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A SEPARATION PROPERTY OF PLANE CONVEX SETS

HELGE TVERBERG

1. Introduction.
The main result to be proved in this paper is

THEOREM 1. For every natural number k there is an integer K =K, (k, 1) with
the following property.

Whenever C,,...,Cg are nonempty convex sets in R%, with pairwise disjoint
relative interiors, there is a closed halfplane which contains at least k of the sets,
while its complementary closed halfplane contains at least one of the remaining
K —k sets.

The well known case k=1, and the case k=2, are basic to the proof, and we
formulate

Tueorem 2. K,(1,1)=2, K,(2,1)=5.

The proof of Theorem 2 requires some detailed geometric considerations,
while Theorem 1 follows quite simply from Theorem 2, by means of
Carathéodory’s and Ramsey’s theorems. We use, in fact, a generalization of
Carathéodory’s theorem (see Theorem 3). We could have used Carathéodory’s
original theorem instead, but it would then be necessary to compute, or at least
prove the existence of, K,(3,1). This number is at present unknown.

It is natural to ask for numbers K,(r,s). Examples (to be given in section 5)
show that K,(2,2) and K;(2, 1) do not exist. These examples, due to cand. real.
Kare P. Villanger, are reproduced here with his kind permission.

The nonexistence of K,(2,2) (and hence of K,(2,2), for d=2) is somewhat
disappointing, in view of the original aim of this study. In [5] I proved that it is
always possible to cut a convex d-polytope into finitely many simplices by first
splitting it by a hyperplane, then splitting one of the parts by another
hyperplane, and so on. Considering the process one finds that when a part P,
say, is split into P, and P,, then at least one of P, and P, has fewer facets than
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P. Examples, like a triangular prism in R*, or a cube in R% with its facets
slightly perturbed in a suitable way, show that one cannot in general require
both P, and P, to have fewer facets than P.

It might be possible, however, that up to isomorphism, there are only finitely
many examples like the prism or the “cube” (for a given d). A possible way to
prove this would be: Prove the existence of K=K,_,(2,2). Let now P be a
convex polytope in R? with at least 1+ K facets. Consider one of its Schlegel
diagrams, obtained by choosing a point C just outside some facet F of P and
projecting the remaining facets onto F, with C as the centre of projection. By
the definition of K there would now be a hyperplane H in the (d—1)-space
spanned by F, separating at least two of the projected facets from at least two
other projected facets. Extending H to a hyperplane in R through C, one
would get a splitting of P as desired.

The non-existence of K,(2,2) destroys the project just described, and the
examples to be given in section 5 can even be modified to give Schlegel-
diagrams. The only possibility left, to save the given approach, seems to be use
of more than one Schlegel-diagram for the same P.

2. Caratheodory’s theorem and its generalization.

CT [1] says, in its standard form, that if S is any set in R% then the convex
hull of S is the union of all simplices having vertices in S. This can be written as

(1) convS = |JconvS'; |S/<d+1and S <= S.

It turns out that one can restrict oneself to simplices having s, as a vertex,
where sy € S is any fixed point. Thus

) convS = [JconvS'; |S] <d+1 and spe8 < §.
This result, occurring'in [2], will be used in the proof of

THEOREM 3. Let S be a union of convex sets in RY, all meeting a fixed
hyperplane H. Then
(3) convS = |JconvS'; |S|<dand § = S.

Theorem 3 generalizes CT; if the convex sets are single points, one gets CT
in RY"!. For a good survey of other generalizations of CT, see Reay [4]. See

also Danzer—-Griinbaum-Klee [3] for connections with other basic convexity
theorems.

Proor oF THEOREM 3. Putting S=U C;; i € I, one can write the RHS of (1)
as
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Uconv(C, U...UC, ) {iys o yigey ) < 1.

ta+1

This means that it is sufficient to prove (3) in the case when S is the union of
d+1 convex sets, C,...,C,, all meeting H.

We first choose a point r; from HNC,, i=0,...,d. By Radon’s theorem in
R?"!(=H) we may assume, after renumbering, that there is a point s, so that

So € conv {ro,.. .1} Nconv{r,,,...,r,

for some m,0=m<d—1. Clearly Se € conv S.

Consider now any point g in conv S {=convSU {so}). Applying (2), with §
replaced by SU {s,},:we€ know that

(4) 4 = HoSo+ i+ ... +pgcy, 4 20, le.' =1,

where each ¢; is in S, i.e. in some C,;,. It is no essential restriction to assume
that d ¢ {j(1),...,j(d)}, so that {c,,.. segyeconv (CoU ... UC,_,). As

So € conv {ry,...,r,} < conv(Co U ... U Cio1),

we get from (4) that g € conv (C,U ... U C,- 1) This shows that the LHS of 3)
is a subset of the RHS. The opposite inclusion is trivial.

3. Proof of Theorem 2.

It is well known that K,(1,1)=2 for all d, and we shall make use of this
result. In order to see that K,(2,1)>5, it suffices to consider three congruent
circular discs, mutually tangent, surrounding a fourth, smaller, one, tangent to
all three. It remains to prove that K,(2,1)<5.

Assume that K,(2,1)26 (or does not exist) ie. that there are non-empty
convex plane sets C,,. .., Cs, with mutually disjoint relative interiors, having
the following property: Every line separating two of the sets (weakly) meets the
relative interior of the three others. This assumption we will denote by A, for
short.

Before starting to deduce a contradiction from A, we remark that easy limit
arguments show that the C; can be assumed to be compact and pairwise
disjoint, with non-empty interiors.

