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CLUSTER SETS AND BOUNDARY BEHAVIOR
OF QUASIREGULAR MAPPINGS

MATTI VUORINEN

1. Introduction.

Let B", n=2, be the n-dimensional unit ball and G’ a domain in R”, and let
f: B" — G’ be a quasiregular mapping in the sense of Martio, Rickman, and
Viisild [5]. Then f is said to be boundary-preserving at b € dB" if there is a
neighborhood U of b such that the cluster set C(f,b)<0G’ for all b e dB"NU
and boundary-preserving if C(f,b)<=dG’ for all b € 0B".

It follows from a result of Srebro [11, 4.2] that a boundary-preserving
quasiregular mapping f: B" — G'=fB" can be continuously extended to B" if
the boundary of G’ is sufficiently nice. Related results for injective quasiregular
mappings, usually called quasiconformal ones, have been proved by Viisild
and Nidkki (cf. [14, Ch. 17]). Generalizing a result of Viisild about
homeomorphic extension of a quasiconformal mapping the author sharpened
Srebro’s result in [16, 4.7] by showing that if G’ is locally connected on the
boundary, then the extended mapping is discrete.

The results in [11, 4.2] and [16, 4.7] are of global character, because
extension to the whole boundary is investigated. The purpose of this paper is to
study the following problem, which is of local character: Let f: B" — B" be
quasi-regular and boundary-preserving at b € 0B". Is it true that f has a
continuous extension to B"NU where U is a neighborhood of b? Is the
extended mapping discrete? We shall prove the following facts. Firstly, the
continuous extension exists. Secondly, the extended mapping is discrete under
the additional assumption that f be locally homeomorphic. The first result has
as a consequence an alternative proof for the reflection principle of boundary-
preserving quasiregular mappings (cf. Martio and Rickman [4, 5.2]). It is an
open problem, whether the assumption that f be locally homeomorphic can be
omitted in the second result (cf. 3.14).

We shall also study the behavior of a quasiregular mapping at such
boundary peints where it is not boundary-preserving, provided that it is
boundary-preserving at “almost all” boundary points. For this purpose we
consider a quasiregular mapping f: B" — B", boundary-preserving at all points
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of 0B"\ E, where E = 0B" is a compact set of capacity zero. We shall prove that
if fis not boundary-preserving at b € E, then fattains in every neighborhood of
b infinitely many times all values of B" except for a possible subset of B" of
capacity zero. The proof of this result is based on the use of Poleckii’s modulus
inequality (cf. Viisild [15, p. 3]) in the same manner as the proof of the
quasiregular version of the Iversen-Tsuji theorem [17, 3.2]. The results in this
paper are, in general, new only for dimensions n>3 (for n=2, cf. Collingwood-
Lohwater [2], Noshiro [10]).

2. Cluster sets and boundary cluster sets.

2.1. NOTATION AND TERMINOLOGY. We shall use throughout the paper mainly
the same terminology ‘and notation as in [5-6] and [16-17] and we shall list
here some frequently occurring concepts.

All topological operations are performed with respect to R”=R" U {00}, the
one-point compactification of R”, and we assume that n>2 in the sequel. The
coordinate unit vectors are e,,...,e,. We let the notation f:G— A, AcR"
(A<=R") include the assumptions that fis continuous and that G is a domain
in R (R"). The cluster set of f: G — R" at b € G is defined by

C(fb) = Df(Gﬂ U)

where U runs through all neighborhoods of b. If F<dG is non-empty we
denote by C(f,F) the union of the cluster sets C(f,b), b e F. We shall also
consider the boundary cluster set of fat b € 4G with respect to a non-empty set
F <0G defined by

Cr(fib) = Q C(AUN (F\{b})

where U runs through all neighborhoods of b. The multiplicity of y € R" in
DcR" is

N, f,D) = card{f"'(y) N D} .
The maximal multiplicity of fin D is
N(f,D) = sup{N(y,£;D) : yeR"}.

