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LINK CONCORDANCE IMPLIES LINK HOMOTOPY

CHARLES H. GIFFEN*
Abstract.

We prove that concordant links in any 3-manifold are homotopic in the
sense of J. Milnor. The proof is geometrical.

0. Introduction.

The object of this paper is to prove the theorem of the title, namely that link
concordance implies link homotopy, for links in any 3-manifold (orientable or
not). Link concordance was first studied for knots (links with one component)
in the 3-sphere by Fox and Milnor almost twenty years ago, although their
results lay unpublished for nearly a decade [2]. Link homotopy was
introduced and extensively studied by Milnor [3], with refinements made
possible by his subsequent work on isotopy of links [4; Theorems 8, 9].

Yet another link equivalence relation, I-equivalence, was introduced by
Stallings for the purpose of obtaining a generalization [5] of the Chen-
Milnor theorem [4; Theorem 2]. From this it follows readily that the Milnor
link homotopy f-invariants [4; Theorem 8] are link concordance invariants as
well (cf. also Casson [1]). Thus, our result should come as no surprise.

Actually, we also obtain the seemingly stronger result that PL- I-equivalence
of links implies link homotopy; however, a little reflection reveals that the
strength of this generalization is more apparent than real.

Our proofs are entirely geometric and quite elementary. The only significant
external ingredient is a reduction made possible by a result of Tristram [6],
also entirely geometric, extended in a routine way to arbitrary 3-manifolds. D.
Goldsmith has also obtained a somewhat different proof that link concordance
implies link homotopy.

1. Definitions and notational conventions.

We emphasize that 3-manifolds will not be assumed to be either orientable
or without boundary. Furthermore, we work entirely within the PL (piecewise
linear) category.
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Fix a positive integer v and let
S = []'st = {1,...,v} xS

with components S;={j} x S*<S®) for j=1,...,v. A link with v components
(or v-link) in a 3-manifold M? is an imbedding

I: S(v) o Int M3 .

For j=1,...,v the jth component knot of | is the knot I(j): S! ¢ M? given by
1) =10, e St

We shall consider the following equivalence relations on links in M3, Let
Ioo1;: S(v) & M? be v-links.

(1) Congruence (ambient isotopy): lo=1, via h if hy: M3 - M3 0<s=<1,is
an isotopy of M? such that hg=1y: and [y =h;°l,.

Notice that the trace
H:M3IxI - M3xI

of h, given by #(x,s)=(hy(x),s), is a homeomorphism. We may assume
without loss of generality that hsps=1ay2 (exercise).

(2) Concordance: ly=1, via & if L:S(W)xI o Int M3 x I is a locally flat
imbedding such that

L Y Int M3 x {i}) = S() x {i}

and Z(x,i)=1(x) for i=0,1. Clearly if ly=I, via h,, then ly=~l, via £ =
Ho(lyx1;), where # is the trace of h,.

(3) PL-l-equivalence: 1%l via & if £:S)xI o IntM*>xI is an
embedding (not necessarily locally flat) such that £~ (Int M 3x {i})=S(v) x {i}
and Z(x,i)=1(x) for i=0,1. Clearly, a concordance % is always a PL-I-
equivalence, but not conversely [2].

(4) Homotopy: ly=~1, via I, if I;: S(v) — Int M3, 0<s<1 is a continuous 1-
parameter family of maps such that I S;NIS; = for 1<j<j v. Clearly, if
lo=1, via hg, then ly>=1, via [;=hyl,.