Let T" and T" be those two common tangents to C, and C, which separate
C, from C,. Then T'\ (C, U C,) consists of three components X', Y’ and z,
with Y’ between X', Z'. Similarly, T"\ (C, UC,) decomposes into X", Y" and
Z". We choose the lettering so that X’ and X" meet only C,, while Z’ and Z"
meet only C,. (“Meet” is taken to mean that cl (X')N C, + &, etc.).

Now C;NY'=g. For, if C;N Y’ meets, say, the part of T’ between T'N T
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and C,, then any line separating C; from C, avoids C,, which contradicts our
assumption A. Hence we can assume that, say, C;NX'+=F=C;NZ"
Similarly, we find that either C;N X"+ F=C;NZ" or C;NZ"+=F=C;N X",
The former alternative is"excluded by assumption A (any line separating C,
from C; shows this) and so we’re left with the latter.

The considerations above apply to C, and Cj, too, and so we get, up to
symmetry, two cases:

1. C;, C, and C5 meet X' and Z".

2. Cy and C, meet X' and Z”, while C5 meets X"’ and Z'.

In case 1 we observe that a common separating tangent T for C; and C,
cannot meet the sets C,, C,, C5 and C, in the order stated. This means that if
we rename C, and C, by C; and C,, and vice versa, we get case 2, now to be
treated.

Let S be a line separating C, and C,. Up to symmetry there are two
subcases. The first one, when C5N S is between C, NS and C, N S, is easily seen
to be impossible.

In the second subcase when C,NS, say, is between C, NS and C;N S, we
choose the numbering so that C,N T’ is between C;NT' and CsNT'. Then
C,NT" is between C3;NT" and Cs;NT", too. It is now clear that a line
separating C, from Cs can not meet C,. This final contradiction to assumption
A finishes the proof of theorem 2.

4. Proof of Theorem 1.

Let k be a given natural number. There exists, by Ramsey’s theorem, an
integer R = R (k) with the following property: Whenever the 3-subsets of an R-
set S are split into three families F,, F,, and F, then for some i € {1,2,3} there
is a k;-subset S;, S;= S, such that all the 3-subsets of S; belong to the family F,.
Here k, =k, =k+1, k;=5.

We assert that K,(k,1) exists and does not exceed R(k)+k—1 (being
probably much smaller).

Consider R + k — 1 convex sets, as described in Theorem 1. We want to prove
the existence of a closed halfplane having the desired property. We may
assume, by Theorem 2, that k = 3, and also, as in the proof of that theorem, that
the C; are compact and pairwise disjoint, with non-empty interiors. We may
also assume that no horizontal line is tangent to more than one C,.

Now let L be the unique horizontal line which is an upper tangent to one C,,
say C,, while H, the lower closed halfplane bounded by it contains exactly k of
the C;, say C,,...,C,. .

If Cy.,, say, did not meet L in an interior point, then H would be the
halfplane we’re looking for. We may thus assume, upon renumbering of the C,,
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that the interiors of C,,. .., Cy all meet L’ (a line slightly below L) in the stated
order.

Each 3-subset {I,m,n} of {1,...,R}, with [<m<n, now has at least one of
the following three properties.

1. Some line separates C, from C,, and C,.
2. Some line separates C, from C, and C,,.
3. No line separates one of the three sets in question from the two others.

By the definition of R there is either a (k+ 1)-subset of {1,...,R}, all 3-
subsets of which have the same property (1 or 2), or a 5-subset, all 3-subsets of
which have property 3. The last-mentioned possibility is, however, excluded by
Theorem 2, and so we may assume, by symmetry, that all 3-subsets of {1,...,
k+1} have property 1. In particular, the interior of C 1 is disjoint from
conv (C,,UC,) whenever | <m<n=<k+1. But this implies by Theorem 3 (for
d=2) that the interior of C, is disjoint from conv (C,U ... UCy4,), which
finishes the proof of Theorem 1.

5. The non-existence of K,(2,2) and K;(2,1).

Our first example consists of infinitely many line segments in R2, with
disjoint relative interiors, chosen such that the convex hull of any two of them
has the point (1,1) in its interior. This example shows the non-existence of
K,(2,2), and thus of K,(r,s) when r=2,s22.

The second example is a set of infinitely many disjoint lines in R3, chosen
such that no line in R? is orthogonal to more than two of them. (One can for
instance choose a non-horizontal and non-vertical tangent T to the circle x2
+y*=1,z=0and let the set consist of all the lines obtained from T by rotation
around the z-axis.) This example shows the non-existence of K;(2,1), which
implies the non-existence of K,(r,s) whenever d=3 and r+s23.

We return to a more detailed description of the first example. The segments,
to be constructed one by one, are S,,S,,. . ., where S, has endpoints (x,, y,) and
(%, 0), with x,<1<x;, y,> 1. Furthermore the point (1,1) lies above S,. The
endpoint (x,,,y,4+,) of S,,, belongs to S,, with y,,, <y,, and x,,, is chosen
so large as to ensure that (1,1) is an interior point of

conv {(X,, y,), (x5, 0), (x5 +1,0)} .

Thus the x; form an increasing sequence, so that (1, 1) will also be an interior
point of conv (S,US,,) for every m>n, as needed.

There is a difference between the two examples, as the one just described
consists of only countably many sets. Must this be so? Another question which
arises naturally is that of the computation of numbers K,(r,s; C), defined in



260 HELGE TVERBERG

the obvious way by considering, instead of the class of all convex sets in RY,
some suitably restricted class C for which such numbers would exist. Even the
computation of K,(k, 1) in general seems to offer a challenge, however.
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