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THE LAPLACE TRANSFORM OF MEASURES
ON THE CONE OF A VECTOR LATTICE

EGBERT DETTWEILER

Introduction

For bounded positive measures on R which are concentrated on the positive
halfline R, the Fourier transform can be replaced by the Laplace transform,
which is somewhat easier to handle. It therefore seems to be a natural question,
whether this can be done also in the infinite dimensional case if one wants to
study measures concentrated on the cone of an ordered (topological) vector
space. Clearly, there is no difficulty to define the Laplace transform of such
measures if the dual space (or more precisely the dual cone) is large enough.
The main problem however —just as in the classical case — consists in getting
a theorem of Bochner type providing via the Laplace transform a bijective
mapping between a certain specified class of functions on the dual cone and the
measures on the original cone.

Based on the paper [1] of Berg, Christensen and Ressel, who studied this
problem in the general case of Abelian semigroups, Hoffmann-Jergensen and
Ressel [3] proved such a theorem for the cone C% (X) of the lattice C?(X) of all
bounded continuous functions on a completely regular space X furnished with
the strict topology. Every continuous positive definite function on C% (X) (in the
sense of [1]) is the Laplace transform of a Radon measure on the dual cone
M?, (X) of all positive bounded Radon measures on X, where M% (X) carries
the weak topology a(M®(X), C(X)).

In the present paper we investigate the relationship between positive definite
functions on a cone and measures on the dual cone in the more general context
of locally convex vector lattices. More precisely, we study the following
question: Let E be a locally convex vector lattice with positive cone E, and let
¢ be a continuous positive definite function on E, in the sense of [1]. When
does there exist a measure u on the dual cone E’, (with the weak topology
o(E',E)) such that ¢ is the Laplace transform of.u? As the main result
(theorems 2.13 and 3.9) we get that there is a “good” Bochner theorem (as it
was proved by Hoffmann-Jergensen and Ressel for the space C?(X)) if and only
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if the topology of E is generated by a family of (AM)-seminorms, or
equivalently if and only if E is the projective limit of Banach lattices isomorphic
to spaces C(X) with compact X. This characterization is obtained in section 3
with the aid of the theory of (cone) absolutely summing maps (see [9, ch. Iv)).

1. Preliminaries.

First we recall some notations and a few definitions from the theory of
ordered topological vector spaces (see [8] and [9] as a general reference).

Let E be a vector lattice over field R of real numbers. A function p:
E — R, is called a lattice seminorm, if p is a seminorm and if Ix| =y (x,y € E)
always implies p(x)<p(y). If in addition E is also a topological vector space, E
is called a locally convex vector lattice if the topology of E is generated by a
family of lattice seminorms. E, always denotes the positive cone of E, and if F
is a second vector lattice such that (E, F) is a dual pair, we call (E, F) a dual pair
of vector lattices if E, and F, separate the points of F, and E + resp. For any
dual pair (E, F), o(E, F) and t(E, F) denote the weak and the Mackey topology
resp. on E with respect to the duality (E, F). f(E) denotes the order topology on
E, which by definition is the finest locally convex topology on E for which
every order interval is bounded. E®, C®, and E** denote the space of all order
bounded, positive, and order continuous linear forms on E respectively.

A Fréchet lattice is a locally convex vector lattice E which is complete and
whose topology is generated by a countable family of lattice seminorms. If E is
complete and if the topology of E is generated by a single lattice norm, then E
is called a Banach lattice. For a closed, convex, circled subset B E the

subspace Eg:=U, \nB is normed space with respect to the norm pp defined
by -

pp(x) := inf{t>0: x e tB}.

The spaces E,:=E_,, (ae E,) are normed lattices, which are Banach
lattices, if E is quasi-complete and if the topology of E is coarser than the order
topology. A Banach lattice E is called an (AM)-space if the norm fulfills the
condition ||x v y|l=|lx|| v ||yl for all x,y € E,, and an (AL)-space if the norm
is additive on E,.

We now give the basic notations and definitions needed from the probability
theory on vector spaces. For any locally convex space E with Borel o-algebra
2 (E) we denote by M® (E) and P(E) resp. the set of all bounded positive Radon
measures and the set of all (Radon) probability measures on E. If E is in
addition a locally convex vector lattice, then M?% (E.) and P(E.) denote the
corresponding subsets of all measures which are concentrated on the cone E,.
If (E, F) is a dual pair of vector lattices, and if 7 (E, F ) is a consistent topology
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on E, we sometimes write M®% (E,,J (E,F)) or P(E,,7 (E,F)) whenever we
wish to emphasize the special induced topology on E ..

For a dual pair (E,F) of vector spaces let F™N) denote the set of all finite
sequences in F, and for every j=(y,,...,y,) € F™ let n;: E— R be the
canonical projection defined by

ﬂy(x) = (<X,y,->)1§,-§,, forall xe E.

Let us write j<Z=(zy,...,2,) € F™if there is a linear map =;; ;: R™ — R" such
that nj ;om;=mn; A family (u);epe of measures y; on the finite dimensional
spaces RYY (where d(y) denotes the length of the sequence j) is called a
cylindrical measure if for all y,Z € F™ with j<z one has m; ;(u;) = p;. M" (E)
and P(E) denote the sets of all bounded cylindrical measures and all
probability cylindrical measures respectively. The one-dimensional marginal
distributions of a cylindrical measure u are simply denoted by u, (v € F). A
sequence (u,) of bounded cylindrical measures is said to converge cylindrically
towards a cylindrical measure if for all j € F™™) the sequence (ny(u,,)) converges
weakly towards n;(u). If (E, F) is a dual pair of vector lattices, then we say that
a cylindrical measure on E is a cylindrical measure on the cone E , if for all
7 € F the measure y; is concentrated on the natural cone R4 of R%Y, and we
use the notation P(E.) for the set of all probability cylindrical measures on
E .. For further notations we refer the reader to [11].