If N is a surface and C is a union of (some, not necessarily all) components
of 8N, a ribbon map with respect to C in M?3 is a transverse immersion
#: N o Int M® whose singularities are all ribbon singularities with respect to C;
that is to say, £ is a locally flat local imbedding, and the only multiple points
of ¢ are double points with the following properties:
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(i) each component of the singular locus X(#) of # is an arc, called a
singular arc of ¢,

(ii) if 4 is a singular arc of ¢ (notation: A € n,X(#)), then ¢ 14 is the
disjoint union of two arcs, each mapped homeomorphically onto 4 by #, of
which one, denoted A', is a spanning arc (with respect to C) and the other,
denoted A", is an interior arc —i.e.,

0A' = ANON cC, A" < IntN.
Note that #|.y is necessarily an imbedding. As further notation, let

A= U 4, aH= U 4%

AemoZ(f) AenyZ(f)

also, let A=4"UA4". Finally, let A" € n,4'(#), A" € nyd"(#), and 4 € 1,2 (¥#)
be equivalent statements in the obvious sense.

Figure 1. An ameibeitopy from a 3-link [ to the Borromean rings.
‘The 9 ribbon singularities are also indicated.
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With this done, we define the key (non-equivalence) relation needed for our
study of concordance. Again, ly, !, are v-links in M>3.

(5) Ameibeitopy: I, ~— I, via the ameibeitopy X if
X :S(v)x1I oc Int M3

is a ribbon map with respect to S(v) x {0} such that % (x,i)=1,(x) for i=0, 1.
Figure 1 suggests the image of an ameibeitopy from a rather bizarre 3-link to
the Borromean rings.

Now ifl, > I, via X', then [, =1, via & = (X", 0) where 6: S(v) x I — Iis any
(PL) map such that ¢~ (i)=S(v) x {i} for i=0,1 and
x.9) <1/2  for (x,5) e AN
T NS12 for (xs) e d" .
(Such maps o clearly exist.) This idea is due to Fox.
It will be convenient, for an ameibeitopy .£, to set
Ai(A) = A(A)NS;x 1,  Aj(H) = A"(H)N S;x1
and, if 4 € 7,2 (X"), to define
0'A = unique j such that 4’ ¢ 45(A),
0”"A = unique j such that 4" ¢ 45(X).

2. Ameibeitopy and concordance.

We have noted above that ameibeitopy implies concordance, i.e. if Iy, 1, are v-
links in M? and if I, = I,, then I,~I,. In this section we sketch a proof that
shows the reverse implication holds, provided ameibeitopy is replaced by the
equivalence relation it generates. In other words, concordance is the
equivalence relation generated by ameibeitopy. The essential ingredients are
Tristram’s results [6] and the following, details of which are a routine exercise.

(2.1) LeMMA. Let #: N oc Int M? be a ribbon map with respect to C <N and
let b: I x I oc Int M be compatible with #C (i.e. b(I x )N #C =b(I x ol)). Then
there is an ambient isotopy h,: M® — M?® 0<s<1, supported in any prescribed
neighborhood of b(I x I), such that hy=1yp, h #C= #C, and, if

N' = N IxI(# hbei) ~ (ti)] (i) eIxal),
then #'= ¢ Uh,ob: N’ oc Int M is a ribbon map with respect to
C =0N'-(@N-C)=C— g 'mbIxal) []oIxI/~ .
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The idea of the proof is to move the “band” b so as to intersect the map # as

“nicely as possible”, relative to #C, the movement being accomplished by h,,
with end result the nice band h,ob.

Let Iy, [, be v-links in M? and let L;=1,S(v) with orientation and ordering of

components induced from the canonical ones on S(v). Then Tristam [6; 1.15]
has defined a relation L, > L,

(2.2) ProposITION. Let Iy, 1, be v-links in M3:
(@) if lg = 1y, then L, > L;
(b) if L, = L, then ly=ly — I, =1, for some v-links I, 1.

Proor. Part (a) is left as an easy exercise, since it is not required in the
sequel. Part (b) is sketched as follows. Now L, /> L, involves a ribbon map

g:{1,...,u}xD* oc M3—L,
(with respect to {1,...,u} xS") and p “bands” by,. . b IxI o M3 with
Lo = (... ((Ly+5,{s} xS+, {u—1} x 8. ..+, {1} xS")
(in Tristram’s notation). We may choose an imbedding
F:SMxI o IntM*—%9({1,...,u} x D?)
with [, (x)=#(x,0) (note I, =1, where [, (x)=F(x,1)). For each non-negative

integer 4, let
Nw,#) = Sw)xIU{1,...,4}xD?,

C(v,4) = S x {0} U {1,...,a}xS".

