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FINITE ALGORITHMIC PROCEDURES AND
INDUCTIVE DEFINABILITY

J. MOLDESTAD, V. STOLTENBERG-HANSEN and J. V. TUCKER*

The purpose of this article, along with its sequel [13], is to analyse various
notions of computable functions over a relational structure A based upon
machine-theoretic ideas. It is expected that the results obtained will be
pertinent to considerations of strategies for perfecting a general re-
cursion/computability theory in such an abstract setting, and that the rdles of
arithmetic and pairing (though not that of search operators) together with the
precise relationship between computing commitments will be clarified;
references in mind are Feferman [2] and Fenstad [5, 6].

But it is not to these concerns of theoria that these articles are committed
exclusively, rather the aim is to create a theory of computing in algebraic
systems which appeals to an algebraist’s turn of mind and which can be used in
algebraic investigations, where questions of definability, constructiveness and
complexity are involved; see Tucker’s introductory paper [19].

Associated with a structure A is the family of A-register machines which can
perform the basic operations, decide the basic relations of 4, and perform some
simple combinatorial operations. Each such machine defines a partial function
on A in the usual fashion; the class of all such functions is denoted FAP (A4).
Extensions of this class are obtained by refining the capabilities of the
computing device: allowing certain enlargements of the machine’s storage
facilities, or by allowing subcomputations on the natural numbers w, or by
arranging both. The classes of functions thus obtained are denoted respectively
by FAPS (4), FAPC (4) and FAPCS (A).

H. Friedman was the first to consider FAP (4) and FAPC (4) in his
fundamental paper [7] whereas FAPS (4) and FAPCS (4) are our own
inventions though they have been identified and studied in variant forms by
Constable and Gries [1] in the former case and Shepherdson [18] in the latter.

In this paper the classes FAP (4) and FAPS (A) are characterised in terms of
the inductively definable, or inductive, functions over A, in the sense of Platek’s
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[17]. In section one, the machine-theoretic notions are properly defined whilst
the inductive functions on A, IND (A), and the directly inductive functions on A4,
DIND (A), are discussed in section two. In sections three and four we prove

THeEOREM 1. DIND (A)=FAP (A).
THEOREM 2. IND (4)=FAPS (A).

In the companion paper [13] we examine machine computable functions
from the point of view of the axiomatic analysis of recursion theory, that of
Moschovakis [14, 15, 16] and, in particular, Fenstad [3, 4, 6]. There the central
classes prove to be FAPC (A) and FAPCS (A) for these, it is shown,
characterize minimal computing strengths on A necessary to generate
workable computation theories (in the large).

We gratefully acknowledge the hospitality of the Matematisk institutt,
Universitetet i Oslo, where these investigations were undertaken.

1. Finite algorithmic procedures.

First, the few ideas from the theory of universal algebras used in this paper
and in its companion are to be found in, for example, Mal’cev’s book [10]. The
relational structures considered are of the form A=(4; gy,...,0,Ry,...,R))
where the operations and relations are finitary and need not be total.

If X, Y are non-empty sets, then by P(X, Y) we denote the set of all partial
functions X — Y; the domain of definition of f e P(X, Y) is written dom ().

An essential reference on faps is Friedman’s article [7]. Let us take as
understood the concept of an A-register machine with n registers M.
Programmes for such machines are written in the following language.

Constant is H for halt. Variables are ro,r,r,,... for algebra registers.
Function symbols and relation symbols are those used in the signature of the
relational structure A.

A finite algorithmic procedure P is an ordered finite list of instructions
(Iy,. . .,I;) where instructions are of two kinds.

The operational instructions which manipulate elements of A are

r,.;=0o(r,,...,r;) meaning “apply the n-ary operation ¢ to the contents of
registers r; ,. . .,r; and replace the content of register r, by this value”.

r,.=r; meaning “replace the content of register r, with that of r,. If r, is
empty, then r, is made empty”.

H meaning “stop”.