2. The Laplace transform for measures on the positive cone of a topological
vector lattice.

Let (E, F) be a dual pair of real vector lattices. For any cylindrical measure p
on E, one can define the Laplace transform of u as the function Lu: F, — R,
defined by

Lu(y) := j e 'du,(t) forall yeF, .

+

If E is a topological vector lattice with a consistent topolegy with respect to the
duality (E, F), and if u is a Radon measure on E ,, then of course Ly is given by

Lu(y) = J e~V du(x) forall ye F, .
For every u € P(E,) the Laplace transform Ly is positive definite in the
following sense (see [1]): For every n € N and every choice of n elements
Vis- .., V, € F, and n real numbers a,,. . .,a, we have

Z aa;Lp(y;+y) 2 0.

i,j=1
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Let F, denote the set of all mappings i: F, — [0,00], such that A(0)=0
and A(x+y)=A(x)+A(y) hold for all x,y € F. F, is again a semigroup which
is compact with respect to the topology of pointwise convergence, and the
following theorem (which is proved in [1] for general Abelian semigroups)
holds:

2.1. THeOREM (of Berg, Christensen and Ressel). For every positive definite
Junction ¢ on F, there exists a bounded positive Radon measure y on F ., such
that

o) = j e *du) foral yeF, .
F,

In the following the main problem consists in finding conditions under
which the measure yu on F, associated with a given positive definite function
on F, by (2.1) is concentrated on the subsemigroup E, of F, where E, is
furnished with a suitable topology. First we need some further properties of
positive definite functions on the positive cone of a vector lattice, which we
collect in the next proposition.

2.2. PrOPOSITION. Let ¢ be a positive definite function on C:=F ,. Then ¢ has
the following properties:
(i) 0=0()=(0) and (¢(Gx+3y)> S@(X)(y)
for all x,y e C.
(i) lo(x)— @)= @(0)—o(x—yl) for all x,y e C.
(iii) @ is always a decreasing function and for every a € C one has ¢(x)— @ (y)
2e(x+a)—-o@y+a)

Proor. Property (i) is proved in [1] for general Abelian semigroups. The
properties (i) and (iii) follow by integration from the corresponding properties
of the positive definite functions x — e~ *®,

For every A € #(C) (the family of all finite subsets of C) we set
Cii=1{ieC: iy)<oforallye A} .

C , is open and therefore a Borel subset of C. If @ is a positive definite function
on C with representing measure p, then it is not difficult to show (see [3] for
the idea of the proof) that u is concentrated on C 4 if and only if lim,, ., @(y/n)
=¢@(0) for all y € A.

2.3. PROPOSITION. Let ¢ be a positive definite function on C with representing
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measure p. Then p is a cylindrical measure on C® with respect to the duality
(F,F®) if and only if lim,_  @(y/n)=¢(0) for all y € C. If ¢ is the Laplace
transform of a cylindrical measure y with © (@ (0)=1{0}, then for all x,y € C
with x <y one has ¢ (y)<@(x) and lim,_, , @(tx)=pu({41 : A(x)=0}).

Proor. If lim,_ . @(y/n)=¢(0) holds for all ye C and if for all A4
={y1,...,y;} € F(C), n, denotes the natural projection on C defined by

Ta(4) = (A),- - A00)

then the above remark shows that the measures u,:=mn,(u) are concentrated
on R%. Now it is easy to show that the system (u )45 () defines in fact a
cylindrical measure on C®. If conversely (u4) 4 #(c)1s a cylindrical measure on
C% then from @(y)=Lp,(1) and @(y/n)=Lu,(1/n) for all y e C one gets
lim,, , ¢ (y/n)=¢(0).

For the proof of the second assertion suppose that there exist x,y € C with x
<y and @(x)=@(y)=:c. We set z:=y—x. Then from (2.2) one gets ¢(x +2z)
=c. Repeating this procedure one gets finally ¢(x +tz)=c for all t € R,. Now
for all n € N we have

¢ = @(x+nz) = f e““”du(i)+j e Mxtm2) gu(h) .
[A(z)=0] (A=) %0]

From this equality we get with n — oo

c = J e "M du(l) = @(x) = Je“""du(/l).
[Mz)=0]

By assumption p is concentrated on C{x}. Therefore u([4(z)=0])=|lu|l. But
then @(z) = | ull = ¢ (0), i.e. z=0 by assumption about ¢. This is a contradiction.
Now if lim,_, ., @ (tx)=:b (x € C), then from

b = u(i(x) = 0])+J‘ e ™du(i) (neN)

[A(x) * 0]

we get u([4(x)=0])=b>.

If (E,F) is a dual pair of ordered vector lattices with cones E, and F,, it
seems to be quite natural to ask for the relationship between the positive
definite functions on F, on one side and the (bounded) Radon measures on
E, (for a suitable topology) on the other side given by the Laplace
transformation. In particular we are interested in determining those locally
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convex vector lattices for which this connection is of Bochner type (with
Laplace transform instead of Fourier transform). In this context we introduce a
topology which already in [3] turned out to be very useful. This topology is the
topology of uniform convergence on the order intervals of E and we will call
this topology on F the L'-topology on F (with respect to the duality (E, F)). We
use the notation A'(F, E) or only A' if there is no danger of confusion. The L!-
topology is generated by the family (p,),. g, of seminorms defined by p,(y):
=<x,|yl) for all y € F. One has ¢(F, E)<'(F,E) and A!(F, F')<t(F,F)if F is
a locally convex vector lattice. If the order intervals of F are weakly compact,
then also A'(F',F)<t(F’,F) holds, and if the topology of F is the order
topology (this is the case for example, if F is a Fréchet lattice), then A!(F, F)
SB(F,F).