We abbreviate N(f)=N(f, G). Balls and spheres centered at x € R" and with
radius r>0 are denoted, respectively, by

B'(x,r) = {ze R": |z—x|<r},

5" Y(x,r) = {ze R": lz—x|=r} .
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We adopt the abbreviations B"(r)=B"(0, ), B"=B"(1), S"~!(r)=S5""1(0, ), and
s =s5m (1),

2.2. MODULUS OF A PATH FAMILY AND SETS OF CAPACITY ZERO. A path in this
paper is a continuous nonconstant mapping y: [0,c) — A4, ¢>0, where 4 <R”,
and we let [y| denote the set y[0,¢). If E, F, G =R" we let 4(E, F; G) denote the
family of all paths y: [0,1) — R" with y(0) € E, y(0,1)<= G and y(t) —» F as t
— 1. The (n-)modulus of a path family I is denoted by M(I'), see [14, Section
6]. A compact proper subset F of R" is said to be of (conformal) capacity zero if
the modulus of the family consisting of all paths with one endpoint in F, is
zero. An arbitrary subset of R" is said to be of capacity zero if every compact
subset is of capacity zero. Otherwise a set is of positive capacity. We write
cap F=0 and cap F >0, respectively. For an alternative definition of these
concepts, involving n-capacities of condensers, the reader is referred to Ziemer
[19].

The following lemma yields an important lower bound for the modulus of a
path family. It follows from a result of Martio, Rickman, and Viisila [6, 3.1 1]
and from a symmetry principle for the modulus (see e.g. [18, Section 4]).

2.3. LEMMA. Let F =R" be a compact set and let r>0 be such that cap F,>0,
where F,=F N B"(r). Then for every r,>0 there exists 6 >0 such that for every
continuum C<B"(r)\ F with the euclidean diameter d(C)=r, the following
estimate holds: M (4(C, F; B"(r))) 2.

The proof of the following theorem is based on the modulus inequality of
Poleckii (cf. Visild [15, p. 3]) and on Lemma 2.3 (cf. [17, 3.2], [18, 4.2]). This
results is a counterpart to a well known theorem about analytic functions (cf.
Noshiro [10, p. 19 and p. 116]).

2.4. THEOREM. Let f: G — R" be a quasimeromorphic mapping and let E <0G
be a compact set of capacity zero. If be EN(0GN\E) and if the set A
=C(f,b)\ Cag- (f, b) is not empty, then f assumes every value of A infinitely
many times in every neighborhood of b except for a possible subset of A of
capacity zero.

Proor. By performing a preliminary Mobius transformation if necessary we
may assume that b=+ o0o. Suppose that the theorem is not true. Then there
exists r,>0 such that the assertion does not hold for the neighborhood
B*(b,r,) of b. Let
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Ny, = {yeR": N(y,f,B"(b,r)NG)=k}, k=0,1,2,...
= {y e R": N(y, £, B"(b,ro)N G) < 0} .

Then apparently N = U N,. By the choice of ro cap AN N >0 and hence we may
fix an interger k such that cap ANN, >0 (cf. [19]). Choose a compact set F
=ANN, with cap F > 0. There exists a point z € F\ {00} with cap B"(z,r\NF
>0 for every r>0. In the sequel we shall assume that k> 1; the slightly easier
case k=0 requires minor modifications. Let

S7H@) N B(b,ro) = {x1,...,%,) .

Write 6, =min {g,,. .. xk} where ¢, has the same meaning as in [5, 2.9]. For
6 € (0,0,] denote by U (a) the x; -component of f7'B"(z,0), j=1,...,k. Then
U;(o) is a normal nelghborhood of x; and, in particular, U;(o) is a compact
subset of G for ¢ € (0,0,] and j=1,...,k. See [5, 2.4] for terminology. There
exist arbitrarily small numbers r € (0, ro) such that the following conditions are
satisfied:

. S
1) B'(b,r)N <.L=Jl Uj(ao)> = .

2) S"'b,nNE =.
3) z¢C(f,(3G\E) N B'(b,r) .

* Condition 1) is clearly satisfied for all sufficiently small r> 0, since the sets
Uj(oo) are compact. Since capE=0 implies that the one-dimensional
Hausdorfl measure A, (E)=0, there are arbitrarily small r >0 which satisfy 2).
Condition 3) holds for all sufficiently small r>0 by the definition of the
boundary cluster set and by the choice of z. Fix ry € (0,ro) satisfying 1)-3). Fix
o, € (0,0,] with

(2.5) B"(z,0,) N C(f, 6GNE) N B'(b,r)) = & .

