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DEFORMATIONS OF GRADED ALGEBRAS

JAN O. KLEPPE

Introduction.

In this paper we study formal deformations of graded algebras and
corresponding problems in projective geometry. Given a graded algebra 4, we
may forget the graded structure and deform A as an algebra. Clearly we also
have a deformation theory respecting the given graded structure of 4. This is
closely related to the corresponding deformation theory of X = Proj (A4). One
objective of this paper is to compare these three theories of deformation.

A basic tool is the cohomology groups of André and Quillen. Let § — A4 be
a graded ring homomorphism and let M be a graded A-module. We shall see
that the groups H'(S, 4, M) are graded A-modules whenever S is noetherian
and S — A is finitely generated. In fact, if we let ,H'(S, A, M) correspond to S-
derivations of degree v, we shall prove that there are canonical isomorphisms

I .H(S, A, M) =~ H'(S,A,M)
for every i=0.

Let n: R — S be a graded surjection satisfying (ker n)2=0. Then the
problem of lifting the S-algebra A4 to R as a graded algebra (respectively as an
algebra) is given as an obstruction sitting in (H*(S, 4, A®gker m) (respectively
in H%(S,A, A®gkern)). Moreover the graded deformations (respectively
deformations) of 4 to R modulo equivalence are in 1—1 correspondence with
oH!(S, A, A®gker ) (respectively H' (S, A, A®sker m)). These generalities are
discussed in chapter 1.

Since there is an injection

oH(S, A, AG;)ker n) = H2(S, A, A,?ker )

sending the obstructions onto each other, we deduce that 4 is liftable to R iff 4
is liftable to R as a graded algebra. We would like to be able to omit the
condition (ker )2 =0. Suppose R is a complete local ring with residue field S
and let m: R — S be the canonical surjection and assume

JHY(S,4,4) =0
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for v>0 or for v<0, then the statement above follows from (2.7) of chapter 2.
In chapter 3 we compare the groups ,H'(S, A4, M) with the correspondmg
groups A(S, X, M(v)) in projective geometry, X = Proj (4). The groups A'(S, X,
—) were introduced by Illusie in [3] and by Laudal [6]. Recall that if X is S-
smooth, then

ANS, X, M) = H'(X,05® M)
S

where Oy is the sheaf of S-derivations on X. If the depth of M with respect to
the ideal m=]13, A, is sufficiently large, we prove that

HU(S, A, M) >~ A'(S, X, M(v)) .

In particular, if depth, A>4, the graded deformations of 4 and the
deformations of X as scheme are in 1—1 correspondence. In the relative case,
let ¢: B — A be a surjective morphism of graded S-algebras such that By=4,
=S§ and let

f: X = Proj(4) —> Y = Proj (B)

be the induced embedding. We would like to compare the groups H'(B, A, M)
and A'(S, f, M(v)). If f is locally a complete intersection, recall that

A(S, £,0x(v) = H'7Y(X,N,(v))

where N, is the normal bundle of X in Y. Again putting depth conditions on M
with respect to the ideal m, we conclude that ,H'(B, A, M) and A'(S, f, M (v)
coincide. It follows that, if depth,, 4>2,

Def® (¢, —) = Hilb, (-)

where Def® (¢, —) is the graded deformation functor of ¢ and where Hilb, (—)
is the local Hilbert functor at X in Y.

Let f: X — P§ be a closed subscheme. In chapter 4 we give conditions on f
under which the graded group H'(S, B, B) has positive or negative grading,
where B is the minimal cone of some twisted embedding of X in P}. Using this,
together with (2.7) we find that the smooth non-liftable projective variety of
Serre [12] gives rise to a graded k-algebra of characteristic p which is non-
liftable as an algebra to characteristic zero. This is done in chapter 5. The
problem of constructing such a k-algebra is, in fact, the main point of this
paper. The proof given here is due to O. A. Laudal and the author. I would also
like to thank G. Ellingsrud for discussions and in particular for pointing out to
us the use of a theorem of M. Schlessinger related to (4.8) of this paper.
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1. Cohomology groups of graded algebras.