The conditional instructions which determine the order of implementing
instructions are
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if R(r;,,...,r;) then i else j meaning “if the n-ary relation R is true of the
contents of r; ,...,r;, then the next instruction is I;, otherwise it is I;”.

goto | meaning “the next instruction is I,”.

By convention, a fap P always involves an initial segment of the register
variables r, r,,. . .,r, Where the first few registers'r,,. . .,r, are reserved as input
registers and r, as output register. Thus, a given fap P with m+1 registers
together with an appropriate machine M"*! defines a partial function A" — 4
for n<m in the obvious way: load the argument a € A" into the input registers
ri,. . .,T, the remaining registers being empty, and start at its first instruction.
The instructions of P are executed in the order in which they are given, except
where a conditional instruction directs otherwise. If the machine halts and the
output register r, is not empty, then the value of the function P(qa) is defined to
be the element in r,, else no value of the function on a is defined.

A convention we adopt is that instructions involving operations or relations
which are undefined force the computation to “hang” in that no further
instructions are processed and the computation is undefined.

f e P(A", A) is fap-computable iff there exists a fap P and a machine M such
that for each a € A", f(a)x=P(a).

Append to the syntax for faps the variable s for stack register, the new
constants 1,2,... for stack markers and & for the empty stack. The new
operational instructions are

s:=(i,ry...,r, meaning “place a copy of the contents of the registers
o,- . .»'m @8 an (m+ 1)-tuple at the top of the stack register together with the
marker .

restore (ro,7y,...,7;_1;Tj+15- - -»T) Meaning “remove the last, or topmost,
entry placed in the ‘stack and replace the contents of the registers
Tore - sTj=1sTj415+ - -» Ty DY the corresponding compontents of the (m+1)-
tuple”.

if s=( then i else j is a new conditional instruction and it takes its natural
meaning.

In writing fapS’s it is convenient to regulate how these new instructions
appear in the basic faps through devising stacking blocks of instructions. A
stacking block is a sequence of consequent instructions of the following form

s 1= (i5 70y« s Tm)
Il
I,
goto k
=1
restore (ro,7y,...,7j— 13754150« +s7m)

—|
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The marker i is unique to the block in any programme in which that block
appears. The 1,,...,I, are ordinary fap operational instructions referred to as
(re-)loading instructions. The instruction I, has a special role in the operation of
the block, it is called the return instruction of the block and it must be either an
ordinary fap instruction outside all the blocks in the programme or it is the
first instruction of any block in the programme. The instruction (informally)
prefixed by an asterisk is called the exit instruction.
The halt instruction also takes on the form of a block

I, if s = ¢ theni+1 else i+2

Ii,, H

I,,, goto (exit instruction of the block whose marker is
topmost in the stack).

This halting block we abbreviate: if s= S then H else *.

The new instructions involving the stack may only occur in a stacking block or
a halting block.

Another convention we operate is that from an ordinary fap conditional
instruction one may not enter a block except by way of its first instruction.

So a finite algorithmic procedure with stacking is defined to be a programme
of instructions satisfying the conditions and conventions described. A given
fapS P, together with a machine M, defines a partial function over 4 in the
obvious way and f e P(A", A) is said to be fapS-computable iff there exists an
appropriate fapS P and machine M to compute it.

In working with programmes we shall often corrupt the formal language and
instruction forms with informal descriptions where this simplifies our
exposition.

2. Inductive definability.

Among a number of versions of inductive definability we choose that in
Platek’s thesis [17] where Kleene’s [8, 9] recursion on higher types over w was
generalised to the hereditarily consistent functionals over an arbitrary set with
some primitive structure; the only published account of Platek’s work appears
in Moldestad’s [12].

The inductively definable functions on A are created from the system’s
operations and relations— presented in the form of definition-by-cases
functions—by means of composition and taking fixed-points of certain
specially constructed monotone functionals. Given Kleene’s revision of
recursion, this class IND (A) is a natural candidate for that of the recursive
functions on 4. We propose to give an entirely syntactic definition of IND (A4)
but will first consider it in a rather algebraic way.