Choose a sequence (a;) in G with |a;—b|<r,/j,j=1,2,... and with f(a;) — zas
Jj— oo. This is possible, because z € C(f,b). Smce E is compact, since
b e EN(0G\E), and since A 1(E)=0 we may choose for j=1,2,... a path

yj: [Oa 1) - G n B"(ba rl/j)
with y,{0,1) =G, 7;(0)=a;, and with
;(t) = b; € (0GN\E) N B"(b,r,/j) as t — 1

(cf. [4, 33]). After relabeling if necessary we may assume that
fla) € B"(z,6,/3),j=1,2,.. .. By taking into account (2.5) we may now choose
a continuum C;cly|NG, a; € C; with fC;cB"(z,0,) and with
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fC;N8""z0y/3) # &, fC;NS""!(z20,/3) + &,

for every interger j. Let I';=A(fC;, F; B"(z,5,)). By Lemma 2.3 there is a >0
such that

M) 26 >0 forall j=1,2,....

Denote by I'; the family of the maximal liftings of the elements of I}, starting at
C;. For terminology, we refer the reader to [7, 3.11]. Fix j=2 and a: [0,¢) = G
in.I'; From [7, 3.12] and from (2.5) it follows that either llNE+ & or
lof N S"~ (b, r,) + &. Since cap E=0, the subfamily of I'; consisting of paths of
the former kind has zero modulus and we obtain by [14, 7.5]

M) = o,-,(logj)' ™",

for j=2,3,.... The modulus inequality [15, 3.1] yields
M) = M(fT) = K (/)M(T),

for j=2,3,.... For large j this inequality contradicts the above inequalities.
The proof is complete.

The capacity used in Noshiro’s book [10]—the so called logarithmic
capacity —is defined in a way different from the definition of the conformal
capacity used by us (cf. [10, p. 6]). From the point of view of Theorem 2.4,
which generalizes Theorem 5 on p. 19 of [10], it deserves mentioning that,
when the dimension n=2, the compact null-sets of these capacities coincide.
We refer the reader to the papers of Wallin and Ziemer quoted in [4, 2.3 and
3.2].

3. Extension to boundary and reflection principle.

In the present section we shall first study some properties of discrete open
mappings. These results will be used in the latter part of the section, where we
examine boundary behavior of quasiregular mappings. The main theorem of
this section gives us a reflection principle for locally homeomorphic quasi-
regular mappings.

Recall that a mapping f: G — R"is open if fA is open in R" whenever AcG
is open in G and discrete if f ~'(y) is discrete for every y € fG.

3.1. DerFINITION. Let f: G — G’ be a discrete open mapping. Then f is
boundary-preserving at b € 0G if there is a neighborhood U of b such that
C(f,UNJG)<=dG', and boundary-preserving if it is boundary-preserving at
every point b € G.
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3.2. Remarks. (1) If f: G — R" is open, then it is always true that dfG
< C(f,0G).

(2) If f: G — R" is injective, then f: G — fG is boundary-preserving. As the
example g: B> — B?, g(z)=z2 shows, boundary-preserving mappings need not
be injective. For further examples we refer the reader to Section 4.

The following lemma gives some characterizations for the fact that a discrete
open mapping is boundary-preserving. For the implication (2) = {4) we refer
the reader to Viisdld [13, 5.5] and Martio-Srebro [8, 3.3]. Only the
implication (4) = (1) will be proved here, because the others were proved in
[16, 3.3].

3.3 LeMMA. Let f: G — fG be a discrete open mapping. Then the following
conditions are equivalent:

(1) f is boundary-preserving.

(2) fis closed, i.e. fA is closed in fG whenever A is closed in G.
(3) f is proper, i.e. f ~'K is compact whenever K cfG is compact.
(4) For every y e fG

N(f)= Y lizf) < .

ze S7l(y)

Proor. By [16, 3.3] it suffices to prove (4) = (1). Assume that (1) does not
hold. Then there is a point b € 0G and a sequence (b,) in G so that b, — b and
f(b) — yo € fG as k — oo. Suppose that (4) holds. Then there is an integer p
21 such that f~!(yo)={x,,...,x,} and

p

N(f) = ¥ lix, f)l < 00.