Rings will be commutative with unit. Let S-alg be the category of S-algebras
and denote by SF the full subcategory of free S-algebras, i.. the polynomial
algebras in any set of indeterminates defined over S. Given an S-algebra A and
an A-module M, consider the category SF/A=C of morphisms of S-algebras
¢: F — A where F is an object of SF. Define

H(S, A, M) = lim{ Derg (—, M)

where Derg (—, M): C° — Ab is the functor given by
Derg (—, M)(F %> A) = Derg (F,M),

M being an F-module via ¢. See [1] and [6].

If S — A is a homogeneous morphism of graded rings and if M is a graded
A-module, we may of course consider the category of graded S-algebras Sg-alg
and the corresponding subgategory SgF of free graded S-algebras. Let C8 be
the category SgF/A of homogeneous morphisms of graded S-algebras ¢:
F — A, and let ,Derg (—,M): _C_go — Ab be the functor defined by

Derg (—, M)(F % A) = ,Derg (F, M)
= {D € Derg (F, M) | D is homogeneous of degree v} .
DEeFINITION 1.1,
HI(S, A M) = 1@‘_&’.» Derg (—, M) .

DerINiTION 1.2. Given any S-algebra 4 and any surjective n: R — § with
nilpotent kernel, we say the R-algebra A’ is a lifting, or deformation, of 4 to R
if there exists a morphism 4" — A such that the diagram

R—- A

LI
S—- A

is commutative and
1) A=A'®S
R
2) Tork (4',8)=0.

Two liftings A’ and A" are considered equivalent if there is an R-algebra
isomorphism A’ = A" reducing to the identity on A. If p: A — Bis a morphism
of S-algebras and A’ and B’ are liftings of A and B respectively to R, we say that
a morphism

(p/: A/ — B(
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is a lifting, or deformation, of ¢ to R with respect to A" and B’ if ¢'®@pidg=0.
We define graded liftings of graded algebras and homogeneous liftings of
homogeneous morphisms in exactly the same way.

Assume that R % S satisfies (kerm)?=0; then the following results are
proved in [6], see [6, (2.2.5) and (2.3.3)].

THEOREM 1.3. There is an obstruction
o(A) € H*(S, A, A® ker n)
s

which is zero if and only if A can be lifted to R. If 0(A)=0, then the set of
equivalence-classes of liftings is a principal homogeneous space over
H'(S,A,A®gkerm).

THEOREM 1.4. There is an obstruction

o(ep; A,B) e H'(S, A, B®ker )
s

which is zero if and only if ¢ can be lifted to R with respect to A" and B'. If
o(p; A',B)=0 then the set of liftings is a principal homogeneous space over

H°(S, A, B®kern) = Derg (A4, Bkerm) .
s s

The results (1.3) and (1.4) carry over to the graded situation as follows:

THEOREM 1.5. There is an obstruction

00(A) € (H*(S, A, A®ker )
s

which is zero if and only if A can be lifted to a graded R-algebra. If 0y,(A)=0,
then the set of equivalence-classes of graded liftings is a principal homogeneous
space over (H'(S, A, AQker m).

THEOREM 1.6. Given graded liftings A’ and B’ of A and B respectively, there is
an obstruction
oole; A',B) € (H'(S, A, B®ker )
s
which is zero if and only if ¢ can be lifted as a homogeneous morphism to R with

respect to A’ and B'. Moreover, if 0,(@; A', B)=0, then the set of homogeneous
liftings is a principal homogeneous space over

0H"(S,A,B? kern) = ,Derg (A,B? ker ) .
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If we want to compare the graded and the non-graded theories of
deformation, we need to know the relations between the groups (H'(S, 4, M)
and H'(S, A, M). These are given by the following theorem. A proof of this can
also be found in [3].

THEOREM 1.7. Let S — A be a homogeneous ring homomorphism and let M be
a graded A-module. If S is noetherian and S — A is finitely generated, then there
is a canonical isomorphism

[I JH'(S,A,M)— H(S, 4,M)

V= =00

for every i20.
REMARK 1.8. In general, there is an injection
(o]
LI H(S,4,M) - H'(S,4,M)

V= =00

for every i=0.

Proor. Let C%, < C*=SgF/A be the full subcategory defined by the objects

¢@: F — A with F a finitely generated S-algebra. The inclusion C%, s C®and the
forgetful functor C®# — C induce morphisms

1) lim@ Derg (—, M) — lim@ Derg (—, M)
2) lim@ Derg (—, M) — lim@& Derg (—, M) .