2.4. PrOPOSITION. Let E be a quasi-complete locally convex vector lattice. Then
for all pe MY (E,) the Laplace transform Ly on E', is continuous in the L!-
topology A'(E', E).

Proor. Because of (2.2) (ii) it is sufficient to prove the continuity of Lu at the
origin. For every ¢ >0 we choose a compact set K < E | with u(K°)<e. Because
of the quasi-completeness of E we can suppose that K is convex. Then we have
for every x' € E',

Lp0)—Lu(x) = J (1—e" ) du(x)+e < J <X, xDdp(x)+e .
K K
From that inequality now the assertion follows because fkxdu(x) e E,.

A semi-norm p on E will be called an (AM)-seminorm if p is a lattice
seminorm with the property

sup (p(x),p(y)) = p(x vy) forall x,yeE,

Now we prove our first version of “Bochner’s theorem”.

2.5 THEOREM. Let E be a Fréchet lattice whose topology is generated by a
sequence of (AM)-seminorms (Ps), and let ¢: E, — R, be a positive definite
JSunction. Then the following assertions are equivalent:

(1) ¢ is continuous for the topology i'(E, E'),

(i) @ is continuous for the given topology on E,

(iii) there is a p € M" (E',,o(E, E)) with Lu=¢.

Proor. We have to show the implication (i) = (iii). Without loss of gener-
ality let us assume that the sequence (p,) is increasing, and that the sets
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Bn = {XGE+ : pn(x)él}

form a neighborhood basis of the origin in E . Let u denote the representing
measure of ¢ on the space E . For all n € N we denote by p, the functional on
E ., defined by

pa(A) := sup{i(x): x € B,} .

One gets immediately that p,(4)<oo implies A € E', (see [8, ch. V, theorem
5.5]). Furthermore the functionals p, are lower semi-continuous and one easily
checks the relation

inf (p,(2), 1, (A) = sup inf (A(x), 1¢, (4))

and observes that the family of functions
A inf (A(x),1g,(4) (x € B,)

is directed for every n e N.

Now we choose an arbitrary ¢>0 and an n € N such that x € B, implies ¢(0)
—@(x)<e¢/2. From the above remarks and the inequality Linf(1,))S1—e™
(valid for all t=0) we get

jinf(ﬁn’lﬁ+)d” = sup jinf(l(X),la(l))d#(i)
< 2sup J(l —e XN du(2)

xeB,

I

ZSug (p(0)—o(x)) < €.

Especially we have u{i € E, : p,(1)>1} <e. Now the set
K,:={xXeE,: p(x)S1} = {A e E,: p(H=S1)

is a compact subset of E. and of E'. Therefore u is even a measure on E’, with
respect to the weak topology as asserted.

2.6. COROLLARY. Let E be a Banach lattice which is an (AM)-space. Then a
positive definite function ¢ on E. is the Laplace transform of a measure
ue M (E,,o(E,E)) if and only if @ is continuous for a topology I between the
L'-topology and the norm topology. Especially any norm continuous positive
definite function is already L'-continuous.

Theorem 2.5 admits a generalization to locally convex vector lattices for
which the topology is generated by an arbitrary family of (AM)-seminorms.
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For this more general Bochner theorem (and essentially the most general as is
proven in the next paragraph) we need some preparations concerning lifting
properties of positive definite functions.

2.7. PropPoSITION. Let C denote the positive cone of a locally convex vector
lattice E. If ¢ is a positive definite and L'-continuous function on C, then

Co:={xeC: p(0)=0p(x)}

is a closed solid subcone of C, and if n denotes the canonical projection from E
onto F:=E/(Cy— Cy), then there exists a positive definite function Y on F + with
@ =yon, and y is continuous with respect to the quotient topology. I f in addition
E is ordercomplete with dual E'=E*™, then I,:=Cy— C,, is a band in E and y is
L'-continuous.

Proor. For 0<y<:z one concludes from the relation

02 £ o2 (2(z—y)

that z € C, implies y € C,. Fyom the same relation one gets @(nz)=¢(0) for all
ne N if z e Cy, and therefore ¢(tz)=¢(0) for all t € R,. From

lox+y)—ex)| = ¢(0) ()

one gets further ¢ (x+y)=¢(x)=¢(0) if x,y € C,. All this together implies that
C, is a solid subcone of C. Of course C,, is closed because 4! (E, E') is consistent
with the duality (E, E).

Now for every z=2z,—z, € I,=C,—C, one has |z| € C, because of 2| =z,
+2,. Now (2.2) (ii) implies @(x)=¢(y) for all x,y € C with x—y e Co—C,.
Therefore § given by y(n(x)):=¢(x) is a well defined function on F,, and it is
easy to see that y is again positive definite and continuous with respect to the
quotient topology.

If now E is order complete with E'=E"* then every increasing directed net
(Xier With x:=sup;.; x; converges towards x with respect to A!(E, E'). From
this observation it follows that I, is a band. We set I,: =13, Jo: =19, J,:=JL.
Then one easily deduces from the band decompositions E=1,+ 1, and E’ =J,
+J, and the natural isomorphisms E/I,~I, and (E/Iyy =J, that y is
continuous with respect to A'(E/I,, (E/I,)).