j=1

Fix r>0 such that the x;component U;(r) of f~'B"(y,r) is a normal
neighborhood of x, 1<j<p, and U;(r)NU,(r)=F whenever j+k. This is
possible by [5, 2.9]. For terminology we refer the reader to [5, 2.4]. Since
by — b€ dG and f(b,) — y, as k — oo there is an integer k, such that
b,e GNUP_ U,(r) and f(b,) € B"(yo,r) for k=k,. Let zi, 1<h<a, be the
points of U;(r)Nf ~(f(b,), 1 <j<p. Since U ;(r) is a normal neighborhood of
x; we get by [5, 2.12] and (4)

>

14 a;

N2 3 3 ekl +lilby )
2 ¥l /) +1 = NP+
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This contradiction completes the proof.

3.4. ConpiTiON N(f,b)<o0. Let f: G — R" be discrete open and let b € 0G.
Then we use the notation N(f,b)< oo if there is a neighborhood U of b such
that N(f, U)<oo. Otherwise N (f, b)=o0.

According to Lemma 3.3 a discrete open boundary-preserving mapping f has
finite maximal multiplicity N(f). One may ask whether N(f,b)<oo if f: G
— fG is a discrete open mapping, which is boundary-preserving at b € 9G. It is
easy to show that then N(y, f, U)< oo for all y € R"if U is a neighborhood of b
so that C(f, U NdG)<dfG. However, the following example by Viiséla shows
that the condition N(f,b)<o0o may fail to hold.

3.5. ExaMPLE (due to J. Viisild). (1) We shall construct a discrete open
mapping f/: H — fH, H={(x,y) € R? : x>0} which is boundary-preserving at
every point of 0H \ {oo} and for which N (f,0)= 0. To this end, let the value of
fat (x,y) € H be defined in the polar coordinates (r,p) by r=x, ¢ =y/x. Then
fis a local homeomorphism, hence a discrete open mapping, and C(f, b)={0}
c0fH={0,00} for all b € dH\ {oo}. It is seen that N(f,0)= oo.

(2) We shall now slightly modify the above example so that we get a locally
homeomorphic mapping g: B — B? with the properties C (g, 0B*>\ { —e, }) 0B
and N(g,e;)=00. Let h,: B> - H=h,;B? be a conformal homeomorphism
with C(h,, —e,)={00} and C(h,,e,)={0} and let h,: R*\ {0} =fH — B*\ {0}
be a homeomorphism so that C(h,,0)=0B> and C|(h,, 00)={0}. Then
g=hyofoh,: B> — B? is the desired local homeomorphism.

The next lemma will not be needed in the sequel and it is included mainly
because it completes some earlier results in [16, Section 3]. We remark that the
assumption n >3 of the next lemma is natural, because any domain with more
than one boundary component is not simply connected when n=2. The branch
set B, of a mapping f: G — R"is the set of all points of G at which f fails to be
a local homeomorphism. It is clear that B, is closed in G (cf. [1, 1.1]).

3.6. LEMMA. Let f: B" — fB"cR", n23, be a discrete open closed mapping
and suppose that there exists a domain V containing f B, such that V<fB" and
fB"\ V is simply connected. Then f is injective.

Proor. Since f'is closed

C(f,0B") = () f(B"\ B"(r)) < ofB"

r>0

Math. Scand. 45 - 18
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and there is ¢ € (0,1) such that f(B"\ B"(g))cfB"\ V=A. This inference
shows that the open set f !4 has exactly one component D with 0B"<0D.
Since fis discrete open closed, the mapping f|D: D — A is surjective by [16,
3.6] and [5, 2.5]. The mapping f| D is locally homeomorphic and since 4 is
simply connected, f4D is injective by a monodromy theorem (cf. [1, 5.1] and
[16, 3.8]). Then by Lemma 3.3 N(f)=N(f|D)=1 and hence [ is injective.

3.7. REMARks. (1) It seems to be an open problem whether a discrete open
closed mapping f: B" — fB"<R" must be injective if n>3 and B + is compact.
Observe that by Lemma 3.6 the answer is in the positive if fB"=B" and n>3.
For n=2 such a result fails to hold as the mapping g: B — B2 g(z)= 2>
shows.

{2) Answering to a question of the author Prof. Leon Greenberg has proved
(unpublished) that if f: B" — fB"<R", n>2, is discrete open closed and B,
=(J, then f is a homeomorphism. The proof makes use of Smith’s fixed point
theorem for periodic homeomorphisms.

