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ON A CLASS OF GOLOD HOMOMORPHISMS

EUGENE GOVER and PAOLO SALMON

Introduction.

Properties of the Poincaré series for local rings have been stated in relative
form by Levin in [6] and [7] using the concept of a Golod homomorphism. In
this paper we show that the natural map

R— R, = R/Z x1;
i=1

is a Golod homomorphism where (R, m) is a local ring, I, <...<I,Sm are
ideals, and x,,. . ., x,, € m are such that x, is regular on R and each sucessive x;
is regular on

R,_, = R/Z x;l; .
j<i’
This includes generalizations of results obtained by Levin [7], Shamash [8],
and Herzog and Steurich [4]. Rings of the form R, were considered by Ghione
and Gulliksen in [1] where an explicit formula was given for the Poincaré
series over R, of a finitely generated R-module M such that I,M =0. Our result
makes use of that formula.

Golod homomorphisms include Golod rings as a special case. If R is a
regular local ring and a is an ideal contained in m?, then R/a is a Golod ring if
and only if the natural map R — R/a is a Golod homomorphism. Our result
shows that for R regular, the rings R, are Golod rings. It follows from [1,
theorem 4] that all finite R,-modules have rational Poincaré series.

In section 1 we fix our notation and review basic facts needed about Golod
homomorphisms. The second section establishes two coefficient inequalities
for Poincaré series. The first inequality, stated in Theorem 2.1, concerns the
coefficients of Poincaré series defined in the setting of a local homomorphism.
The second inequality, stated in Proposition 2.2, relates the coefficients of the
Poincaré series for the factor ring R/(I + xJ) to those of the Poincaré series for
R/I and R/J in the case where I<J and x is regular on R/I. An explicit
construction is then given for a resolution of R/(I + xJ) in terms of resolutions
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for R/I and R/J. These results are used in the final section to show that
R — R, is a Golod homomorphism. In particular, in the special case I, = . .. =
I,=Icm with x, regular on R and x; regular mod (x,,...,x;_ ),
R — R/(xy,...,x,)] is a Golod homomorphism. When R is regular,
R/(x4,. .., x,)I is a Golod ring. These directly generalize a theorem of Levin [7,
theorem 2.3] and a well-known result of Shamash [8, § 5 corollary 2]. Another
example of such a homomorphism is the natural map

R — R/asln BRI

where the ideals a; are generated by disjoint parts of a regular sequence, a
result also obtained by Herzog and Steurich [4, Folgerung 2] using different
methods.

1. Notation, Golod rings and homomorphisms.

Throughout, R denotes a noetherian local ring with maximal ideal m and
residue field k= R/m. If M is a finitely generated R-module, the Betti numbers
of M are the integers bX(M)=dim, TorR (k, M). The Poincaré series of M over
the ring R is the formal power series

Py = Y bRMmyz .

ip8

We will use the terms augmented R-algebra and trivial Massey operation as they
are defined by Gulliksen in [3] and adopt a corresponding notation. Thus, if
the augmented R-algebra F has a trivial Massey operation y, the function 7 is
defined on some set C of homogeneous cycles in F which represents a minimal
set of generators for H(F).

If f: R — R’ is a homomorphism of local rings, we wish to define what it
means for f to be a Golod homomorphism. Suppose that f(m)cm’, that f
induces an isomorphism of residue fields R/m =~ R'/m’ =k, and that R’ becomes
a finite R-module via f. Let X be a minimal algebra resolution for k over the
ring R. With these hypotheses, Levin [7] proved

THEOREM 1.1. The following are equivalent:

(@) P¥'=PR/(1—2z(PR —1)) and WH(X®xR)=0.

(b) The R'algebra X®g R’ has a trivial Massey operation and the induced
TorR (k, k) — Tor® (k, k) is injective.

(€) X®gRR’ has a trivial Massey operation and y(C)cm’(X ®g R’) where C
represents a minimal set of generators for H(X ®g R)).
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DEerFINITION. A local homomorphism f: R — R’ which satisfies the
hypotheses and conditions of Theorem 1.1 is called a Golod homomorphism.

Golod rings can be viewed as a special case.

DEerINITION. A local ring R is a Golod ring if its Koszul complex Kz has a
trivial Massey operation.