2.8. PROPOSITION. Let @ be a continuous positive definite function on an
arbitrary locally convex vector lattice E. Then there always exist a Fréchet
lattice F, a positive continuous linear map u from E into F, and a continuous
positive definite function  such that ¢ =ou holds. Moreover this Jactorizing
can always be done in such a way that Y (x) <y /(0) for all x € F, with x>0. I fy
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is AY(F, F')-continuous, then \ can further be factorized in the following way.
There exists an (AL)-space G, a positive linear map v from F into G, and a
positive definite and i'(G, G')-continuous function y on G, with = yov.

Proor. Let 2 denote a family of lattice seminorms generating the topology
of E. By the continuity of ¢ there exists for a fixed sequence(e,) of positive
numbers converging to zero a sequence (p,) of seminorms in £ such that ¢(0)
— ¢(x) <, whenever p,(x)< 4, (for a suitable J,). We now set N:=0, . p. 1 (0)
and define F to be the completion of E/N with respect to the quotient topology
coming from the topology on E generated by the sequence (p,). The seminorms
p,; induce in a natural way seminorms j, on F such that F is a Fréchet lattice
whose topology is generated by (p,). Now let u denote the canonical projection
from E into F. By definition of N we have N cI,. Therefore y(u(x)):=¢@(x)
(x € E,) defines a positive definite function y on E/N. y has the property y(0)
—y(y)<¢, whenever p,(y)<9, for y € (E/N),. Thus ¢ is continuous on E/N
and it is easy to see now that i possesses a unique positive definite and
continuous extension, which we again denote by . By factorizing F if
necessary as in (2.7) we can even assume ¥ (y) <y (0) for y>0.

Now let us suppose that ¥ is A'(F, F')-continuous. Then there exists a
sequence (z,) in F’, such that {y,z,> <1 implies Y (0) —y (y) <¢,. We choose a
suitable sequence (a,) of positive numbers such that z:=3%,.Na,2, is an
element of F’,. Then there is a sequence (#,) in R, such that {y,z) <n, always
implies ¢ (0)— ¥ (y)<¢,. Now we make the same procedure of factorizing as in
the first step of the proof with respect to the single seminorm p, (p,(y):
={|yl,z)). As p, is an (AL)-seminorm, the resulting quotient space G is an
(AL)-space. In fact we have G= (F, z) in the terminology of [9]. If v denotes the
projection from F into G, it is now clear how to define the desired positive
definite function .

2.9. DeriniTION. We call a locally convex vector lattice E a CP-vector lattice if
the family of all continuous (AM)-seminorms on E generates a topology
consistent with the duality (E,E’). In this case we call this topology the
CP-topology on E and denote it by c*(E, E').

If E is a Ct-vector lattice, then by definition A'(E,E)Sc”(E,E)S T, if
denotes the given topology on E. A prime example of a CP-lattice is the space
CP(X) of all bounded continuous functions on a completely regular space X,
whose topology is given by a family (pp)peg Of seminorms, where # is a
suitable family of subsets of X and the pp are defined by pg(f):=sup,.p f(x).
Another example one gets, if one considers the so-called strict topology on
C’(X). This topology, giving as dual of C’(X) exactly the bounded Radon
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measures on X, is generated by the seminorms of the form p:=sup,_y a,px .,
where (a,) is a null sequence and (K,) is a sequence of compact subsets of X

(see [2]).

2.10. THEOREM. Let E be a C’-lattice. Then every c®(E, E')-continuous positive
definite function @ on E, is the Laplace transform of a p € M% (E,,o(E,E))
with the property

(CR) for every ¢>0 there exists a weakly compact and convex set K with
wK)<e.

Conversely, for any measure y € M (E',,o(E, E)) with the property (CR) the
Laplace transform ¢ =Ly is A'(E, E')-continuous and therefore also c®(E, E))-
continuous.

ProOF. Let ¢ be ¢®(E, E')-continuous. By the method of factorization used in
the proof of (2.8), there exists a projection u from E into a Fréchet lattice F,
whose topology in the present case is generated by a sequence of (AM)-
seminorms, and there exists a positive definite function ¥ on F ., which is
continuous and fulfills the relation ¢ =y ou. Now by theorem (2.5) there exists
a measure 4 on F', (with the weak topology) with LAi=1. We set pu:="u(A).
Then clearly Lu=¢. Now 4 has property (CR) because F is a Mackey space.
Therefore u has property (CR) too. The last assertion follows as in the proof of
proposition (2.4).

ReMARK. If E itself is a Mackey space, then it is unnecessary to demand the
property (CR) because of the fact that then every weakly compact set of E' is
equicontinuous. However the above mentioned example of the space C?(X)
with the strict topology shows that in general one cannot dispense with
property (CR), because C”(X) with the strict topology is in general not a
Mackey space.

The above theorem for the just mentioned case C?(X) with strict topology
has been proved by Hoffman-Jergensen and Ressel in [3]. The strict topology
has the following completeness property: If 2 is the generating family of (AM)-
seminorms, then for any sequence (p,) in 2 there is a p € 2 and a sequence (c,)
of positive numbers such that p,<c,p for all n € N. Let us call a Cb-topology
with that additional property strict. In this case it is not difficult to prove the
following slightly stronger result than (2.10).

2.11. CoroLLARY. Let E be a C’-lattice with strict C-topology. Then in
addition to the statement of (2.10) to every c®-continuous positive definite Sunction
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@ on E, there exists an (AM)-space G and a positive injection v: G' — E'
(weakly continuous) such that ¢ is the Laplace transform of a measure v(v) with
ve M%(G,,0(G,G)).