Math. Scand. 46 — 5
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In working with partial functions on 4 it is convenient to replace A by 4,
being 4 with the symbol u for undefined adjoined; operations and relations of
A take their obvious definitions on A,: the value of a function on an argument
involving u being u. We omit the subscript whenever there is no opportunity for
confusion.

Consider simultaneously partial functions of all arguments over 4, P(A)
=U,., P(4", A), in which we specify a basic family of functions and on which
we shall ultimately define two generating processes. The initial functions are
these

i. For each n, the projection functions Uf(a,,...,a,)=a;, 1<i<n, from
P(A", A).

ii. If o is an n-ary operation of A then ¢ from P(A", A).

ii. If R is an n-ary relation of A then

x if R(ay,...,a,)

DCg(ay,. .. a,x,y)

y if1R(ay,...,a,)
from P(A"*2, A).

iv. u, the nowhere defined function from P(A", A).

The operations on P(A) are general compositions
C™": P(A™ A)x P(A™ Ay" — P(A", A)
defined
C™"(f.81:- - 8m) (@) = f(81(a),. .., gm(a))

and more complicated operations involving fixed-points which we now begin
to describe.

Let X, Y be non-empty sets. If f,g € P(X, Y) then fis a subfunction of g, f< g,
iff dom (f)=dom (g) and for each x € dom (f), f(x)=g(x). A map y: P(X,Y)
— P(X,Y)is monotonic iff for each f,g € P(X, Y), if f<g then Y (f) <y (g). And
¥ is continuous iff for each fe P(X,Y) and any y,,...,y, € X there exist
Xy, .., X, € X such thatif g(x;)=f(x;), 1 Si<m, theu y(g)y) =¥ (f)(y) for 1 Zi
<n. The set of all continuous and monotonic maps P(X,Y) — P(X,Y) we
denote CM(P(X,Y), P(X,Y)); it is closed under composition.

2.1.  LEAST FIXED-POINT THEOREM. A  continuous monotonic  function
Y: P(X,Y)— P(X,Y) has a unique least fixed-point y* and, moreover, y*
=lub, ., ¥"(u).
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Proor. Define the countable sequence fO=u, f"*!' =y (f"). It is easy to see
that for each n, f"<f"*!. By induction on n: it is true for n=0 as u is a
subfunction of any function. If f"<f"*! then Y (fmZY(f"+!) as ¢ is
monotonic, but this is the relation f"*'<f"*2 So set f=U,., f", the least
upper bound of the y"(u).

We claim that y(f)=f and that if y(g)=g, then f<g. fSyY(f) follows from
monotonicity: for any n, f""!<f thus Y(f" " H<y¢(f) and "<y (f). So f
SY(f). Y (f)=frequires continuity: let x € dom (f), by continuity of y there
exist x,,...,x,, € X such that g(x)=f(x;), 1=<i<m, entails y(g)(x)=v(f)(x).
Choose g=f1{x,,...,x,}. Now g<f" for some n and y(g)Sy(fM=f"*1</.
Finally, to show that if /(g)=g, then for each n, f"<g we use induction. The
statement is obviously true for n=0. If f"<g then ¥ (f")<y(g) which is f"*!
sg

Thus for each n there is a fixed-point operator
FP": CM(P(A", A),P(A", A)) > P(A", A)

defined FP"(Yy)=y* inductively and constructively in this proof. For the
existence and inductive character of a least fixed-point the hypothesis of
continuity is immaterial, it is included because constructivity is required; a
useful reference for fixed-points is Manna and Shamir’s [11]. In these fixed-
point operators is the essence of recursion and to complete the definition of
IND (A) we have only to explain the construction of appropriate continuous,
monotonic functionals from given partial functions.