I claim that these morphisms are isomorphisms for i 20. This will prove (1.7)
since, as one easily sees, there is a canonical isomorphism of functor

[I ,Derg(—,M)— Derg(—,M)

on g;‘;
For i=0, 1) and 2) are easily proved. For i>0 we need some preliminaries.
Let ¢: F — A be a homogeneous morphism of S-algebras, F € ob SgF, and
suppose ¢ is surjective. Put

F,=FxFx...xF < (i+1)-times .
A 4 A

Consider the complex

li‘r_n‘s_“,}/po Derg (—, M) — ]{r_n‘i@,-«; Derg (—,M) — ...

— lim{@p» Ders (— ;M) —

Math. Scand. 45 — 14
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where the differentials are the alterating sums of morphisms

s (@)

ll‘l_niqu/p?‘l Ders (" . M) - lll_ng/p? Ders (—', M)
induced by the projections F; — F;_,. In this situation there is a Leray
spectral sequence given by the term

'Eg® = HP(limf}po Ders (=, M))

converging to
lim@ Derg (—,M) = HY(S5,4,M) .
For a proof see [6, (2.1.3)]. Similarly, there is a Leray spectral sequence with

'E3® = HP (lm@p;po Ders (—, M)

converging to
lim¢k Derg (—, M) .
We shall prove that for all objects A of Sg-alg 2) is an isomorphism. Given A4
and F as above there is a morphism of Leray spectral sequences given by
3) E}? — 'EB1

converging to 2). Suppose that 2) is an isomorphism for i<n and for every
object A in Sg-alg. Then 3) is an isomorphism for g<n and for every p. Since

Eg’q 5 li‘l'_Ylfs-qE)/FODers(—,M) )

0 for g=1, we find

and since SF/F has a final object, so that li‘r_ng/po

E}T =0
for g=1. In the same way
/Eg'q = li‘l_nfsgf/pﬂ Del's(—,M) =0
for g=1. Since the differentials of the spectral sequences E, and 'E, are of

bidegrees (r, 1 —r), and since for p and q given, ER?=E>? and 'E%?="EP'4 for
some r, the morphisms 3) induce isomorphisms

p.a _, 'EP4
E%* — 'EG

for every p and g with p+g<n. Hence 2) is an isomorphism for i=n. By
induction 2) is an isomorphism for all 4 and i20.
In the same way we prove that 1) is an isomorphism for i20.
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Let R % S be a graded surjection such that
(kerm)> = 0.

It is easy to see that the injection
oH2(S, A,A?kern) — HZ(S,A,A?ker )

maps the obstruction oy(A4) onto o(A). This follows from the construction of
the obstructions (see [6, (2.2)]). Thus we have proved

COROLLARY 1.9. Let R %> S be a graded surjection such that (ker n)*>=0. If A
is a graded S-algebra, then A can be lifted to R iff A can be lifted to R as a
graded algebra.

ReEMARK. 1.10. Let F, be the set of equivalence-classes of liftings of 4 to R
and F9 the corresponding set of graded liftings. If A" is a graded lifting of 4 to
R, then there are isomorphisms and obvious vertical injections fitting into a
commutative diagram

F, = H!(S,A,A®ker)
T i
FY = (H'(S,A, A®kern)

the horizontal isomorphisms are defined via 4’. Hence there is a retraction
pa: F4 — F% Now (1.9) can be generalized as follows. Let ¢p: 4 — B be a
homogeneous morphism. Assume there are liftings A” and B”, not necessarily
graded, of 4 and B such that ¢ is liftable to R with respect to A” and B". Then
¢ admits a graded lifting to R with respect to p4(4”) and pg(B”). We omit the
proof.

Similar results are valid for graded S-modules and for homogeneous module
morphisms.

2. Deformation functors and formal moduli.

We shall in the rest of this paper confine ourselves to the study of deforming
finitely generated algebras.

Consider the following problem. Let n: R — R be a surjective ring
homomorphism and let 4 be any graded R-algebra. Suppose A is liftable to R’
as an ungraded algebra. When will there exist a graded lifting? By (1.9) there
exists a graded lifting if (ker m)>=0. The general situation is, however, more
complicated and leads to the study of hulls of the ungraded and graded
deformation functors of A.