Now we want to investigate the relation between measures and positive
definite functions for vector lattices which have a more general structure than a
C"-lattice. First we give two results about the support of measures on a cone.

2.12. ProrosITION. Let E be a quasi-complete locally convex lattice and
ue M (E,). As in (2.7) we define

I := {x"€ E': Lu(O)=Lu(x')} .

Then p is concentrated on the solid subcone Ty:=I3NE,, and T, is the smallest
solid subcone of E . with supp (u) < T,.

Proor. Suppose that there exists an x, € supp () with x, ¢ T,. By the
second separation theorem then there is a y € E’ and a neighborhood U (x,)
with U(x,) N Ty =& such that {x,y) =0 for all x € I and {x,y)=6>0 for all
x € U(x,y) (for a suitable 6>0). From this we get y e Cy:=I,NE,. By
assumption we have u(U(x,))>0. But this gives a contradiction by the
inequality

Lp(0)—Lp(y) 2 j (1—e= " du(x)
Ulxo)

2 (1—e u(U(xp) > 0.

Therefore p is concentrated on T,, and it is not hard to prove that T, is the
smallest solid subcone with this property.

2.13. ProposITION. If E is a Fréchet lattice, then for all p € M% (E,) there
exists an a € E, such that supp (u) < E,.

Proor. We first prove the following assertion:

(*) for all >0 there exists an a € E, such that u(E,)<e.

Suppose that (*) is not true. Then there is an £>0 such that for alla e E,
one has u(E,)>e¢. This implies that for all a e E, there is a compact set K,
cE,SNE, such thatyu(K,)>e We now show co (K,)N (E,), = (co denotes
the closed convex hull), so that we can suppose without loss of generality that
all sets K, are convex. For all x € K, we can choose an element y, € E', such
that {x,y,>>c,>0 and {z,y,><0 hold for all z € (E)),. Now

A, = {zeE: {z,y)2¢)

Math. Scand. 45 — 21
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is a closed convex neighborhood of x. Therefore C :=co (4,NK,)< A4, and
C.N(E,), = Because K, is compact, there exists a finite number of elements
in K, say xy,...,x, such that K,cU!_,C,, and therefore co (K,
cco (Ur_, C,). Now suppose that there is a z € co (U, C,)N (E,),. This
means without loss of generality z=su+tv with s+t=1,0<s<1l,ue C,, and
v e co (Ui, C,). But this would imply s™'z=u +s7 e (E,), and therefore
u € (E,)., which is impossible because of C, N E,=J. By this contradiction
we now can assume that for all a € E, there exists a compact and even convex
set K, such that u(K,)>¢ and K, DE:= . By the second separation theorem
one has for all a € E, an element x; € E’, with {x,x,>2=1 for all x € K, and
{x,x,>=0 for all x € E,. This yields for the Laplace transform ¢ =Luyu:

?(0)—o(x,) = J(l —e” ) dp(x)

2 J (I—e=**Ndu(x) 2 (1—e Hu(K) > 3¢.
K,

On the other side the net (x}),.g, has the limit 0 in the L'-topology, because
for all azb e E, one has {(x},b)=0. Therefore the above inequality is a
contradiction to the L!-continuity of ¢. Thus (*) is proven.

By (*) we get for a sequence (a,) in E, u((U,.n E,))=0. By the assumption
that E is a Fréchet lattice, there exists an element a € E, such that U,,ENE_‘,"
cE, Therefore u(E,)=0.

If E is a locally convex lattice whose topology is coarser than the order
topology, then for all ae E, the canonical injections u,: E, —» E are
continuous. This implies that for any continuous positive definite function ¢
on E, the composed function @ou, is the Laplace transform of a measure g, on
the (AL)-space E;, (with the weak topology ¢ (E,, E,)). Furthermore the system
(Ua)ac £, of measures on the positive cones C,, of E,, is a projective system. These
projective systems seem to be a good substitute for the cylindrical measures in
case one is interested in measures on the cone of a vector lattice. The next
proposition gives a criterium, when a projective system (u,),. g, defines in fact a
measure on the cone of the original space E'.

2.14. PROPOSITION. Let ¢ be a continuous positive definite function on the
positive cone C of a Freéchet lattice E and let (u,) be the associated projective
family of measures on the cones C, (a € C). If for all a € C the measure p, is
concentrated on v,(C’), where v, denotes the adjoint of u,, then (u,) can be
identified with an abstract measure on the cone C' of E' furnished with the
cylinder o-algebra with respect to the duality (E', E).
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PRrOOF. E is the inductive limit of the (AM)-spaces E, (see [8]). Therefore E'
is the projective limit of the (AL)-spaces E, with the weak topology ¢(E,,E,)

(a € C). Now (u,),cc defines in an obvious way a finite additive set function on
the algebra

U v (@0 E),
and it is sufficient to show that y is o-additive. To prove that let (a,) denote any
without loss of generality increasing sequence in C and let (B,) be a sequence of
sets B, € #(a(E,,E,)) such that

N v,'(B) = & .

neN

There is an a € C with q, € E, for all n. This implies

Ch:=v,4(B,) € B0(E,,E,)) and () v;!(C,) = &F
neN

(vq,» denotes the adjoint of the canonical map u, . E, —> E, where a,b € C and
a € E,). Now by supposition y, is concentrated on v,(E’) and we have with D:
=M,.nC, that D € v (E'Y. Therefore

lim (05, (B,) = a(D) = 0,

n=*00

and u is o-additive.

