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HYPERBOLIC HARDY CLASS H!

SHINJI YAMASHITA

1. Introduction.

A meromorphic function f in D={|z|<1} is known to be of bounded
Nevanlinna characteristic if and only if the Shimizu—Ahlfors characteristic

function of f,
g S @) d]d
L” t m.. TEIE A

is bounded for O<r<1, where z=x+iy; see [3, p. 13]. Similarly, a
holomorphic function fin D is of Hardy class H? if and only if

J‘r n_lt_‘[‘[[ If’(z)lzdxdy:'dt
0 |z| <t

is bounded for 0<r< 1. This follows on integrating an obvious version of the
Hardy-Stein equality [2, Theorem 3.1, p. 42] applied to fand A=2.
Let now B be the family of f holomorphic and bounded, |f| <1, in D. Set for

feB,
P If @) ]
* = =1 ——— __dxdy |dt,
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where 0 <r<1. The main purpose of the present paper is to study f whose
hyperbolic Shimizu-Ahlfors characteristic function T*(r, f) remains bounded
for O<r<1.

It is well known that the disk D is endowed with the non-Euclidean
hyperbolic distance '

[1—zZw|+|z—w|

a(z,w) = ilo zzweD.

ST p—y

As will be shown in Lemma 1, for each f € B and for each constant a € D, the
function log o (f, a) is subharmonic in D. Therefore, o (f,a)” =exp [ploga(f,a)]
is also subharmonic for each p>0. In particular,
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2n
M¥(r, f,a) = ~—1——J a(f(re),a)do
2n Jo
is bounded for 0=r <1 if and only if the subharmonic function o (f, a) admits a
harmonic majorant U in D, that is, U is harmonic and o(f,a)<U in D.
Therefore, it is reasonable to say that f € B is of hyperbolic H' if o(f,0) admits
a harmonic thajorant in D. Let H; be the family of f € B, being of hyperbolic
H!. Our main result is

THEOREM 1. For f € B to be of H}, it is necessary and sufficient that T*(r, f) is
bounded for 0<r<1.

Theorem 1 follows from the next theorem on setting a=0.

THEOREM 2. For each fe€ B, each a € D, and each r,0<r<1, the following
inequality holds.

(1.1) T*(r,f) £ M} (r, fia)+3log[1—|(f(0)—a)/(1—af (0))1*]
< T*(r, f)+log2 .

The inequality (1.1) is sharp. First, T*(r,0)= M ¥(r,0,0)=0 for each O<r<1.
Next, the constant log2 in (1.1) cannot be replaced by a smaller positive
constant. Actually, for f(z)=z,

*(r, f,0)=T*(r,f) = log(1+r) — log2 as r > 1.

Let G be a subdomain of D such that the boundary of G has the only one
point 1 in common with the unit circle. Assume that there exist ry,0<ry <1,
and a function A(r), ry <r<1, both depending on G, such that the intersection
of G with each circle {|z|=r}, ro<r<1, is of linear measure rA(r), where

0< inf (1—-r)"'A(r) and sup (1—-r)"'A(r)<+00.
ro<r<l1 ro<r<l1
Let % be the family of all domains G of the described type. A typical example of
G € % is a triangular domain in D with one vertex at 1 and the other vertices
in D. Set G(0)={e"z ; z € G} for G € % and 6 € [0,2n], and set for f€ B,

T
S£6) = HG«» [TRTAE S

being the non-Euclidean area of the Riemannian image of G(6) by f. We next
propose a criterion for f€ B to belong to H}.
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THEOREM 3. Assume that f € B, and assume that, for a certain G € 9,

(1.2) r" S(£,G(0))d0 < +oo .

0

Then f € H}. Conversely, if f e H}, then (1.2) holds for each G € 4.

Finally, we assert that H, is closed for the multiplication and that H} is
convex.
THEOREM 4. For each f € H}, each g € H}, and each constant t,0<t<1,

feeH, and tf+(1—t)g e H} .

2. Proof of Theorem 2.

The following lemma is fundamental to deduce Theorem 1 from Theorem 2.

LemMA 1. For each f € B and for each constant a € D, the function loga(f,a)
is subharmonic in D.
Setting u(z)=0(z,0), z € D, one obtains for z+0, the identity
Alogu(z) = (1—12*)"2u(z)2[lzl = (1 +|zPP)u(z)-1],
which, together with the inequality

1+x2IO 1+x
2x gl—x

—1 20 for 0<x<1,

shows that 4logu=0 in D—{0}. Since logu(0)= — oo, the function logu is
subharmonic in the whole D. Since

T.(f) = (f—a)/(1-af)
is holomorphic in D, it follows that the composed function
loga(T,(f),0) = loga(f.a)
is subharmonic in D.