3.8 Remark. V. M. Goldstein has proved in [3] some results related to
Lemma 3.6 under the additional assumption that the mapping be quasiregular.
From [1, 5.1] and [16, 3.8] it follows that Theorem 3 in [3, p. 1007] holds for
general discrete open closed mappings as well.

In the remaining part of this section we shall consider the behavior of a
quasiregular mapping f: G — B", G< B", close to a set A<0G. We begin with
the following result concerning continuous extendability of f to A. A related
result for boundary-preserving f was proved by Srebro [11, 4.2] (cf. also [16,
4.10]).

3.9. THEOREM. Let G be a domain in B" and let A<=3G N B" be a non-empty
set and suppose that for every b € A there exists a neighborhood U Jor which
UNoG=UNA. Let f: G — B" be a quasiregular mapping with C(f, A)c 0B".
Then f has a limit at every point of A.

Proor. Fix b € A. Choose a neighborhood U of b such that UNG=U N A.
Since C(f,A)NB"(1/2)=¢, there is a number r>0 such that
f7'B"(1/NB"(b,r)=F and B"(b,r)cU. Then B"(b,r)NIG< B"(b,r)N 0B".
Suppose that there is no limit at b. Then there are sequences (a,) and (b,) in B"
with a,, b, € B"(b,r/k), k=1,2,... and f(a) — d, f(b) > b'+da as k — oo
and so that |f(a,)—f(by)|>|a’ —b'|/2 for all k=1,2,.... Join a, and b, in
B"(b,r/k)N B" by a continuum C, and denote by I' « the family of all paths
y: [0,1) = B" with y(0) € fC, and y(t) —» B"(1/2) as t — 1. By Lemma 2.3
there is a 6> 0 such that M (I',) 2 6 for all k. Let I, be the family of the maximal
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liftings of the elements of I'; starting at C,, k=1,2,. ... The terminology is as in
[7, 3.11]. Since f ~'B"(1/2) N B"(b,r)= & and C(f, A)cdB" it follows from [7,
3.12] and [14, 7.5] that for k=2,3,. ..

M(T)) £ o, (logk)' ™"
From [15, 3.1] it follows that for all k
0 <o = M) = K| (f)M(T')

which for large k contradicts the above upper bound. The proof is complete.

By Lemma 3.3 (4) the next theorem provides us with a new proof for the
reflection principle of boundary-preserving quasiregular mappings, which was
proved by Martio and Rickman in [4, 5.2]. Our proof is based on Theorem 3.9
and some results in [16], and it is completely different from the proof in [4].

3.10. THEOREM. Let G=B" and A<0GNOB" be as in Theorem 3.9 and let
f: G — B" be a quasiregular mapping with C(f,A)c0B". Then there is a
quasimeromorphic mapping f;: GU AUaG — R" with f,|G=f, where o is the
reflection in S"~1, if and only if N(f,b)<oo for all b € A.

Proor. Observe that GU AU aG is a domain by assumptions. The necessity
of the condition follows from the fact that the maximal multiplicity of a
discrete open mapping is finite in a relatively compact set (cf. [5, 2.12]). To
prove the sufficiency we observe that by Theorem 3.9 there is a continuous
mapping f: GU A — B", which by reflection (cf. the proofs of [16, 5.10] and [4,
5.2]) can be extended to a continuous mapping f,: GUAUaG — R",
quasimeromorphic in G and aG. Since N(f, b)<oo for b € A it follows from the
proof of [16, 4.5] that f, is light. Since f; 4 =@B" one can show that f; is open
and sense-preserving (cf. Titus-Young [12]). Thus f, is discrete and open by
[12, p. 333]. The proof now follows from [16, 2.2].

3.11. Remark. Let f;: G, —» R", G;=GUAUaG, be the (continuous)
mapping in the proof of Theorem 3.10, which was obtained from f by
reflection. Then a sufficient condition for N(f,b)<o0, b € 4, is the requirement
that the mapping f, be quasilight (i.e. the components of f;'(y) are compact
when y € f,G,). One can verify this claim by estimating the multiplicity
function in terms of the topological index as in [16, 2.10, 2.16]. Thus the
condition N(f,b)<o0, b € 4, can fail to hold only if f; maps onto a point a
connected set C< A with CNJG, + .