RemArk. If E is a Banach lattice, then for all a € C the measure U, is
concentrated on v,(C’) if and only if for all >0 there exists an n=n(g,a) such
that u,(v,(B,)) <S¢, where B, denotes the ball in E' with radius n.

If all the projections v, are surjective, then essentially the same proof shows
that (2.14) is valid without the restriction that E is a Fréchet lattice, and one
gets the following result:

2.15. ProPosITION (see [4] and [7]). If E is the strict inductive limit of a family
(E;) of (AM)-spaces such that E induces the given topology on E, for all i, then
every L'-continuous positive definite function on E, is the Laplace transform of
an abstract measure y on E', (with topology o(E', E)). u is a Radon measure on
E', if E' is a Suslin space. This is the case for example, if E is the space X’ (S) of
all continuous functions with compact support on a locally compact second
countable space S, and therefore E'= M (S) is the space of all Radon measures on
S with the vague topology. -
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3. Cone radonifying maps and the validity of the Bochner theorem.

In the following let E always denote a Banach lattice with positive cone C. A
cylindrical measure y on E is called to be of type p (0 <p < c0), if one has for a
certain constant k=0 and for all x' € E’

fltl”dux'(t) = kX7

1/p
() 1= "5}"151 ( J Itl"dux'(t)> .

w is said to be approximately of type p if p is the cylindrical limit of a net (Wicr
of measures y; with finite support and uniformly bounded type, i.e. sup; ;TP (1,)
<00. u € P(E,) is said to be of order p, if

1/p
WP () 1= (J lell"dﬂ(x)> < 0.

For a cylindrical measure on the cone C the inequality

We set

J}P d”lx‘f(t) = J\ (tl + tl)p d”’x’,,,x’_ (tla t2)

= jltl"'tzlpdﬂx’,,x’,(tptz) = J‘|t|”dpx'(t)

shows that

1/p
™(u) = sup < j t"dux'(t))
x'eB, R,

(B'; :=the positive part of the unit ball B’ of E').

Finally, pe P(C) is said to be cone approximately of type p if u is
approximately of type p and if the approximating measures are all
concentrated on C.

A weakly continuous linear map u from E into a Banach space F is called
(approximately) cone- p-radonifying (or in the case p=1 simply (approximately)
cone radonifying) if u maps every cylindrical measure on C, which is (cone
approximately) of type p, onto a Radon measure on F, of order p. Suppose that
E’ possesses the positive metric approximation property, i.e. the identity idg
can be approximated in the topology of compact convergence by positive linear
maps u;: E' — E’ of finite rank and norm <1. Then every u € P(C) of type p is
also cone approximately of type p. Consequently, every approximately cone p-
radonifying linear map is cone p-radonifying. The proof of this fact is
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essentially the same as the proof of the analogous result for general cylindrical
measures on Banach spaces with the metric approximation property (see [6]
or [10] as general references on this topic).

For a sequence a=(a,) in C and a sequence b= (b,) in a Banach space F we

set
1/p
lalls,, := sup {( Z (a,,,x’}”) X' € B’+}
neN

1/p
Ibll, = (Z ||b.,|l"> ,
neN

and call a linear map u: E - > F cone p-absolutely summing if there is a constant
k =0 such that for all sequences a= (a,) in C one has |[u(a)|| ,<k|al;, ,. One has
the following connection between cone radonifying and cone absolutely
summing maps.

3.1. THEOREM. Let E be a Banach lattice and F be a Banach space with weakly
compact unit ball. Let further u be a weakly continuous linear map from E into F.
Then u is approximately cone p-radonifying (0 <p < 00) if and only if u is cone p-
absolutely summing.

We omit the proof, since it follows essentially the lines of the proof of L.
Schwartz of the analogous theorem about the connection between radonifying
and absolutely summing maps (see [10]).

3.2. CorOLLARY. Let E be a Banach lattice and F be a Banach space. Then one
has the following assertions: ‘

(i) If F is the dual of a Banach space G and if u € ¥ (E,, (F,0(F,G))), then u is
approximately cone p-radonifying if and only if u is cone p-absolutely
summing.

(i) If ue ZL(E,F,), then u is cone p-absolutely summing if and only if u as a
mapping into F" is approximately cone p-radonifying.

(iii) If E' possesses the positive metric approximation property, then
ue Z(E,F,)is cone p-absolutely summing if and only if u: E — F" is cone
p-radonifying.

3.3. CorROLLARY. The following assertions are equivalent:

(i) E is an (AL)-space,
(ii) every cylindrical measure on C of type 1 is already a Radon measure on C"
(with topology a(E",E’)) of order 1.
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Proor. By [9; ch. 1V, theorem 2.7] the identity on a Banach lattice E is cone
absolutely summing if and only if E is an (AL)-space. Now the assertion
follows from the above corollary.

3.4. CorOLLARY. E is an (AM)-space if and only if every u e P(C) of type 1 is
already a Radon measure of order 1 on C' with respect to the topology o (E', E).

The idea of the next theorem is due to Kwapien, who proved the analogous
result for radonifying maps on Banach spaces (see [10, p. 225]).

3.5. THEOREM. Let u: E — G be a weakly continuous positive linear map from
the Banach lattice E into the dual lattice G of a Banach lattice F. If u transforms
every u € P(C), which is cone approximately of type p, into a Radon measure u(u)
on the positive cone D of G (with topology o(G, F)), then u is already
approximately cone p-radonifying.