Then we may apply (2.1) to N=N(v,u), C=C(v,p), F=SFU9Y, and b=b,
obtaining, via h, N'=N(v,u—1), C=C(v,u—1), £ M p—1>0, set b'=hb,_,
and apply (2.1) to this situation obtaining, via h say, N"=N(v,u~ 2), C"
~C(v,u—2), #". A total of u applications of (2.1) are possible, the (i+ 1)st to
NO=Nw,u—i), CO=Cv,u—i), bP=h{"Y . .. hhb,_; yielding via hY,
NG+ i+l g+ i<y The end product is N“"~N(v 0)=S(v)xI, C»
~S(v) x {0}, and the resulting ,#*) =" an ameibeitopy lo — [}, where ly=1,.
Since I} =1, as noted above, the result follows.

(2.3) THEOREM. If I,I are v-links in a 3-manifold M3, then I=!' if and only if
there are v-links ly, 1,,. . ., 1 in M3 such that =1y, ' =1, and fori=1,...,q, either
Ii-l > ll' or Ii > li—l’

ProoF. The “only if” part is all that needs proof. However, this follows from
(2.2) and [6; 1.32] (the apparent intermediate congruences may be moved to
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the end of the string). We point out that Tristram’s results (and proofs)
generalize routinely to arbitrary M? (instead of just R?).

3. Desingularizing ameibeitopies.
Our main result is the following.

(3.1) THEOREM. Let ly, |, be v-links in the 3-manifold M?; if l,=1,, then ly~1,.
By (2.3) it suffices to prove the following.

(3.2) ProposITION. Let Iy, 1, be v-links in the 3-manifold M?; if I, — 1, then
lo>~1,.

ReMARks. The proof of (3.2) is actually constructive. That is, given I, — I,
via X, the proof provides a recipe for producing, out of ", a more-or-less
specific homotopy from [, to ;. As a special case, let us call the ameibeitopy 4~
above special if, for each A € nZ(X"), ’A=56"A—i.e. for some j=1,...,v,
A'UA"<S;x 1. The following is trivial.

(3.3) LemMa. If I, = 1, via special X', then ly~1, via l;=H o (1g,,s).

We now set about defining the complexity of an ameibeitopy, which will be
used in the proof of (3.2) (instead of a multiple induction). Let X be an
ameibeitopy of v-links in M> If Aen,Z(H) with dA+5"A, then
A’ € moA'(X') is a bad spanning arc. If B € ny2(X#) with B=0"B=j and if a
bad A" € o4’ () separates S; x {1} from either B’ or B”, then B” € nod"”(X') is
a bad interior arc. For j=1,...,v, let

m; = m(H) = card {4’ € md;(H) | A is bad}

J

m; = m/(A) = card {B" € A1) | B is bad)

J
and set m;=m(A)=m(H)+m](X). Let Z,={ne Z l n=0} and define the
complexity m(A") of A" to be the v-tuple
mx) = (m(A),....m,(H)) e (Z,).

Let (Z.)" have the lexicographic well-ordering: (m,,...,m)<(n,,...,n,)if and
only if for some j=1,...,v and for all i=1,..., j—1, m;=n; and m;<n; The
following is immediate from the definitions.

(3.4) LemMa. If Iy = |, via X', then mj(A')=0 if and only if mj(H)=0; in
particular, the following statements are equivalent:
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(@) A is special;
(b) A" has no bad spanning arcs;
(c) m(A)=(0,...,0).

The following will be used to eliminate bad interior arcs (and could be used
to eliminate any A € nyZ(XA’) such that 0'4A=06"A).