Let us continue to examine the situation of Theorem 3.10. According to
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Lemma 3.3 (4) the condition N (f,b)< 0o for b € A is satisfied if C(f,0G)cofG.
Since only the behavior of fnear A is considered in 3.10, one might expect that
the weaker condition C(f, 4) < B" would imply N(f,b)< oo for b € A. Observe
that by Viisild’s example 3.5 (2) this is not true for general discrete open
mappings, not even if B,= (. Here we shall show that this actually is the case
in the situation of 3.10, under the additional assumption that B, = .

3.12. THEOREM. Let G=B" and AcdGNIB" be as in Theorem 3.9 and let
f: G — B" be a locally homeomorphic quasiregular mapping with C(f, A)< 0B".
For x € A and r>0 let U(x,r) denote the component of f'B"(f(x),r) with
x € OU(x,1), where f(x) denotes the limit of f at x (cf. Theorem 3.9). Then for
each x € A there is 6,>0 such that the mapping f|U(x,0,): U(x,0,)
— B"(f(x),0,)NB" is a quasiconformal homeomorphism.

Proor. By Theorem 3.9 fhas a limit at each point x € A, denoted by f(x). If
x € A and r>0, then there exists a >0 such that S € B*(f(x),r)N B" for
y € B"(x,8)N B" and hence there exists exactly one component U (x,r) of
ST'B(f(x),r) with x € dU(x, 7).

Fix x € A. We shall now show that there exists a number 0,>0 with the
desired property.

Choose r, >0 such that B*(x, 3r;)N0G<0B" and B"(x,3r,)NdB"< A and a
path a: [0,1) — B"(x,r;)N B" with a(s) — x when s — 1. By continuity f(a(s))
— f(x) when s — 1. Let to=|f(x(0))—f(x)|>0. For te (0, to) write C(t)
=8""1(f(x),t)N B" and define

s(t) = max{we (0,1) : |f(aw)—f(x)| = ¢} .
Denote by ¢ the hyperbolic metric in BZ. For each t € (0,1,) let
Clbo) = {xe CO) : olx f(x(s() < tang}, e (On2),
€, 0) = {f(a(s))} ,
Ct,n/2) = C(). N

Let C*(t,p) be the a(s(t))-component of f“C(t, ¢) when t € (0,t,) and
¢ € [0,m/2]. For t € (0,t,) let

¢, = sup{p € [0,m/2] : f|C*(t, ) is injective} .

Since f'is locally homeomorphic, it is obvious that ©,>0 for all t € (0,¢,).
We shall now show that there are numbers s(t) € [0, 1) arbitrarily close to 1
such that C*(t,¢) = B"NB"(x,2r,) and ¢,=n/2.
We show first that if t € (0,¢,) and C*(, ®)<B"NB"(x,2r,), then ¢,=n/2.
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Assume that ¢, € (0,7/2). Then C*(t, ¢,) is a compact subset of B" N B"(x, 2r,),
since otherwise

C*(t.p) N (0B"NB"(x,2r)) + &
which yields a contradiction, because C(f,0B" N B"(x,3r,))=dB" and C(t,¢,)

< B" for @, € (0,7/2). Since C*(t, ¢,) is a compact subset of B"N B"(x,2r,), it
follows from a result of Martio, Rickman, and Viisdld [7, 2.2] that f maps

C*(t, ¢,) homeomorphically onto C(t, ¢,). From a result of Zori¢ [20, p. 422],

given also in [7, 3.8], it follows that f'is injective in a neighborhood of C*(t, ¢,).
This fact contradicts the maximality of ¢, Hence we have shown that if
t € (0,t,) and C*(t, ¢,)<B"N B"(x,2r,) then ¢,=m/2.

We shall now show that there are numbers s(t) € [0, 1), arbitrarily close to 1,
such that C*(t,,)<=B"N B"(x,2r,). Suppose that this is not the case. Then
there is a number s, € [0, 1) such that if s(¢) € [sy, 1) then

C*(t,o) N S" 1(x,2r)) + & .