Let V be a complete local ring with maximal ideal my and residue field
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k=V/my. Let | be the category whose objects are artinian local V-algebras with
residue fields k and whose morphisms are local V-homomorphisms. In the
following all liftings are assumed to be flat over R when R is in [ (or in pro-).
Let S be a finitely generated graded k-algebra and assume that we can find
graded liftings Sg of S to R for any R € ob! such that for any morphism n: R’
— R of | there is a morphism Sz — Sg with Sg ® g R=Sg. For each R, fix one
Sg with this property and let ¢: S — A be a finitely generated graded S-
algebra. Relative to the choice of liftings Sg we define

SR — A
Def® (4/S,R) = || } | A’ is a graded lifting of 4 to Sg /~
S - 4

It is easy to see that Def® (4/S, —) is a covariant functor on [ with values in
Sets. This is the graded deformation functor of A/S. Correspondingly, we denote
by Def (4/S, —) the non-graded deformation functor of A/S.

Recall that a morphism of covariant functors F — G on [ is smooth iff the
map

F(R)— F(R) x G(R)
G(R)

is surjective whenever R' — R is surjective. The tangent space t of F is defined
to be

= F(k[e])

where k[¢] € ob/ is the ring of dual numbers.
When we work in the pro-category of I, we denote by Homg, ., (—, —) the
continuous hom-functor in this category.

DEFINITION 2.1. A pro-/ object Ry (A/S) is called a hull for Def (4/S, —) if
there is a smooth morphism of functors

Homs,o.; (Ry(A/S), —) — Def (4/5, —)

.on | which induces an isomorphism on the tangent spaces.

Similarly we define the hull RY(4/S) of Def®(4/S, —). Note that by
definition there is a lifting 4, of A to Sy where H =Ry (A4/S), which will be
called a versal lifting, with the property that each time there is a lifting A’ of A
to Sg where R € ob|, there exists a morphism H — R in pro-I such that 4 ®R
= A'. For further details, see [9] and [6].

Look at the canonical morhism of functors

Def® (4/S, —) — Def (A/S, —)
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and at a corresponding V-morphism

Ry (A/S) — R}(AS) .
If this morphism splits we have solved the problem mentioned at the beginning
of this paragraph with R’ in pro-l and R=k.

In [6] we find a very general theorem describing these hulls. Following [6]
we notice that since 4 is a finitely generated S-algebra, the group H'(S, 4, A) for
a given i is finite as an A-module. We pick a countable k-basis {v;};c, of
homogeneous elements of H'=H(S, A, A) and define a topology on H' in

which a basis for the neighbourhoods of zero are those subspaces containing
all but a finite number of these v;. Let

H'* = Hom¢ (H', k)

for i=1,2 be endowed with the natural topology defined by the dual basis, and
let T' for i=1,2 be the completion of Free, (H'*)=V[v}¥];, in the topology in
which a basis for the neighbourhoods of zero are those ideals containing some
power of the maximal ideal and intersecting H'* in an open subspace. If H'isa
finite k-vector space then T' is a convergent power series algebra on V.

THEOREM 2.2. There is a morphism of complete local rings
0=0(A):T*—> T!
such that

Ry(4/S) = T'®V
TZ

We shall call the morphism o2: T? — T! an obstruction morphism. For a
proof of (2.2), see [6, (4.2.4)]. However, the main ideas of the proof are
contained in the proof of (2.3).

Similar results are true for R),(A4/S). If

oH* = Hom{ (,H(S, A, A), k)

and °T' for i=1,2 are the completion of Freey (,H'*) in the corresponding
topology, then there is a morphism of complete local rings

0o = 0o(A): °T? - °T!
such that
RY(A/S) = °T! ®2 V.
oT

In the proof of the splitting of Ri{A/S) — R$(A/S), the following theorem is
essential. Consider T' for i=1,2 as graded V-algebras by defining the degrees
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of the indeterminates v} to be equal to their degrees considered as elements of
H** If we grade °T" in the same way, then all elements of °T" will be of degree
zero.

THEOREM 2.3. Let A be a finitely generated graded S-algebra. Then there is a
homogeneous obstruction morphism. Moreover, the versal lifting A, is a graded
V-algebra and the structure morphism Sy — A, is homogeneous where H

=Ry(4/S).