For the syntactic definition naturally we work with respect to the signature
of A. The terms required are defined inductively and solely by the following
clauses:

(i) the algebra element indeterminates X ={x,, X,,. ..} are terms of type 0;
(i) u is a term of type O;

(ii)) for each n and 1 i< n, the n-ary functional symbol U} is a term of type
l.n;

(iv) for each n-ary operation ¢ the function symbol ¢ is a term of type 1.n;

(v) for each n-ary relation R the function symbol DCp is a term of type 1.n
+2;

(vi) for each n, the n-ary partial function indeterminates P"={p}, p3,...} are
terms of type 1.n;

(vii) if t is a term of type O then FP[Ap},y;,...,V,-t] is a term of type 1.n;
here y,,. . ., y, are algebra indeterminates which along with p} are closed
in the whole term;

(viii) if T is a term of type 1.n and ¢,,...,t, are terms of type O then
T(t,,...,t,) is a term of type 0.
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Let T, be the set of terms of type 0 and T, the set of terms of type 1 so called
algebra terms and function terms respectively.

It is intuitively clear how this syntax is used to define the A-recursive
functions: a partial function f: A" — A will be inductively definable iff there is
an algebra term t(y,,. . .,y,) with y,...,y, its only free variables such that for
all ay,...,a,€ A, f(ay,...,a,)=t(a,,...,a,), the “value” of the term t at
a,. . .,a, The valuation functions which formally define the semantics of these
terms are constructed in the usual way by induction on the complexity of the
terms. A technical point worthy of note is that the semantics of an FP term
requires the semantics of its principal subterm to be a continuous monotonical
functional so that Theorem 2.1 is applicable.

We also make the convention that the valuation of an algebraic term is
undefined if the valuation of any of its subterms is undefined except for the
basic type O terms x; and u given in (i) and (ii). Thus, for a € 4 and ¢ an
operation of A not defined on u if t is U?(x,,x,) and ¢’ is U2(x,,a(x,)) then
t(a,u)=a while t'(a, u) is undefined.

The function defined by the term FP[Ap,y,,...,J,.t] is nothing other than
the function given by the “recursion” f(ay,...,a,)=t(f,a,,...,a,) as may be
seen in the following simple example. Let G=(G; -, "%,1, =) be a group.
Consider the function f: G — G defined f(a)=1 if a is of finite order in G and
is undefined otherwise. Define inductively

gla,b) =1 if a=1
= g(a'b,b) if a1l

so that f(a)=g(a, a). Then t(x)=FP[4p,y;,y;- DC_(y;,1,1,p(y, ¥, y2))](x, x) is
an algebra term such that for every a € G the valuation function V, defined by
X + a is such that f(a)=V,(t(x))="t(a)".

The directly inductive functions are obtained from a subset of T,,. Let ¢ be an
algebra term with p a function variable free in t. Then p is said to occur in a
conditional place in t iff there is a subterm DCg(t,,. . .,t,t,+1>t,42) such that p
occurs in one (or more) of the t;, 1 i< n. And p is said to occur in the scope of a
Junction term in t iff p occurs in one of t,,. . .,t, and T(t,,. . .,t,) is a subterm of
t where T is any of (iii), (iv), (vi) and (vii).

An algebra term ¢ is said to be direct iff for each subterm ¢, all function
variables which are free in t, do not occur in a conditional place in ¢, nor in the
scope of a function term in t,. Thus, the term given in the example is direct.

A partial function f: A" — A is directly inductively definable iff it is
inductively definable by a direct term.

3. Programmes from inductions.

The relationship between induction terms and (informal) recursions
exemplified in the previous section suggest a relationship between fixed-points
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in induction terms and the loop phenomena characteristic of programmes. It is
this latter relationship we analyse and exploit in our proofs.

In proving the theorems we work over the structure 4, where the undefined
element u in a computation over A4, corresponds to an empty register in a
computation over A. The reader should recall the conventions decided upon
with regard to undefined machine instructions and the role of u in the
valuation of induction terms.

3.1. THEOREM. IND (A4) = FAPS (A).

Proor. The following more general result is proved. If ¢ is an algebraic term
with free function variables p;,. . ., p, then there is a fapS P in the language of
the signature of 4 extended by p,,...,p, (i.e. allowing operational instructions
r;:=p;(F) where 7 is a list of registers of appropriate length) such that t and P
define the same partial function for any interpretation of p,,...,p, on 4,.

