HYPERBOLIC HARDY CLASS H^1

SHINJI YAMASHITA

1. Introduction.

A meromorphic function f in $D = \{|z| < 1\}$ is known to be of bounded Nevanlinna characteristic if and only if the Shimizu-Ahlfors characteristic function of f.

$$\int_0^r \pi^{-1} t^{-1} \left[\iint_{|z| < t} \frac{|f'(z)|^2}{(1 + |f(z)|^2)^2} \, dx \, dy \right] dt ,$$

is bounded for 0 < r < 1, where z = x + iy; see [3, p. 13]. Similarly, a holomorphic function f in D is of Hardy class H^2 if and only if

$$\int_0^r \pi^{-1} t^{-1} \left[\iint_{|z| < t} |f'(z)|^2 \, dx \, dy \right] dt$$

is bounded for 0 < r < 1. This follows on integrating an obvious version of the Hardy-Stein equality [2, Theorem 3.1, p. 42] applied to f and $\lambda = 2$.

Let now B be the family of f holomorphic and bounded, |f| < 1, in D. Set for $f \in B$,

$$T^*(r,f) = \int_0^r \pi^{-1} t^{-1} \left[\iint_{|z| < t} \frac{|f'(z)|^2}{(1 - |f(z)|^2)^2} dx dy \right] dt ,$$

where 0 < r < 1. The main purpose of the present paper is to study f whose hyperbolic Shimizu-Ahlfors characteristic function $T^*(r, f)$ remains bounded for 0 < r < 1.

It is well known that the disk D is endowed with the non-Euclidean hyperbolic distance

$$\sigma(z,w) = \frac{1}{2} \log \frac{|1 - \bar{z}w| + |z - w|}{|1 - \bar{z}w| - |z - w|}, \quad z, w \in D.$$

As will be shown in Lemma 1, for each $f \in B$ and for each constant $a \in D$, the function $\log \sigma(f, a)$ is subharmonic in D. Therefore, $\sigma(f, a)^p = \exp[p \log \sigma(f, a)]$ is also subharmonic for each p > 0. In particular,

Received February 21, 1979.

$$M_1^*(r, f, a) = \frac{1}{2\pi} \int_0^{2\pi} \sigma(f(re^{i\theta}), a) d\theta$$

is bounded for $0 \le r < 1$ if and only if the subharmonic function $\sigma(f, a)$ admits a harmonic majorant U in D, that is, U is harmonic and $\sigma(f, a) \le U$ in D. Therefore, it is reasonable to say that $f \in B$ is of hyperbolic H^1 if $\sigma(f, 0)$ admits a harmonic majorant in D. Let H^1_h be the family of $f \in B$, being of hyperbolic H^1 . Our main result is

THEOREM 1. For $f \in B$ to be of H_h^1 it is necessary and sufficient that $T^*(r, f)$ is bounded for 0 < r < 1.

Theorem 1 follows from the next theorem on setting a=0.

THEOREM 2. For each $f \in B$, each $a \in D$, and each r, 0 < r < 1, the following inequality holds.

(1.1)
$$T^*(r,f) \leq M_1^*(r,f,a) + \frac{1}{2} \log \left[1 - \left| (f(0) - a)/(1 - \bar{a}f(0)) \right|^2 \right] < T^*(r,f) + \log 2.$$

The inequality (1.1) is sharp. First, $T^*(r,0) = M_1^*(r,0,0) = 0$ for each 0 < r < 1. Next, the constant $\log 2$ in (1.1) cannot be replaced by a smaller positive constant. Actually, for f(z) = z,

$$M_1^*(r, f, 0) - T^*(r, f) = \log(1+r) \rightarrow \log 2 \text{ as } r \rightarrow 1.$$

Let G be a subdomain of D such that the boundary of G has the only one point 1 in common with the unit circle. Assume that there exist r_0 , $0 < r_0 < 1$, and a function A(r), $r_0 < r < 1$, both depending on G, such that the intersection of G with each circle $\{|z|=r\}$, $r_0 < r < 1$, is of linear measure rA(r), where

$$0 < \inf_{r_0 < r < 1} (1-r)^{-1} A(r) \text{ and } \sup_{r_0 < r < 1} (1-r)^{-1} A(r) < +\infty.$$

Let $\mathscr G$ be the family of all domains G of the described type. A typical example of $G \in \mathscr G$ is a triangular domain in D with one vertex at 1 and the other vertices in D. Set $G(\theta) = \{e^{i\theta}z : z \in G\}$ for $G \in \mathscr G$ and $\theta \in [0, 2\pi]$, and set for $f \in B$,

$$S(f,G(\theta)) = \iint_{G(\theta)} \frac{|f'(z)|^2}{(1-|f(z)|^2)^2} dx dy,$$

being the non-Euclidean area of the Riemannian image of $G(\theta)$ by f. We next propose a criterion for $f \in B$ to belong to H_h^1 .