The local ring R is a Golod ring precisely when its m-adic completion R is a
Golod ring. Since R=S/a for some regular local ring (S,n) with acn?, Kj
=K ®g R. Moreover, the Koszul complex Kj is a minimal algebra resolution
for k over S. It is not hard to verify that when Kz has a trivial Massey
operation, y(C)cmKy where C represents a minimal set of generators for
H(Kpg). Consequently, R is a Golod ring if and only if the natural map S — S/a
=R is a Golod homomorphism.

2. Coefficient inequalities for Poincare series.

Let f: R — R’ be as in the hypotheses of (1.1) and suppose that M’ is a
finitely generated R’-module.

TueoREM 2.1. If m’ TorR (k, R)=0 then

PR, < P
M =1-_z(PR-1)

as an inequality among the coefficients of the Poincaré series.

Proor. We must show

(1) bR(M)+bF, (M) £ ¥ bR (M) bR (R)+ bR (M)
r=1

for n=1 and

(2 bY (M) < b§(M)

where

PR =Y bR (M2, PR = Y bR(M)Z, PR = Y bR(R)Z .

The change of rings spectral sequence in the given situation has

E%, = TorR(Tork (k,R), M) = TorR, , (k, M) .
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By hypothesis, each R’-module Torf (k, R') is in fact a k-space. Thus E2 , and
all subquotients are finite vector spaces over k. We can therefore apply a
counting argument similar to one given in [7, 1.3] in order to compare the
various dimensions over k.
Considered over k, dim E2 ,=bX'(M")-bR(R"). E;*! is the kernel of d": E, ,
— E;_, ,_,, and setting U}, =image of d', we have that
dimE;, , = dim U, +dim E*
which upon iteration becomes
dimE}, = Y dimU,+dimEg, .
r=2
Uy is a subspace of E;_, ,_, and so
dim Uy, < by (M) b2 | (R)) .

Since the spectral sequence converges, each EJ’_ is isomorphic to a subquotient
of TorR, . (k, M) which guarantees that

dimEY, < bR(M)

for all n. Combining the last three relations,
dimE], < ¥ by (M)-bf (R)+b{ (M)
r=2

for n=2. When this is added to
br_ (M) < bR (M)-b§(R))

and we observe that bR (M’)<dim E2 ,, inequality (1) is obtained for n>2.
Inequality (1) with n=1 and inequality (2) both follow from the observation
that for n=0,1,

bR (M) £ dimE2, = dimEZ, < bR(M').

The special case of 2.1 with R regular, R'=R/I, Icm? and M'=k was
established by Serre. With those same restrictions, Golod [2] showed that
equality is achieved precisely when Kz has a trivial Massey operation, that is,
when R/I is a Golod ring. 2.1 is also an equality when f: R — R’ is a strong
Golod homomorphism and (0:m)M’'=0 as shown by Levin in [7, theorem
4.6].

PROPOSITION 2.2. Let 1 = J be ideals of R and suppose that x € m is regular on
R/I. Then
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Pﬁ/(uxn =qQ +Z)(P1§/1" 1)+P§/J .

Proor. Let p;, m;, and n; be the respective Betti numbers over R of R/(I + xJ),
R/I, and R/J. To establish the inequality, we must show that p, <m, +n, and
that p;<m;+m;_,+n, for i=2.

Since x is regular on R/I, the inclusion of J/I into R/I followed by
multiplication by x yields a monomorphism whose image is (I + xJ)/I. Thus

0—J/I—- R/I » R/(I+xJ)— 0
is exact. From the induced homology sequence
. — TorR (k, R/I) — TorR (k, R/(I+xJ)) = Tor® | (k,J/I) > ...
we find that
pi S mi+ b, (/1)
In a similar manner, exactness of
0—- J/I - R/I - R/J—0
shows that
bR (/D) < my_+n;.
When combined, the two inequalities give the desired relationship for i = 2. The

inequality for i=1 follows after observing that b} (J/I)SbY(J)=bR(R/J)=n,.

The inequality of Proposition 2.2 can also be obtained by constructing an R-
free resolution of R/(I + xJ) from resolutions of R/I and R/J.

PRrOPOSITION 2.3. Let I = J be ideals of R and suppose that x € m is regular on
R/I. Let L and L' be R-free resolutions of R/I and R/J respectively. Then there
exists an R-free resolution L" of R/(I+xJ) with LY=L @L| and LY
=L,®L;,_ ®L; for i>1.