For the proof of Theorem 2 we note first that, for fe B and a € D, the
following inequality holds in D.

@21  —dlog (1-IT,(/)P) < a(fa) < —}log (1—|T.(f))+log2 .
In effect, for 0=x<1,

—Llog(1—-x% £ a(x,0) < —4log(1—x*)+log2,
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which, together with ¢(f,a)=0(|T,(f)|,0), proves (2.1). We next note that, in D.
—dlog (1-|fI*) = 4/**, feB,
where f*=|f'|/(1—|f]?). Since (T,(f))*=f*, it follows that
22) —dlog (1-|T,(f)I?) = 4f*?
in D.
Setting
1 (% .
I(r, f,a) = ———J log (1 —|T,(f (re")?)do
2n ),

for fe B, ae D, and 0<r<1, one observes by the Green formula, together
with (2.2), that

2.3) ril(r,j;a) _2 Jf f*(@)?dxdy, O<r<1.
dr n |z <r

Since lim, .o I(r, f,a)= —log (1 —|T,(f(0))]?), the integration of (2.3) yields
I (r, fa)+log (1= |T,(f(O)*)]=T*(r, f), 0<r<1. On the other hand, it
follows from (2.1) that

A (r, f,a) < MY, fra) < HI(r, f,a)+10g2,

whence follows (1.1) of Theorem 2.

ReMark. For f'e B, the function log [ —log (1 — |£1%)] is subharmonic in D. In
effect, except for the zeros of f, one obtains in D,

2

0
Alog[ ~log (1~|/1%)] = 4—log[~log (1 ~f)]

= 4flog (1—|f1]72f**[~log (1 ~|fP)—IfPP1 2 0.

By (2.1) for a=0 and by Theorem 1 one observes that f e Bis of H} if and only
if —log (1—|f1?) has a harmonic majorant in D. Let f(¢’®) be the angular limit
of f € B, whose existence at almost every €', 0 € [0, 2n], is well known. Assume
that f'e Hj. It then follows from [1, Theorem] (see also [4]) that

0(£,0) = exp[loga(f,0)]
and
—log (1-1f1?) = exp[log[—~log (1—|f1?)]]

both have the least harmonic majorants in D, being the Poisson integrals of
o(f(e"%),0) and —log (1—|f(e®)|?) on [0,2n], respectively.
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3. Proof of Theorem 3.
We shall make use of

LEMMA 2. Let f€ B. Then, fe H} if and only if

E, = H (1=|z)f*(z)?dxdy < +00.
D

First of all, by Theorem 1, fis a member of H} if and only if

1 - r
E, = J U‘ f*(z)zdxdy]dr < +00.
0 Jlzl<r

Let X, be the function in D, being one on {|z|<r}, and zero otherwise. Then

rL I
E, = ﬂ‘ X, (2)f*(2)? dxdy:l dr
JoLJJD

.
= f Ul Xr(Z)dr]f*(Z)zdxdy =E,,
JJD 0

For the proof of Theorem 3, let r, and A4 be as described in the definition of
G e 9. Let X(z,0) be the function of z in D, being one on G(0) and zero
otherwise, 6 ranging on [0,2x]. Then

which proves lemma 2.

2n
3.1 A(z]) = j X(z;0)do, ro <7l < 1.

0

On the other hand,

rn (£G@)d jj [J (z,0 de]f (z)*dxdy .

It then follows from (3.1) that (1.2) holds if and only if

_U (1—=|z])f*(z)*dxdy < +00.
ro<|z| <1

Our Theorem 3 now follows from Lemma 2.

4. Proof of Theorem 4.

According to the remark at the end of Section 2, F € H;, if and only if
—log (1 —|F|?) has a harmonic majorant in D.
For 0<P<1 and 0=Q<1,
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(4.1) —log (1-P)—log(1-Q) 2 —log(1-PQ),

being a consequence of 2PQ < (2]/ PQ <)P + Q. Now, to prove that fg € H}, we

have only to apply (4.1) to P=|f]* and Q=|g|>.
Since the function —log (1 —x2) is convex for 0< x <1, it follows that

4.2) —log[1—(tP+(1-0)Q)4]
< —tlog (1-P*)—(1-1)log (1-Q%
for 0= P<1 and 0= Q< 1. Therefore,
—log (1—Jtf+(1—-1)gl’) < —log[1—(elf1+ (1-1)lg)],
together with (4.2), where P=|f|, Q =|g|, proves that tf+ (1 —t)g € H}.
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