ProOF. The proof uses the representation of cylindrical measures as linear
random functionals. Let us denote by F(C) the set of all probability measures
on C with finite support, and let (82, o, P) be a fixed probability space which is
diffuse. Then we can imbed F (C) into #(E',L*()) in the following way:

A=Y ag,€F(C)
i=1

is mapped onto

fl = ‘—Zl 1A,v®xi s

where (4)); <,<, is a decomposition of Q with P(A4)=a; and
SilX) (@) 1= (x,x'y  for we A; .

Every f; (1 € F(C)) is positive and one has ©°(4) =1/ f,]l. Thus the image of F(C)
in Z(E', L?(Q)) can be identified with the set S, of all simple functions from Q
into C. Let S, be the closure of S, with respect to the norm of % (E',LP(Q)). If
J'E' — LP(Q) is in §,, then the associated cylindrical measure Ay is cone
approximately of type p. By assumption about u the image u(4 ) is therefore
a Radon measure on D. This implies that the linear random function Sfo'u:
F— L°%Q) is decomposable (see [10, p. 168]), i.e. there exists a unique
g, € L°(Q, D) with gpy>=f(u@)forallye F. If

f= z 1,®x;€8,
i=1
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then

gy = uof = Z 1, ®u(x) .
i=1

The map a: S, — L°(R,D) defined by i(f):=g, is positive homogeneous
and additive. We show that i is continuous at zero, i.e. we show that for all
¢>0, « € JO,1[ there is a 6>0 such that || f| <& (f € S,) implies

J,(a(f)) := inf{t>0: Pla(f)2t]<a) < ¢.

Suppose that @ is not continuous at zero. Then we can without loss of
generality suppose that there is a sequence (f,) in S, with || f,| <1 and J,(i(/,))
=n’. We set f=3%,.yn"%f,. Then fe§, and n~2f,<f for all ne N, and
therefore n™2a(f,)<da(f). This implies Jo(@(f))=n for all n e N. From this
contradiction now the continuity of i at 0 follows.

The function ¢ on L°(Q,D), defined by ®(g):=(inf (1, gl)dP, is also
continuous at zero. Therefore there exists a constant ¢>0 such that for all
fe 8, with ||f| Sc one has (i (f))<1/2.

We now show that u is cone p-absolutely summing. For this let (a,), <k<n DE
an arbitrary sequence in C- with [(@lls, ,<c. Let further (py);<x<, be a
sequence of positive numbers with 37_, p,=1, and let (A1 <k <n denote a
partition of Q with P(A4,)=p,. We set

fi= Z IAA®pk-l/pak'
k=1

Then || f|| = [[(a)ll;,, and therefore
o(u(f) = kz piinf (1, p P lu(ayl) < 1/2.
=1

Now we set py: = [lu(a,)|?/|l(u(ay)l|5 Then one gets || (u(a,))ll,<1/2, and hence
u is cone p-absolutely summing,

From the above theorem we get the following characterization of (AM)-
spaces.

3.6. THEOREM. The following assertions are equivalent:

(i) E is an (AM)-space.
(i) Every continuous positive definite function on C is the Laplace transform of a
Radon measure on (C',6(E', E)).

Proor. In the foregoing section we have already shown that (i) = (ii).
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Suppose now that (ii) is valid, and choose an arbitrary u € P(C') of type 1.
Then for ¢ =Lu we have

?0)-o(x) < J tdp,(t) < kx|
for all x € C. This implies that ¢ is continuous. By assumption therefore u is a
Radon measure on C’. This means that the identity on E’ transforms every
cylindrical measure of type 1 into a Radon measure. Now theorem 3.5 yields
that the identity is cone absolutely summing, and therefore E is an (AM)-space
by corollary 3.4.

3.7. THEOREM. Let E denote a locally convex vector lattice with positive cone
C. Then the following assertions are equivalent:

(i) E is a CP-lattice.

(i) For every neighborhood U of 0 in E, such that pu is a lattice seminorm, there
exists a neighborhood VU of the same type, such that the canonical
imbedding

Xu,v: Eyo — Eyo

is cone absolutely summing.

(iii) Every equicontinuous family of positive definite functions on C is the set of
the Laplace transforms of a family of measures on C', which is uniformly
tight with respect to the system of all weakly compact and equicontinuous
subsets of C'.

ProOF. The proof of the implication (i) = (iii) is contained in the proofs of
theorem 2.5 and theorem 2.10. So we have still to show the implications
(iii) = (i) and (ii) = (i).

(iii) = (ii): Let Sy denote the set of all finite sequences (di); <x<, (n € N) in
C'\ {0} with

n
sup Y (x,a,) < 1.
xeUNC k=1

We have to show that there is a neighborhood V such that k=1 DPyo(a) <1 for
all (a;) € Sy. To every a' = (a}), <ksn € Sy we define the measures

n
Hap = 3. Pibpria
k=1 .

for all p=(p,,...,p,) € R% with p,>0 (k=1,.. .,n) and Yi_, p,=1. Let us
denote this family by M, p. For u e M u,p one computes Lu(0) — Lu(x) < py(x),
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ie. the family L(My p) of Laplace transform is equicontinuous. By assumption
therefore there is a V< U (neighborhood of 0, py lattice seminorm) such that
for all u € My p we have u(V°)>0. For a fixed a'=(a}) € Sy we define

P 1= pyo(ay) / il pvo(a})>-

Then for the associated measure y, , the condition y, ,(V°)>0 implies that
there is a k such that p, 'a;, € V°. This gives

2 prol@) S 1.
k=1

Therefore yy y is cone absolutely summing.

(i) = (i): From [9; theorem 3.8 of ch. IV] it follows that the adjoint map
ny,v: Ey — Ey of xy,y is majorizing (see [9] for the definition). Therefore by
[9; IV, th. 3.4] ny , possesses a factoring

EV_M'M_'I’L’EU7

where M is an (AM)-space, Y, € Z(Ey, M), Yy € (M, Ey) and y positive.
Since U was arbitrary, this shows that E is a C’-lattice.