Proor. The complex L” will turn out to be a two stage mapping cone. First,
since I = J, the identity map on R=L =L lifts to a chain map y: L - L' If
J1: Ly — I denotes the boundary map d,: L, —» R when considered onto its
image and if L is the suspension complex of L (i.e., L;=L;,, and d;=d,, ,), then
(L, f;) is an R-free resolution of I. Let L' be defined analogously so as to
produce an R-free resolution of J. Then §: L — L' with J;=y,,, is a chain
map lifting the inclusion of I into J.

The mapping cone M (}) is acyclic. This can be seen by considering the exact
homology sequence
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.- H(L) - HM@) - H,_, (D) L H,_ (@) - ....

Since H(L)=H,,,(L) and H,_,(L)=H,(L) for i>1, H(M@))=0 for i>1.
When i=1, the relevant part of the sequence is

H(L)=0- H,(MW@)—> I =J

with the right-hand map an inclusion. It follows that H,(M (}))=0.

The complex M () has My(})=L}, M;(J)=L,_,®L;=L,®L;,, for i>0,
and boundary maps J; defined by d,(y,,y2)=yy,+d'y, and 6,(y;, Vi) =
(—dys Yy +dy;y,) for i>1.

We begin to construct a chain map ¢: M({)) — L by first defining ¢,
=xd: L\ — R for any fixed x € m. Since

©o01(V1,y2) = xd\y,y, +xdydyy, = xdyy, ,
we may continue the construction by setting ¢, (y,,5)=xy,. Indeed, all ¢, for
i21 can be defined by ¢;(y;,y:+1)=(—1)"*'xy, The mapping cone M (¢) of
this chain map is a complex over R/(I +xJ) with
My(9) = R, M(¢) = Li®M,()) = L,®L}, and
M;(p) = Li®Mi—1('Z) = Li®L;_ ®L; for i>1.

M (p) augmented by the natural map onto R/(I +xJ) turns out to be the
desired resolution L".

Examination of the exact homology sequence for M (¢) shows that H,(M (¢))
=0 for i> 1. The last part of the sequence is

H\(L) = 0~ H,(M(9)) — Ho(M(¥)) > Ho(L)

with Ho(M())=L;/Imaged, and Hy(L)=R/I. We verify that ¢, is monic
whenever x is regular on R/I by considering [y} € Hyo(M () such that ¢ [y]
=0 e R/I. The representative y’ € L, must then have ¢,y € I. But ¢o)’' = xd,y’
and since x is regular on R/I, dy’ € I. Hence there exists y € L, such that d,y
=d,y, so

di(y—yy) = dyy —diyy = dyy'—dyy = 0.
By exactness, y' —y,y=d,y), for some y, € L),. Consequently

Y = y+dys = 6,(1,)h)

which says that [y]=[0] € H,(M(})). Therefore the map ¢, in the above
exact sequence is monic. It follows that M (¢) is acyclic and provides an R-free
resolution L"” of R/(I + xJ).

Note that by virtue of the mapping cone construction, the boundary maps in
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the complex L’ =M/(¢p) are completely determined by the boundary maps d
and d’ in the respective complexes L and L’ and by the chain map : L — L’
lifting 1g. Specifically,

dy{: L,®L, — R is defined by d|(y,,))) = dy, +xd'y} ,
dy: L,®L,®L, - L,®L] is defined by
d3(y2,y1,¥2) = (d2y2+xy;, =¥y, —d'y3), and
di: L®L,_,®L;—> L,_,®L;_,®L;_, for i=3 is
defined by di (y;, yi-1,)) =
dyi+ (= Dxpio g, dyimy, —¥yio, —dyi) .

If bases are picked for the free modules and if the boundary maps are defined
by matrices with respect to those bases, then setting

4% = [d], B® = [d], €V = [y, D° = [d]],
and E(i)=an identity matrix of the appropriate size, we have
A?  xE®D 0

0 —cw _B(zy] ’

AD (=1)xE® 0
and D? = | 0 A~ 0 for i=3.
0 —Ct-1 — BW

DM — [A(l) xB(”], D?® = [

Proposition 2.2 clearly follows from 2.3. The resolution L” need not be
minimal, however, even when both L and L’ are minimal. L” is minimal in
particular cases. For example, if I=3;.;x;/; and J=I; where x,,...,x; and
I,,...,1,; satisfy the hypotheses of the next theorem 3.1 and L, L’ are minimal
resolutions, then L” is a minimal resolution of

i

R/(I+xJ) = R/Z x;l

j=1

as a consequence of 2.2 and 3.1.