The proof is by induction on the complexity of the term ¢t which has one of
the following forms:

@) x;
(i) u
(i) Uk(ty,. .., t0)
@iv) alty,-- .-t
(V) D_CR(tl" . -7tk’tk+1’tk+2)
V) piltys. ..o ty)
(i) FPLAD, Y1, - > Vi-tod(trse - o5 t0) »

where each ¢; is an algebraic term.

All cases except (vii) are straight-forward. Thus, (iv) is essentially the
standard composition of programmes argument. By the induction hypothesis
there are fapS’s P,,..., P, which compute t,,...,t,. These programmes are
composed to a programme P computing o(t,...,t,) in a natural way: P
consists of P, followed by P, and so on, but saves the result of the computation
of each P, and ends by computing o (t,,. . .,t,) using the operational instruction
for ¢ on the saved values. The technical details are left to the reader. Note that
a similar procedure is used for (iii), that is all of t,,...,¢, are computed, not
only ¢;. This ensures that the function defined by the term in (iii) is defined iff
the function defined by the constructed fapS is defined.

Now consider case (vii). By the composition argument of case (iv) we
may assume without loss of generality that t has the simpler form
FP[ip,yi,. . ., Vi -to)(z15- . ., 2,). By the induction hypothesis there is a fapS
P, such that P, and t, define the same partial function for any given
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interpretation of p, p,,. . ., p.. Let the free algebraic variables in ¢, be x,,. . ., X,
Vise - o> V- W€ may assume ry,. .., , Fpys- - -5 Fasx t0 be the input registers for
P, and that their contents are unaltered by P,. P is obtained from P, by

replacing each instruction r;:=p(f) with a stacking block

§:i= (i3 705« -slm)
Putise o oslusg := F
goto i —
* . —

rii=rp

restore (ro,...,7j_ 1, jh1se - sTm) s

where i is a marker unique to the block and i — denotes the first instruction
of P.

Fix a € A}, and interpretations of p,,...,p, and let f be the k-ary partial
function defined by FP[Ap,y,,. . ., Vk-t,] With these parameters. As in the proof
of Theorem 2.1, f=U,_, f*, where f®=u, and f'*! is the function defined by ¢,
with f! substituted for p, i.e. for each b e A% fi*!(b)=t,(f’)(b). The k-ary
function g computed by P with these fixed parameters is similarly stratified.
For each b € A% and ¢ € A let g'(b)=c iff P with input a, b stops with output ¢
and at no stage of the computation were there i vectors in the stack with
markers from new blocks, i.. blocks in P but not in P,. Of course g'(b) is
undefined if for no c € 4, g'(b)=c. Thus, g°=u,, g'<g'*! and g=U,_, g"

Let P,(h) denote the k-ary partial function computed by P, when p is
interpreted as h.

CLAIM: For each i€ w and b e A% gi*t1(b)=P,(g')(b) .

Assuming the claim we can complete the proof by showing that fi=g' for
each i and hence f=g. First f*=u,=g° So assume f=g’ and let b € A% Then

SiHb) = to(f)(b) = to(g)(b) = Po(g)(b) = g'*1(b)

by definition, the two induction hypotheses and the claim.