The above theorem can be generalized as follows:

3.8. THEOREM. Let E be a locally convex vector lattice and let F be an arbitrary
locally convex vector space. Let further (V") denote a neighborhood base in E
(F) of O consisting of closed convex circled neighborhoods, such that in addition
for all U € U the py are lattice seminorms. For T € £ (F,E) the following
assertions are equivalent:

(i) T admits a factoring F 1, G L E, where T, € Z(F,QG),
0T, € £(G,E) and G is a C’-lattice.

(ii) S:="'T is cone absolutely summing in the following sense: To every U € U
there is a Ve ¥ such that the following diagram commutes

El S FI

q

v 557 Fe
where yy,yy are the canonical injections and Sy y is cone absolutely
summing.
(iii) For any equicontinuous set @ of positive definite functions on E , the set ®
oT:={@oT: @ € ®} is the family of Laplace transforms of a uniformly tight
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Jamily of Radon measures on F, (tightness with respect to the
equicontinuous subsets of F).

The proof of (3.8) is similar to the proof of (3.7) and we omit it.

4. An application to the weak convergence of probability measures on a C?-
lattice.

In the following let E always denote a CP-lattice with weak dual F. On F we
consider the system J'; of all equicontinuous, closed, convex and circled sets
K such that the Minkowski functional Pk is an (AL)-norm on Ex. Then clearly
the C’-topology on E is exactly the topology of uniform convergence on X,
and from theorem 2.10 we get the following tightness criterion.

4.1. THEOREM. Let M = MY, (F ) be a norm uniformly bounded family. Then the
Jollowing assertions are equivalent:

() M is uniformly tight.
(i) LM):={Lp:pe My} is equicontinuous for a topology & with i} (E,F)< %
<cb(E, F).
(iii) For all £>0 there is a K € &', such that

sup Jinf(pK,IF)d,u < e€.
ueM

4.2. CoroLLARY. Let (u;);.; be a net on MP (F.) such that the net (Lyy)ier of
Laplace transforms converges pointwise to a Sunction @, which is continuous at
zero for a topology between the L'- and the C"-topology. Then there is a
u e M’ (F,) such that Luy=¢ and lim W= p weakly.

ProoF. The pointwise limit ¢ is again positive definite. Therefore the
continuity of ¢ implies by (2.10) that there is a e M (F,) with Ly= ¢. The
convergence now follows from the compactness of {ueCOF.L)Y : ul =c}in
the weak dual of C?(F,).

4.3. LemMa. For a family M < P(F +) of Poisson measures (i.e. of probability
measures u of the form

1
_ c— oGl —G*
u=-elG:=¢ (nzzok!G>
with G € M% (F,)) the Sollowing assertions are equivalent :

() M is uniformly tight.
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(ii) For every ¢>0 there is a K € A", such that

sup jinf(pK,lF)dG <e.
u=e(G)eM

Proor. (i) = (ii): For all K € % we set Lg(u):=[e P*du. For a Poisson
measure u=e(G) we then have

Li(e(G)) = exp (-(ncu —Je”’" dG)) .

From this we get for all n e N:

—log Lg(e(G)'") = 1/n<||G||—J‘e""‘dG>.

For |G|l =n this implies (because of the inequality t/2<1—e ™" valid for 0¢
=1

1/"<|lGll~f€'”KdG> < 2(1—exp (log Lx(e(G)"'")
or
||G||—je“"<dG < 2n(1— L (e(G)H" .
Now 1 —a<e (0=a<1) always implies n(1 —a'/") < 2¢. Therefore

Jinf(p,(,lp)dG <2 j(l—e"’")dG <ce¢

if 1 —Lg(e(G))<¢/8, and this inequality shows that (i) = (ii) is valid.
The implication (ii) = (i) follows from the estimation

1-Lg(e(G) = ||G||—fe'”KdG = jinf(PK,lp)dG-

For the following application let us recall that a family («,),en, 1)<k, Of
probability measures on a topological vector space is called an infinitesimal
systém, if for every (Borel) neighborhood U of 0 one has

lim inf a,(U) =1.

n—oo 15jsky

4.4. THEOREM. Let (a,;) be an infinitesimal system of probability measures on
F . Then the following assertion are valid:
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ky
(b
J=1 neN

is uniformly tight if and only if the sequence

(5 ).

is uniformly tight, and then both sequences possess the same limit points.

(ii) The sequence
kn
(3
Jj=1 neN

is uniformly tight and converges towards some (infinitely divisible) measure if
and only if the following two conditions hold:

(i) The sequence

(1) there is a K € X, such that

kn
sup ) | inf(pk,15)da,; < oo, and
neN j=1

(2) for all x € E, the limit

Kn

lim ) (1—La,(x) exists .

n=00 j=1

Proor. (i) follows from the inequalities

1—L<e<§ oc,,,-)) =< 1—L(:l"< oz,,,-) = i (1-La,) .
i=1 Ji=1 j=1

(ii): If the sequence (4, with pu,:= %, a,; is uniformly tight and
convergent, then by (i) the sequence (4,) with 4,: =e(§_jf"=l o,;) is also uniformly
tight and convergent, and the conditions (1) and (2) follow with the aid of
theorem 4.1. If conversely the conditions (1) and (2) are valid, then again by
theorem 4.1. the sequence (4,) must be uniformly tight and convergent, and
therefore by (i) also the sequence (u,).
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