3. The Golod homomorphism R — R,.

THEOREM 3.1. Let (R, m) be a local ring with ideals 1,<...<I,cm and
suppose that x,,...,x, € m satisfy: x, is regular on R and for each i>1, x; is
regular on R,_, =R/Y;.;x;l;. Let M be a finitely generated R-module such that
I,M=0. Then
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R
PR = _ P
R .
1—2z(Pg —1)

In particular, the natural map R — R, is a Golod homomorphism.

Proor. With the given hypotheses, Corollary 6 of [1] applies and shows that

PR
() Ph =%
M1
where for 1Z5i<n,

fie) = 1+2)f=z ), (1+z)"P§/,H

i<i
= (1+Z)f.-—1(2)—2P§/1,..
Theorem 2.1 shows that
Py Py
fuld) T 1—z(PR-1)°

)
If we establish

1—
) PR -1 5 0,
then the reverse inequality of (2) will also hold in which case equationé (1) and
(2) will establish the desired equation for the Poincaré series.
Inequality (3) is obtained by induction on n. When n=1,

1-—
PR —1= PR, —1 = PRy —1 = —é@
Assume that for n—121,
@ P, -1 g 1ohld

From Proposition 2.2,

PR, = PRAS xgyexay S (1+2)(PE_ —1)+PE, .
j(h
When combined with\ (4) this gives

PR — PR, 1—f,_1(2)
L T LT N PR -l 7
(1+z) = R = z
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Hence

pr < LHA(=f,y @) +2PR),

" z

from which (3) readily follows.

To show that R — R, is a Golod homomorphism we verify (a) of 1.1. With
M=k, I,k=0; the above argument then establishes the appropriate formula
for the Poincaré series. The remaining condition of 1.1 (a) holds since R, is a
factor ring of R from which it follows that an R,-module is a k-space whenever
it is a k-space as an R-module.

An immediate consequence of 3.1 and [1, theorem 4] is

CoROLLARY 3.2. If R is regular, R, is a Golod ring. If M is a finite R,-module,
P’Ifi is rational.

With n=1in 3.1, R — R/xI is a Golod homomorphism. This is Levin’s [7,
theorem 2.3] for the case I £m and x € m a regular element. When n=1in 3.2
with R regular and x+0, R/xI is a Golod ring. This is a result of Shamash [8, §
5 cor. 2]. Both of these results now generalize to the case R/(x,,. . ., x,)I with x,

regular and x; regular mod (x,,...,x;_;) by taking I,=...=I,=Icm.
Other interesting examples of rings of the form R, come from

COROLLARY 3.3. Let (R, m) be a local ring with ideals a,,a,,. . .,a, generated
by disjoint parts of a regular sequence. Suppose that n>1 or the integer s, > 1.
Then the natural map

R — R/aj - a*

n

is a Golod homomorphism.

Proor. We may write

O = (Xyp0e e s Xqg)s o ves G = (Xppse vy X))

where  Xxyp,.. ., %y, . ,X,, constitutes a regular sequence. Let a
=aj - a If n=1, set J=R; otherwise, set J=a3 - a}r In either case
we have

a = Xyy (%) T T x5 (00, X)) T L X (X X )T

Ifl;=(x14,-.., %) ", thenl,c...cl,cmand a=Y}_, x,,/;. Observe that
2 j<iXy;l;is an ideal generated by monomials in x,,,. .., x;;_y and X,,,. . ., X,,,
which is a part of the regular sequence disjoint from x,;. It therefore follows
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from [5, lemma 3] that x,; is regular on R/Y;; x,;I; and so the natural map R
— R/a is a Golod homomorphism by 3.1.

This corollary has been obtained independently by Herzog and Steurich [4,
Folgerung 2]. Several examples found in the literature follow from it. For
instance, R — R/(x,,...,x,) for s>1 is a Golod homomorphism where
Xy,. .., X, is a regular sequence. In particular for a field K,

K[[X,,. .., X, 1)/(X,.....X,)
with s>1 is a Golod ring (cf. [2]). Rings of the form
KI[Xy5. . X D1/ (X 1 X ) (X3, XY

are also Golod. The simplest example of a ring satisfying the hypotheses of
Theorem 3.1 but not of the type considered in 3.3 is

R, = K[[X,Y,Z])/(X,Y)(X, 2)
(R=KI[[X,Y,Z]], x,=X, x,=Y, and I, =1, = (X, Z)).
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