To prove the claim fix i and b and consider the concurrent computations
P,(g")(b) and P(b) step by step. By definition P, and P coincide up to the first
p-assignment r;: = p(F) of P, where P sees its first new stacking block B. If no p-
assignment is met, then the claim is trivially true. So assume r;: = p(F) is the first
p-assignment met and let t be the k-tuple of the contents of 7. Assume g'() is
defined. In P the block B determines a subcomputation g(t)=g'(tr). The
subcomputation has come to an end when control is returned to B with the
stack containing only the initial vector with markers from new blocks. And
since g'(t) was defined there were at no stage more than i such vectors in the
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stack. Exiting block B after the subcomputation, the initial vector is removed,
the value of g'(7) is in r; and the contents of the remaining registers are restored
to what they were prior to the subcomputation. Thus P, and P will again
coincide until the next p-assignment of P, so that if every required
subcomputation g'(7) is defined, then the claim is true. Assume, then, some
required subcomputation g'(z) is undefined, so P,(g')(b) is undefined. Then,
either g(7) is undefined in which case the subcomputation performed by P
never converges, i.e. P(b)=g(b) is undefined, or else at least i vectors with new
markers were simultaneously in the stack due to the computation g'(z) and
hence at least i+ 1 such vectors were simultaneously in the stack during the
computation P(b). In either case g'**(b) is undefined.

3.2. THEOREM. DIND (A) < FAP (A).

Proor. Again we prove a more general result. If ¢ is a direct algebraic term
with free function variables p,,...,p, then there is a fap P possibly with
operational instructions r,: = p; (), each of which is immediately followed by a
halt, such that t and P define the same partial function for any interpretation of
D1s- - 5 Pe

The proof is by induction on the complexity of the term t. Consider case (vi),
tis p;(ty,....t). Since t is a direct term, t,,...,t, contain no free function
variables. Thus, the fap programmes P,,. .., P, which compute ¢,,. . ., t, by the
induction hypothesis, include no operational instructions involving these free
function variables. Let P be obtained from P,,...,P, using the standard
composition of programmes technique, the last instructions being ry:=p;(¥), H
where 7 names the saved registers. Note that this is the only case where
operational instructions involving free function variables are introduced. Only
in case (vii) are they removed.

Consider case (vii). We may again assume without loss of generality that ¢ is
FPLAp, ¥y, . .5 Yi-tod(24s. . -, 2,). By the induction hypothesis there is a fap P,
where each p-assignment is followed by a halt (this is what makes the stack
superfluous!) such that P, and t, define the same partial function for any given
interpretation of p, p,,. . ., p,. Obtain P from P, by replacing each p-assignment
ro:=p(f),H by the block r,.,,...,r,4x:=F, goto 1 where 1 is the first
instruction of P. Here, as in the previous proof, ry,...,r, contain algebra
parameters. Stratify the k-ary function g computed by P by defining for each
b e A% and c € A, g'(b)=c iff P with input b halts with output ¢ and the added
blocks of assignments have been processed less than i times. Clearly, g°=u,, g
<g'*' and g=U,,g. And let f be the function defined by
FP[ip,y;s. ..,V o] stratified in the usual way. We prove by induction on i
that fi=g' and hence f=g. Obviously, f®=u,=g° Assume fi=g' and let
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b e A* By definition and the two induction hypotheses fi*!(b)=t,(f")(b)
=Py (f*)(b)= Py (g")(b). Consider the concurrent computations P,(g')(h) and
P(b) step by step. If no p-assignment is met in P, then the computations will
coincide and P(g')(b)=P(b)=g'(b)=g'*'(b). Assume on the other hand that
ro:=p(F), H is met in P,. Letting t be the k-tuple which is the contents of #, it is
immediate from the definition of g' that g'*!(b)~g'(t). But P,(g")(h)=g'(z). In
either case fi*1(b)=g'*!(b).

4. Inductions from programmes.
4.1. THEOREM. FAP (4)= DIND (A).

Proor. First, a technical remark: for the sole purpose of simplifying the
presentation of the argument, we here treat instructions goto i as instances of
the conditional instructions if R then i else i.

Given a fap P we are to construct a direct term ¢ such that P and ¢ define the
same partial function. This is achieved by constructing a tree describing all
possible paths through P, each node of the tree representing a conditional or
halt statement in P. To each node is assigned a direct term corresponding to a
subcomputation of P represented by the node. The sought term ¢ is that
assigned to the top node and represents the computation of P.