Proor. To simplify ideas, assume V=k and H!(S, 4, A) finite as a k-vector
space. Let [, < be the full subcategory consisting of objects R satisfying my =0
where mg SR is the maximal ideal. In this proof we shall denote by B, the
algebra B/mj when B € ob . If we say that A4, is a versal lifting of A to Sh,, then

A, = A,®H,
H

where A, is a versal lifting of 4 to Sy.

The obstruction morphism found in [6] is constructed step by step, i.e. he
constructs morphisms o,: T2 — T} for each n>2 extending 0,_, when n>3
and such that

H, = T!®k for n>2.
T;

We shall follow this construction, and each time investigate when o, and the
corresponding versal lifting to Sy, are graded.
If R € obl,, then by (1.3) we get

Def (4/S,R) = H*(S, A, A)®my = Hom, (H'* mg) = Hom,, (TLR) .

Hence, letting H,=T} and letting o, be trivial, i.e. be the composition of
T — k — T}, we find that.H, represents the functor Def (4/S, —) on I,. Let
A, be the universal lifting of 4 to Sg,. This is the first step of the construction
in [6]. Note, however, that A4, is a graded Sp,-algebra since by (1.5)

Def® (4/S,R) = (H(S,A,AQmy) = oHomy, (T3,R).
By induction we can assume that the morphism
Op-1:Thoy = Th_y

is homogeneous and that if H, _, =T:_ 1®12_ k, the versal lifting 4,_, of 4 to
Sh,., 1s a graded Sy__ -algebra. To construct o,: T2 — T?} it is enough to con-
struct its k-linear restriction o,: H** — T!. Since the morphism T!_,

— H,_, is surjective, it allows us to write

Hn—l = Ttll—l/an—l
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for a certain ideal a,_, in T:_,. Let n,: T3 — T._, be the canonical surjec-
tion and define H, to be

H, = T,/a,,
where a,=7, l(a,,_l)mn. Observe that =n, induces a map

n':H,— H,_,
and that ker 7’ is a k-module via H, — k. Now the problem of lifting the Sy__ -
algebra A4,_, to Sy is by (1.3) given as an obstruction

(*) 0(A,_,) € H*(Sy _,Ay_1, A, ®kern) = H*(S, 4, A)®ker '

Iie

Hom, (H**,ker ') .
Let H, be the cokernel of the composition
H2* 24, kern’ < H),.

Thus killing the obstruction of lifting, we conclude that 4, _, is liftable to Sy .
Let A, be any lifting of 4,_, to Sy . Moreover, by (2.6) there are dotted arrows
fitting into a commutative diagram

o(A,_,)
H?%* (Aa-y) | H:, A,Hn
0(A,-») L3
z/ x/,
’
n—1 Hn—l

This diagram is what is needed to conclude that the equality of n,(a})=a;_,
implies the equality =,(a,)=a,_,. Since it is easy by the definition of a, to see
that the equality of =,_,(a,_;)=a,_, implies the equality of m,(a;)=a,_,, it
follows by induction that

TC,,(G;) = a:l“l .
Therefore we can find a k-linear map o, and a commutative diagram
HZ*
On-1 Trlx H:;
f )

1 —_—
Tn—l n-1

*
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such that

H,=T!®k.
T;

This is the general step of Laudals construction. Finally we set
Ry(A/S) = limH, and o = limo,.

Note that the obstruction o(4,_,) in (*) is homogeneous. This follows from
(1.5) and the proof of (1.9) since 4,_, is a graded Sy _ -algebra. Moreover, we
can find a homogeneous k-linear map o, in (**) and since it follows that Sy _is
graded and since any lifting A, of 4,_, to Sy, serves as a versal lifting when n
23, then by (1.9) we may choose a graded lifting to Sy .

