MATHEMATISCH CENTRUM
2¢ BOERHAAVESTRAAT 49, 1091 AL AMSTERDAM
THE NETHERLANDS