THEOREM 3. Assume that $f \in B$, and assume that, for a certain $G \in \mathcal{G}$,

(1.2)
$$\int_0^{2\pi} S(f, G(\theta)) d\theta < +\infty.$$

Then $f \in H_h^1$. Conversely, if $f \in H_h^1$, then (1.2) holds for each $G \in \mathcal{G}$.

Finally, we assert that H_h^1 is closed for the multiplication and that H_h^1 is convex.

THEOREM 4. For each $f \in H_h^1$, each $g \in H_h^1$, and each constant t, 0 < t < 1, $fg \in H_h^1$ and $tf + (1-t)g \in H_h^1$.

2. Proof of Theorem 2.

The following lemma is fundamental to deduce Theorem 1 from Theorem 2.

LEMMA 1. For each $f \in B$ and for each constant $a \in D$, the function $\log \sigma(f, a)$ is subharmonic in D.

Setting $u(z) = \sigma(z, 0)$, $z \in D$, one obtains for $z \neq 0$, the identity

$$\Delta \log u(z) = (1-|z|^2)^{-2}u(z)^{-2}[|z|^{-1}(1+|z|^2)u(z)-1],$$

which, together with the inequality

$$\frac{1+x^2}{2x}\log\frac{1+x}{1-x} - 1 \ge 0 \quad \text{for} \quad 0 < x < 1 \,,$$

shows that $\Delta \log u \ge 0$ in $D - \{0\}$. Since $\log u(0) = -\infty$, the function $\log u$ is subharmonic in the whole D. Since

$$T_a(f) = (f-a)/(1-\bar{a}f)$$

is holomorphic in D, it follows that the composed function

$$\log \sigma(T_a(f), 0) = \log \sigma(f, a)$$

is subharmonic in D.

For the proof of Theorem 2 we note first that, for $f \in B$ and $a \in D$, the following inequality holds in D.

$$(2.1) \qquad -\frac{1}{2}\log\left(1-|T_a(f)|^2\right) \le \sigma(f,a) < -\frac{1}{2}\log\left(1-|T_a(f)|^2\right) + \log 2.$$

In effect, for $0 \le x < 1$,

$$-\frac{1}{2}\log(1-x^2) \le \sigma(x,0) < -\frac{1}{2}\log(1-x^2) + \log 2,$$

which, together with $\sigma(f, a) = \sigma(|T_a(f)|, 0)$, proves (2.1). We next note that, in D.

$$-\Delta \log (1-|f|^2) = 4f^{*2}, \quad f \in B$$

where $f^* = |f'|/(1-|f|^2)$. Since $(T_a(f))^* = f^*$, it follows that

$$(2.2) -\Delta \log (1 - |T_a(f)|^2) = 4f^{*2}$$

in D.

Setting

$$I(r, f, a) = -\frac{1}{2\pi} \int_{0}^{2\pi} \log (1 - |T_a(f(re^{i\theta}))|^2) d\theta$$

for $f \in B$, $a \in D$, and 0 < r < 1, one observes by the Green formula, together with (2.2), that

(2.3)
$$r \frac{d}{dr} I(r, f, a) = \frac{2}{\pi} \iint_{|z| \le r} f^*(z)^2 dx dy, \quad 0 < r < 1.$$

Since $\lim_{r\to 0} I(r, f, a) = -\log(1 - |T_a(f(0))|^2)$, the integration of (2.3) yields $\frac{1}{2}[I(r, f, a) + \log(1 - |T_a(f(0))|^2)] = T^*(r, f)$, 0 < r < 1. On the other hand, it follows from (2.1) that

$$\frac{1}{2}I(r, f, a) \leq M_1^*(r, f, a) < \frac{1}{2}I(r, f, a) + \log 2,$$

whence follows (1.1) of Theorem 2.