(3.5) PrOPOSITION. Let ly, 1, be v-links in the 3-manifold M? and let l, — 1, via
X furthermore, let A € 11,2 (A') be such that 8 A=090"A=j. Then:

(1) there is a disc DES;x I such that
T=DNS;xdl < dDNS;x{0}

is an arc and such that A”=DNA(A)<IntD;

(2) if DES;x1is any disc satisfying (1), then there is an isotopy of imbeddings
g S xI o S(v)yxI,0=5s=1, with go=1 and supported on Int DUInt T€ D
such that A" Ng, (SW)xI)=;

(3) if g, is any isotopy satisfying (2), and if A ;= A og, and [;=H o (15, 0),
then Iy is a v-link in M3, ly=1Iy~I via I\, I} = |, via X |, and Z(X )=Z(X)
—A.

Proor. For (1) observe that since every component of 4(X) is an arc, 4(%")
— A" cannot separate the interior arc A” from S;x {0} ; hence, we may choose
an arc

J € §;x[0,1)—(4(x)—A4")

which meets A" in one endpoint of J and §; x {0} in the other endpoint of J.
Now we take D to be a regular neighborhood of the tree A”UJ in §;x[0,1)
—(4(AH)— A"). See Figure 2 “before”. For (2) we must have

gs|s<v) «I—(ntpUIntT) = 13

hence, g, is completely determined by gi=gJp: D < D, where go=1, gil-p=7
=1, and g} (D)N A” = . But this is easy to arrange. Finally, (3) is simply an
observation about the effect of g, on the situation. Figure 2 “after” tells all.

To dispatch bad spanning arcs we must be rather more circumspect. First,
note that for any spanning arc A’ € myd(X), the closure of one of its
complementary domains in S;x I is a disc D(A4’') (the other is an annulus). Let
us call A’ € myd'(X) extremal if its disc D(A’) contains (and hence meets) no
other spanning arc of . Since ny4'(X') is a finite set, then for any j=1,...,v
there is an extremal A’ € my4)(X") or else 4;(A)= . Extremal bad spanning
arcs will be handled with the aid of the following (compare Figure 3).
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Before

After

Figure 2. Removing a (bad) interior arc.
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Before

4

After

Figure 3. Removing an extremal spanning arc.
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(3.6) ProPOSITION. Let 1y, [, be v-links in the 3-manifold M3 and let I, — 1, via
X'. Suppose A' € moAj(A) is extremal and that its corresponding A" € D(A’)
(and hence A" ND(A’)= ). Then there is a regular homotopy

H S xI oc IntM?

supported on a disc D satisfying DN A(X")= A" SInt D, such that X =X, A b
is an isotopy of imbeddings (stationary on 0D), and

lg — 1y via Ay

with the following properties: if A} € mod}(X') fori=1,...,q denote the distinct
(interior) arcs such that

A(Ay) = (A (H)=A)U A, U ... U Ay, (disjoint)

where, fori=1,...,q, 0 A;=0A,,;=0'Azy; =], say, and Ay, Adgi cobound a
disc D; in §; x[0,1), that is

0D; = A, U Ay U (D, N S; x {0}),

such that A;U A, ;UAy.;=D;NA(AX",) and A; separates Ay from Ay
moreover, the corresponding interior arcs Aj.,,..., A3, € med" (') all lie in
IntD.

Proor. Triangulate S(v)x I, M? so that & is simplicial. Note that the
condition A” ¢ D(A’) and the extremality of 4’ guarantee that J'|p 4, is an
imbedding. Let V be the star of #"(D(A")) in a second derived subdivision of the
triangulation of M3 Then V is a 3-cell, and VNX'(S(v)xI) is a regular
neighborhood of X' (D(A4)) in A (S(v)xI); hence # 'V is a regular
neighborhood of