For s(t) € [sg,1) fix x, € C*(t, o) N S"~!(x,2r,). There is ¥, € (0, ¢,) such that
x, € C*(t,y,). Write

I, = A({a(s))} {x.} 5 C*(t,¥), s(t) € [50,1) s
and
r=UI{I: s@t)e€l[s,l)}.
Since f is injective in C*(t,y,),
ST = A({S (s} {f ()} Cty) -
By [14, 10.2] there is a constant b,>0 depending only on n such that for
s(t) € [0, 1)
MUT) 2 =
If @), ¢

By integrating with respect to t and by using the modulus inequality [15, 3.1]
or [7, 2.14] we get by [14, 7.5]

00 = M(fT) £ K(/)M(I) £ K((f)w,-,(log2)' ™"

The last estimate follows since paths in I intersect both §"~'(x,r;) and
S"~1(x,2r,). ‘This contradiction shows that there are numbers s(t) € 0,1)
arbitrarily close to 1 such that C*(t,p,) < B"N B"(x,2r,).

For each k=1,2,... let 5, € (0,1) be such that

a(s, 1) = B(x,2 %) N B".



278 MATTI VUORINEN

Reasoning as above one can prove that for each k there are numbers
s(t) € (s, 1), arbitrarily close to 1, such that

C*(t,p) = B" N B"(x,27**r))

and ¢,=m/2. This observation, together with a diagonal argument, shows that
there is a sequence (t,) in (0,¢,) with limt, =0 and te+1 € (0, t,) for all k such
that ¢, =n/2 and C*(t,,¢,) — x when k — oo.

Let t=t, for some k=1,2,.... Then ¢,=n/2. For ¢ € (0,7/2) let

A, = {d(,0B" : ye Clt,p) \C(t,0)} .
Because sup A4, — 0 as ¢ — 7/2 and because fis open
(3.13) sup{d(z,0B") : z e C*(t,p)\ C*(t,p)} - 0

when ¢ — 7/2. (Otherwise there exist a number u (0,1), a sequence (¢)) in
(0,7/2) with ; — /2 and points x; € C*(t, )\ C*(z, ®;) with |x,| <u for all j
=1,2,.... Choose a subsequence, denoted again by (x;), with x; — x, € B"(u).
Since f(x;) — 0B" it follows that f(x,) € B", which is impossible because f'is
open.) Since for each ¢, 0<p <@, =n/2, C*(t, @) is topologically equivalent to
C(t, @), there is by (3.13) a component D=D, of B"\ C*(t,¢,) such that D
<= B"(x,27*"'r,) where k is determined by t=t,. We shall now show that the
mapping f|D,: D, — fD, is closed and JD, = A, except for finitely many &,
where A,=B"NB"(f(x),t,). From 3.2 (1) and from the definition of D, it
follows that df D= foD, < C(t,) U dB". Suppose that B"\ A, =fD, for infinitely
many k. Together with the above inclusions this implies that C(f, x)=B", since
D, — x. This is not possible, since f has a limit at x. Hence the above inclusions
show that fD, = A4, for all large k, say for k=k,. By Lemma 3.3 f| D, is closed
for k=k,.

Fix k2 k,. Choose g, >0 such that the closure of f(B"N B"(x, 0)) is a subset
of A, Let U, be the unique component of f 714, with x € dU, and
B"N B"(x,g,) <= U,.

Suppose that U,#D,. Fix v>s(t,) with a(v) e B" N B"(x,g,). Let B:[0,1)
— A, be the path

B(w) = f(oc(v—(v-—s(tk))w)), we[0,1).

Since f is a local homeomorphism, there is by [7, 3.12] a unique maximal
(f 1 Uy)-lifting of B starting at a(v), let it be y: [0,¢) = U, NJal. According to [7,
3.12] y(w) — f~'C(t,) when w — ¢. From the definition of s(t,) it follows that
y(w) — C*(t,7/2) when w — ¢ and that ¢=1. Then y(W) = xo=a(s(t,)) when
w— 1. Since fD,=A4, and U, is a component of f ~14,, it follows that
N(f, B"(xo,€))22 for all £¢>0, which is a contradiction, since f is a local
homeomorphism.
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Hence U,=D,. Since f|D, is closed, B,=(J, and fD,=A, is simply
connected, it follows from a monodromy theorem (cf. [1, 5.1] and [16, 3.8])
that f is injective in D,. We have proved the theorem with o,=1,.