If V+k and H'(S, 4, A) is finite as a k-vector space, just as in the general
step, let V, be the largest quotient of V, = V/m? such that A is liftable to Sy,
Note that if R € ob [, then A is liftable to Sg iff V, — R factorizes via V, — V5,
see (2.6). And one easily defines a morphism o,: T3 — T} such that

T:QV, = T;®V)
T2 v,
where the morphism T35 — V, is V,-linear and sends the images of the
indeterminates in T3 to zero in V,. Put
H2 = T;@ V2 .
T3
Moreover, pick a lifting of A to Sy,. If V, — R factors via V, — V), we may
use this lifting to define an isomorphism
Def (4/S,R) = H'(S,A,A)®mg = Hom, (T}, R).
Using this we get an isomorphism
Def (4/S,R) = Hom,, (H,, R)

for any R € ob,. Both sets might however be empty. This is the corresponding
first step of the construction whén Vk. By (1.9) there is a graded lifting of A
to Sy,, and we fay use this lifting to define isomorphisms

Def (4/S,R) = Hom, (H,, R)
Def® (4/S,R) = (Hom, (H,,R).

Clearly the obstruction morphism o,: T2 — T} is homogeneous and the
universal lifting A, of A to Sy, is contained in the subset Def® (4/S,H,) of
Def (A4/S, H,). The arguments for the rest of the proof in this case are as for the
case V=k. Finally if H'(S, A, A) has infinite k-dimension, using the same
arguments as above, there is no trouble in proving (2.3), see [6, (4.2.4)].
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REMARK 2.4. Theorem (2.3) is essentially proved by Pinkham in [8, (2.3)]
under some restrictions such as ¥=k and by different methods.

The following proposition may throw some light on the morphism Ry (A/S)
— RY(A/S) and is needed in our proof of the splitting of Ry (4/S) — R$(A/S).

PROPOSITION 2.5. Let p': T — °T' for i=1,2 be the surjections induced from
the natural injections (H'(S, A, A) — Hi(S, A, A). Then there are homogeneous
obstruction morphisms

0: T > T!
00: °T* - °T!

such that p'o=o0,p* and such that the induced morphism Ry(A/S) — R$(A/S)
makes the following diagram commutative
Def® (A/S, —) — Def (4/S, —)
1 T
Hom (R$(4/S), —) — Hom (Ry(A/S), —)
where the morphism of the deformation functors is the natural one and where the

vertical morphisms are as in (2.1).
In the proof of (2.5), we need the following easy lemma which we will not
prove. See [6, (4.2.3)].
LeEMMA 2.6. Consider the commutative diagram
R} — R;

n} |
R, — R,

where objects and morphisms are in l. Assume m; and m, surjective and (ker m,)?
= (kerm,?=0. If A, is a lifting of A to Sg, and A=A, @R, R;, then

H?*(Sg,, A1, A; @kerny) — HZ(SRZ,AZ,AZ(I?kernZ)
Rl 2
maps the obstruction o(A,) onto 0(A,).

ProoOF OF (2.5). Assume H'(S, A4, A) has finite k-dimension and use the
notations from the proof of (2.3). In the same way, let
R%(A4/S) = imH] and oo = li}_no‘,f.

(2.5) follows if we prove that there are homogeneous morphisms o, and o, such
that the diagram
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T? - °T2
1) {o. {0

Tl — OTl
is commutative for n=2 and that

if 4, is a graded versal lifting of 4 to Sy_for the non-graded deformation
2) functor, then 4,®y, H? is a versal lifting to Spe for the graded deformation
functor.

For n=2, 1) and 2) are easy. Assume 1) and 2) for n <t — 1. It follows from (2.6)
and from the construction of o0, and 0? that 1) holds for n=t. Since 4, is a
graded lifting of 4,_, to Sy and since H, — H? is homogeneous, it follows that
A, @y H is a graded lifting of 4,_, ®p,_, H]-;. S0 2) holds for n=t.

The case where H!(S, 4, A) has infinite k-dimension is similarly treated.

The main result we have been aiming at, is now a consequence of (2.3) and
(2.5).

THeEOREM 2.7. If H(S, A, A)=0 for v>0 or if \H'(S, A, A)=0 for v<O0 then the
morphism
Ry(A/S) — RY(A/S)

of (2.5) splits and its right-inverse is a local V-homomorphism.
Proor. Denoting by ,(T*) the elements of T' of degree zero, there are by
(2.3) and (2.5) commutative diagrams
OHZ* c H2* —_— OHZ*
Lo e
o) g T 25 °T!
However, since H' (S, A4, A) is positively or negatively graded, the composition

p'i! is the identity. Using (2.2) and the corresponding characterization for the
graded case, we are done.