H YA (D(A) = D(A)U A" U A, U ... UA, (disjoint)

in S(v) x I. We may take D to be the component of "~ 'V containing A”. Then
A (D) is a disc which spans V, ie. X (D)NoV=x(éD). The two
complementary domains of J#" (D) in V have closures which are also 3-cells, and
one of these, E say, contains 4 (D(A’)). We now take ', to be defined by
requiring ¥ ,(x)=X"(x) for s=0 or xé¢IntD, X |p: Do E, and X' ((D)
=ENJdV=0E— X (D) (this is easy to achieve). The rest of the proof is now
routine. For example, D, is just the component of 2 ~'V which contains A,

ProoF ofF (3.2). If m()=(0,. . .,0), then (3.2) follows from (3.4) and (3.3).
Since (Z,)" is well-ordered with least element (0.. . ., 0), it suffices to show that
if m(#)=*(0,...,0), then there exists a v-link [, in M? such that [,~I; and
I, = [, via some #; with m(¢"))<m(X). If m(A)# (0,. . .,0), then for some
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unique jo=1,...,v, m; (¥)+0 and m;(A)=0 for j>j,; also, mj (H#)+0 by
(3.4). Now let I be the collection of those extremal A" € o4, (') such that (1)
either A’ is bad or the corresponding interior arc A" is bad (6”4 =j,) and (2)
D(A’) contains no bad interior arc B” of J&'; in particular, if A" € I', then
A" £D(A’). Note that if m} (2#')=0, then I' + (¥, and the elements of I' are bad;
hence, if I' = &, then m; (#")+0. If I' + &, choose A’ € I' and apply (3.6) with j
=jo. Since m; (X) =0 for j' > j, and since D(A’) contains no bad interior arc B”
of &', then for any. i=1,...,q as in (3.6), j;<j,. Therefore m; (X ",)=0 for j > j,;
in addition, condition (2) above guarantees that m; (",)=m; (") — 1. Hence,
m(X ") <m(A’) and I, — I, via A, as required. If, on the other hand, I' = (7,
then mj (#')+0 as remarked above, and so we choose a bad 4" € mo4j (KX)
and apply (3.5) with A=2¢"(A"). This yields l,>~I; via I; and I} ~— [, via X,
with m; (A ") =m; (H)—1, my (A |)=m;(KX) for j +j,, and so m(AH"y) <m(K').
This completes the proof of (3.2) and also of (3.1).

ReMARK. We have chosen the “most efficient” simplifying procedure in the
choice of complexity and proof just given, in that only as a “last resort” do we
invoke (3.5), which actually causes I, to be “moved”. The most “gross”
procedure from this standpoint seems to be to define a different complexity
n( )= (X),...,n(A)) e (Z,)" where

nj(A’) = cardmodi(X) .

In this situation, if for some jo=1,...,v, n; (X)+0 and ny(A)=0 for j>jo,
then we would use (3.5) if m) () <n;(X) and (3.6) if m; (A7) =n;, () to
reduce the complexity. Of course, if n(#)=(0,...,0) then [,=1,.

4. Piecewise linear I-equivalence implies link homotopy.
We sketch here a proof of the following.

(4.1) TueOREM. If Iy, 1, are v-links in the 3-manifold M? and if Ioil,, then
lo~1,.

Proor. Without loss of generality we may assume that all points of non-
local flatness of ¥ (where l(,?LIl via %) are interior to S(v) x I. In each §;x I,
j=1,...,v, choose an arc J; which contains all of the non-locally flat points of
& lying in S;x I such that J; meets S;x 0! in just one of its endpoints lying,
say, in S; x {0}. Using these arcs J;, we may deform £ by an isotopy stationary
on S(v) x 8 the non-locally flat points of (the deformed) & are on S(v) x {0}
and so that each S;x {0} contains (at most) one non-locally flat point.
Introducing (by PL isotopy of Io) the reflected inverse of the local knot thus
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determined on each component, we may now resolve the non-local flatness
which is now slice. We have shown that [, is PL-isotopic to a link which is
concordant to /;. Now (3.1) and the fact that isotopy of links implies homotopy
of links give the desired conclusion.
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