REMARK. For $f \in B$, the function $\log [-\log (1-|f|^2)]$ is subharmonic in D. In effect, except for the zeros of f, one obtains in D,

$$\Delta \log \left[-\log (1 - |f|^2) \right] = 4 \frac{\partial^2}{\partial z \partial \bar{z}} \log \left[-\log (1 - f\bar{f}) \right]$$
$$= 4 \left[\log (1 - |f|^2) \right]^{-2} f^{*2} \left[-\log (1 - |f|^2) - |f|^2 \right] \ge 0.$$

By (2.1) for a=0 and by Theorem 1 one observes that $f \in B$ is of H_h^1 if and only if $-\log(1-|f|^2)$ has a harmonic majorant in D. Let $f(e^{i\theta})$ be the angular limit of $f \in B$, whose existence at almost every $e^{i\theta}$, $\theta \in [0, 2\pi]$, is well known. Assume that $f \in H_h^1$. It then follows from [1, Theorem] (see also [4]) that

$$\sigma(f,0) = \exp[\log \sigma(f,0)]$$

and

$$-\log (1-|f|^2) = \exp \left[\log \left[-\log (1-|f|^2)\right]\right]$$

both have the least harmonic majorants in D, being the Poisson integrals of $\sigma(f(e^{i\theta}), 0)$ and $-\log(1-|f(e^{i\theta})|^2)$ on $[0, 2\pi]$, respectively.

3. Proof of Theorem 3.

We shall make use of

LEMMA 2. Let $f \in B$. Then, $f \in H_h^1$ if and only if

$$E_1 = \iint_D (1-|z|)f^*(z)^2 dx dy < +\infty.$$

First of all, by Theorem 1, f is a member of H_h^1 if and only if

$$E_2 = \int_0^1 \left[\iint_{|z| < r} f^*(z)^2 \, dx \, dy \right] dr < +\infty.$$

Let X_r be the function in D, being one on $\{|z| < r\}$, and zero otherwise. Then

$$E_{2} = \int_{0}^{1} \left[\iint_{D} X_{r}(z) f^{*}(z)^{2} dx dy \right] dr$$
$$= \iint_{D} \left[\int_{0}^{1} X_{r}(z) dr \right] f^{*}(z)^{2} dx dy = E_{1},$$

which proves lemma 2.

For the proof of Theorem 3, let r_0 and A be as described in the definition of $G \in \mathcal{G}$. Let $X(z,\theta)$ be the function of z in D, being one on $G(\theta)$ and zero otherwise, θ ranging on $[0,2\pi]$. Then

(3.1)
$$A(|z|) = \int_{0}^{2\pi} X(z,\theta) d\theta, \quad r_0 < |z| < 1.$$

On the other hand.

$$\int_0^{2\pi} S(f, G(\theta)) d\theta = \iiint_D \left[\int_0^{2\pi} X(z, \theta) d\theta \right] f^*(z)^2 dx dy.$$

It then follows from (3.1) that (1.2) holds if and only if

$$\iint_{r_0 \le |z| \le 1} (1-|z|) f^*(z)^2 dx dy < +\infty.$$

Our Theorem 3 now follows from Lemma 2.

4. Proof of Theorem 4.

According to the remark at the end of Section 2, $F \in H_h^1$ if and only if $-\log(1-|F|^2)$ has a harmonic majorant in D.

For $0 \le P < 1$ and $0 \le Q < 1$,

$$(4.1) -\log(1-P) - \log(1-Q) \ge -\log(1-PQ),$$

being a consequence of $2PQ \le (2\sqrt{PQ} \le)P + Q$. Now, to prove that $fg \in H_h^1$, we have only to apply (4.1) to $P = |f|^2$ and $Q = |g|^2$.

Since the function $-\log(1-x^2)$ is convex for $0 \le x < 1$, it follows that

(4.2)
$$-\log\left[1 - (tP + (1-t)Q)^2\right] \le -t\log\left(1 - P^2\right) - (1-t)\log\left(1 - Q^2\right)$$

for $0 \le P < 1$ and $0 \le Q < 1$. Therefore,

$$-\log(1-|tf+(1-t)g|^2) \leq -\log[1-(t|f|+(1-t)|g|)^2],$$

together with (4.2), where P = |f|, Q = |g|, proves that $tf + (1 - t)g \in H_h^1$.

REFERENCES

- L. Gårding and L. Hörmander, Strongly subharmonic functions, Math. Scand. 15 (1964), 93-96;
 Correction, ibid. 18 (1966), 183.
- W. K. Hayman, Multivalent functions (Cambridge Tracts in Mathematics and Mathematical Physics 48), Cambridge University Press, London, 1958.
- 3. W. K. Hayman, Meromorphic functions (Oxford Mathematical Monographs), Oxford University Press, London, 1964.
- E. D. Solomentsev, On some classes of subharmonic functions (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. (1938), 571-582.

DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU TOKYO, 158 JAPAN