3.14. Remarks. (1) Let f: G — B, n2>3, be a quasiregular mapping as in
Theorem 3.9. It is an open problem, whether C(f, A)=dB" implies N (f,b)< 0
for b e A if By+ . Observe that by Theorem 3.12 this is the case if B,=J.

(2) For analytic functions in the plane results stronger than Theorem 3.12
are known (cf. Collingwood-Lohwater [2, p. 94]).

Theorems 3.12 and 3.10 together yield

3.15. CorROLLARY. Let G B" and A<dGNOB" be as in Theorem 3.9 and let
f: G — B" be a locally homeomorphic quasiregular mapping with C(f, A)< dB".
Then there exists a quasimeromorphic mapping f,: GUAUaG — R" with f,|G
={f where « is the reflection in S"™!.

4. Almost boundary-preserving quasiregular mappings.

It was shown in [16, Ch. II] that man); boundary properties of
quasiconformal mappings have their natural generalizations for boundary-
preserving quasiregular mappings. Among the results proved in [16, Section 4]
are those concerning the possibility of extending a boundary-preserving
quasiregular mapping of B™continuously to dB". Theorem 3.9 of the previous
section can be regarded as a local counterpart of Theorem 4.10 in [16], since in
3.9 one assumes that the mapping in question is boundary-preserving only on a
part of the boundary. In the same manner Theorem 3.12 corresponds to
Theorem 4.7 in [16] under the additional assumption that B,= (.

In this section we shall complete the above mentioned results by studying
the behavior of a quasiregular mapping of B" which is boundary-preserving at
the points of dB"\ E, where E < 0B" is a small set. We introduce the following
definition.

4.1. DeFINITION. Let G' be a domain in R" and let f: B" > G’ be a
nonconstant quasiregular mapping. If there exists a compact set E < dB" of
capacity zero such that C(f,0B"\ E;)<dG’ and C(f,b)¢0G'for b € E, then f
is said to be almost boundary-preserving. The (possibly empty) set E  is called
the exceptional set of f.

We now give examples of almost boundary-preserving quasiregular
mappings.
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4.2. ExaMPLEs. (1) Let g: B> — B? be the analytic function

N z+1 2
g(z) = exp <z———1)’ ze B*.
Then C(g,0B*\ {e,})=0B? and we see that g is almost boundary-preserving
with E = {e,}.

(2) By slightly modifying the function of Zori¢ [20] we get a quasiregular
mapping f: B> — B*> such that C(f,0B>\ {e,})cdB? fB3=B3\ {0},
Ny, f,B")=00 for every y € B>\ {0} and such that B,+(J and e, € B, In
many respects, this function resembles the above function g. An n-dimensional
version of this example was given by Martio and Srebro in [8, 8.1].

(3) From the example of Martio and Srebro in [9, 4.1] we get a locally
homeomorphic quasiregular almost boundary-preserving mapping f: B® — T,
where T=fB*<R?3 is an open solid torus. In this example the exceptional set
consists of two points.

The next result follows from Theorem 3.9 and 3.12.

4.3. CoroLLARY. Let f:B"— B" be an almost boundary-preserving
quasiregular mapping. Then f has a limit at every point of dB"\ E IfB,=,
then there is a quasimeromorphic mapping f,: R"\ E ; — R" with f, | B"=f.

The following result gives information about the behavior of an almost
boundary-preserving quasiregular mapping near the exceptional set. For
results related to Theorem 4.4 in the case of analytic functions the reader is
referred to [2, pp. 107-109] and to [10, III § 1, pp. 116-120].

4.4. THEOREM. Let f: B" — B" be an almost boundary-preserving quasiregular
mapping and let b € E,. Then f assumes in every neighborhood of b infinitely
many times every value of B" except for a possible subset of B" of capacity zero.
In particular, C(f,b)=B" and C,p. g,(f,b)=0B"

Proor. Since C(f,0B"\ E ;)< 0B" it follows that COB"\E,( f,b)c0B". From
the Iversen-Tsuji theorem for quasiregular mappings it follows that dC (£:b)
< 0Cypn. g, (f,b) (see [4, 3.10]). Since C(f,b)=B" that inclusion implies that
C(f,b)=B" and Cypn\ E,( f,b)=0B". The proof follows from Theorem 2.4.
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