Assume P uses registers ro,...,r, and let J,,...,J, be the conditional
statements in P in order of appearance. To each node we assign a label and a
sequence of operational terms or polynomials ¢,. . .,¢t,. The latter are obtained
from variables x,,...,x, using the operations of A and they describe
operations performed between conditionals or between a conditional and a
halt. If a halt appears before J, the tree will consist of precisely one node
labelled H. And the assigned ¢,,. . .,t, are polynomials giving the contents of
ro,. . .,rm at the halt if the registers contained x,,...,x, at the start of the
programme. If J, appears first, the top node will be labelled 1. The assigned
polynomials will be the same. J, is a conditional of the form if R (7) then i else j.
It will give rise to two nodes below node 1. For the lefthand node, move
downwards in P from instruction i until a halt or a conditional statement
appears. If it is a halt, the new node is labelled H while if it is the conditional J,
the new node is labelled k. In either case the polynomials t,. . .,t,, assigned to
the node will give the contents of r,,. . .,r, at the conditional or halt statement
if their contents were x,,. . ., x,, when starting to process instruction i. A similar
assignment is made to the right-hand node starting from instruction j. No
nodes are constructed below an H node. And two nodes are constructed below
a k node with assignments as above unless there is a preceding node also
labelled k in which case no new lower nodes are constructed. A continuation of
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the tree in this last case would consists of an infinite number of copies of the
segment between the two k nodes. Note that our tree is finite.

We now assign a direct term to each node starting with the bottom nodes.
For an H node with assigned polynomials t,,...,t, assign the direct term
UT* (o, - -»t,,) (giving the content of the output register). And to a bottom
node labelled k assign p;(t,,. . .,t,) Where p, is an (m+ 1)-ary function variable
and t,. . .,t, the assigned polynomials. Now consider a node labelled k with
assigned polynomials ¢,,...,t, which is not a bottom node. Let the
corresponding conditional be if R(7) then i else j. Let s; and s, be the direct
terms assigned to the nodes immediately below. Case 1: No node below is
labelled k. Obtain s, and s, from s; and s, respectively by replacing each x; by ¢;
and let t be the list of polynomials corresponding to the list of registers 7.
Assign the direct term DCg(t,s,,s,). Case 2: There is a node below labelled k
(this corresponds to a loop). Introduce variables y%,. . ., y¥ and obtain s; and s
from s; and s, respectively by replacing each x; by y*. And let y be the list of
variables from y%,.. ., y* corresponding to #. Assign the direct term

FP[lpk’y’((), . -9y:‘n'._D-CR(y’S'378(4)](tO’- . -,tm) .

For each node N in our tree we define a programme Py such that the direct
term assigned to N and Py define the same partial function under any given
interpretation of the free function variables. To obtain Py alter P as follows:
Whenever a node above N and N or a node below N are labelled k then J, is
replaced by ry:=p,(ro,. . .,r,), H. Furthermore, processing of Py starts with
the operational instructions giving rise to the polynomials assigned to N. If N
is the top node, then Py and P are, of course, identical.

The proof that Py and the direct term assigned to N define the same
function is by induction on the nodes starting at the bottom nodes. All cases
are immediate except the one involving an FP term. So suppose N is a node
labelled k to which the direct term

FP[;ipk’y'(‘)" M "y’r‘n'_QgR(y’s,Zi’S:t)](tOP M '7tm) b

call it ¢, has been assigned and let N, and N, be the nodes immediately below
N. Let P, and P, be the programmes for N, and N, respectively which, by the
induction hypothesis, define the same functions as s; and s,. Let Py be
obtained from Py by having processing start at J, and let g be the function
computed by P). Stratify g as follows: For ae AT*' and b € 4, let g'(a)=b iff
Py with input a stops with output b and the computation processed J, at most
i times. And let f be the function defined by

FP[’ipk‘yl(‘)’ . -,y:‘n-_D_QR(y,SS,SQ)]

with its usual stratification. If f=g then clearly t and Py define the same
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function. We show by induction on i that fi=g' and hence f=g. As usual, f°
=u, ., =g° Assume f'=g' and let a € A™*'. Assume further that R(a’) where
a' is the list obtained from a corresponding to 7, the argument being analogous
if TR(a). Then f*!(a)=s5(f)(a)=P,(f)(a)=P,(g')(a) by definition and the
two induction hypotheses. Consider the computation Py (a) step by step. Since
R(a’) holds, this computation will after the first step coincide with that of
P, (g)(a) until P again processes J,. If this never happens, then P, (g')(a)=g! (a)
=~ g(a). Suppose it happens and let 7 be the contents of the registers at that
time. Clearly, P,(g)(a)=g'(t) and g'*'(a)=~g'(r). In either case P,(g')(a)
~gi*t1(g) so fitl=gi*1,

Finally, if a fap P computes f e P(A", A4) and ¢ is the direct term obtained
from P as described above then fis defined by the direct term obtained from ¢
by replacing each of the free variables x4, x,4¢,. .., X,, by u.

4.2. THeoREM. FAPS (A)<IND (A).

Proor. For each fapS P with e stacking blocks and using registers r,. . .,7,,
we are to construct a term t such that P and ¢ define the same function in
P(A™*1, A). The theorem then follows as in the proof of Theorem 4.1.

For e=0 Theorem 4.1 provides us with a term. So suppose e>0. We
construct fap programmes P, P,,. . ., P, in the language of the signature of A
extended by p,,...,p, where each p; is an (m+ 1)-ary function symbol. P, is
obtained from P by replacing the kth stacking block with r;:=p,(t)) for k
=1,...,e. 1, is the list of operational terms given by the (re-loading)
instructions in the kth block. P, is the same as P, except that k — is the first
instruction processed where k — is the return instruction of the kth block.

By Theorem 4.1, there are terms t,t,,. . ., t, defining the same functions in
P(A™*1 A) as Py,P,,...,P, for any given interpretation of p,,...,p,. We
replace the free function variables in t, by terms to obtain the sought term ¢
as follows. Let 10 be t;, for i=0,1,...,e. Suppose the terms th,ti,q,.. ..t
are defined and p,,...,p; are not free in these. Let i} be
FP{Ap; 41, X0s- - - Xm-ti41] and substitute i1} for p,,, in th,ti,,. ...tk to
obtain 5", ¢itl . .. "1, Finally, let t be t§.

We define the following programmes. Let P be P, for k=0,...,e. P,*' is
obtained from P§ by replacing r;, :=p;;(t;4,) With the (i+1)-th stacking
block. Of course P§ is just P. Thus the following claim proves the theorem.

Cram. P} and t} define the same partial functions, j=0, i,. . .,e, for any given
interpretation of p;s 1. - -»De

The proof is by induction on i. By choice of terms and programmes the claim
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is true for i=0. Assuming it is true for i we first show Pi11 and i} define the
same function. The function g computed by Pif} is stratified as follows: For
ae A7*! and b € A, let g*(a)= b iff Pi}] with input a halts with output b and
at no stage of the computation were there k vectors with marker i+ 1 in the
stack. The function f defined by ti1} is stratified as usual. By induction on k we
show f*=g* and hence f=g. Obviously, f°=u,,,, =g° Assume f*=g* and let
ae A™*1. Then

[ @) = i (@) = phey (M9 = pisy(89()

by definition and the two induction hypotheses. And, by the argument for the
claim in the proof of Theorem 3.1, Pi, (g (a)=g** ' (a).

It remains to prove Pi*! and ri*!' define the same functions for j=0,
i+2,...,e. Let h be the function defined by tifl. Then, for each a e A™*!,
ti*1(a)=tj(h)(a) = P}(h)(a). Fix a and consider the concurrent computations
Pi(h)(a) and Pi*!(a) step by step. They are identical until P} meets r:=p, (1)
and Pi*! meets the (i+1)-th stacking block. The return instruction in this
block is (i+ 1) — so that the subcomputation is computed by Pif}, that is the
subcomputation is h(t). It follows that Pi(h)(a)=P;"'(a).

Note that the passages from term to programme, or programme to term, are
all constructive in the four theorems.
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