Note also the following consequences of (2.2) and (2.5).

CoroLLARY 2.8. i) If V — Ry(A/S) is formally smooth, so is V — R$(A/S)
ii) If V— RY(A/S) is formally smooth, then

Ry (A/S) — RY(A/S)
splits.
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Proor. I claim that ¥V — Ry(4/S) is formally smooth iff the obstruction
morphism o: T? — T? is trivial. Clearly if o: T?> — T! is trivial, then

Ry(4/S) = T'.

Conversely if Ry (4/S) is formally smooth, then there is a morphism Ry (4/S)
— T!, thus proving that S — A is liftable to Sy This, together with the
construction of Ry (A4/S), see the proof of (2.3), we conclude that T' — Ry (A4/S)
is the identity. It follows that o is trivial. Clearly the same arguments work for
the graded case too.

By (2.5) we know that p'o = o0,p?. Assuming that o is trivial, we conclude that
0, is trivial too since p? is surjective. Clearly (ii) is easy since by assumption
RY(A4/S)="T".

ReEMARK 2.9. 1) If H!(S, A, A) is negatively (respectively positively) graded and
if A[T] is a polynomial algebra in one variable over A where deg T=1
(respectively deg T= —1), then one may prove that there is an isomorphism

RY(A[T]/S) = Ry(A/S).
From this isomorphism, noting that there exists a natural morphism

RV(A[TV/S) — Ry(A4/S),

(2.7) will follow, see [5]. The idea of introducing the algebra A[T] and
comparing graded deformations of this algebra with non-graded deformations
of A is due to Pinkham, see [8, (4.2) and (5.1)], and also (3.8) of this paper.
where I formulate a slight generalization of one of his theorems. So (2.7) follows
from his results when H(S, A, A) is negatively graded and X =Proj (4) is S-
smooth where S=k=V is an algebraically closed field.

if) Without any assumptions on the grading of H!(S, 4, A) we may prove

RY(A[T17/S) = Ry(4)
where deg T=1.

REMARK 2.10. Let S, be the elements of degree zero in S, and assume that
S, — § is smooth. It suffices to assume that H'(S,, 4, A) is negatively or posi-
tively graded to deduce a splitting of

Ry(4/8) — RY(4/S) .

3. Relation to projective geometry.

We know the theory of graded algebras is closely related to projective
geometry. In what follows we shall compare the groups JH(S, A, M) with
A'(S, X, M(v)) when X =Proj (4). Moreover if



220 JAN O. KLEPPE
o:B—- A
is a surjective graded morphism of S-algebras, and
f: Proj (A) — Proj (B)

is the induced embedding, we shall relate the groups ,H(B,A,M) to
AY(S, f, M(v)). Schlessinger establishes isomorphisms of this kind, using his
Comparison Theorem, see [10] and [11]. In (3.3) we recall a generalization of
the Comparison Theorem due to Laudal, and using this, we may prove the
relationship between the groups above, as announced, so extending some
theorems from [10] and [11].

In general, let X be any S-scheme, M any quasicoherent Oy-Module and let
f: X — Y be a morphism of S-schemes. Using [6] we shall summarize some
properties needed in the sequel.

3.1) [6, (3.2.7)] states that there are groups A'(S,X,M), called global
cohomology groups of algebras, which are the abutment of a spectral sequence

given by the term
EZ® = HP(X,A'(S,M)) .

If U =Spec (A4) is an open affine subscheme of X, the Ox-Module 4%(S, M), or
just A4(M), is given by

A'M)(U) = H*(S,4,M(U))..
If X is affine, say X =Spec (4), and M =M for some A-module M, we deduce
A'S,X,M) = H\(S,A, M) .
Moreover if X is S-smooth, we find
ANS, X, M) = H‘(X,BXQSDM)
where 6y = A°(Oy) is the sheaf of S-derivations on X.
3.2) By [6, (3.2.9)] and [6, (3.2.5)] the relative cohomology groups of
algebras A(S, f, M) are the abutment of the spectral sequence given by
E}® = HP(Y,A%(f, M))
if A9(f, M) is quasi-coherent. By definition
AYf,M)(V) = A%B, f~1(V), M)
where V= Spec (B) is any open affine subscheme of Y. Therefore if fis affine, say
f71(V)=Spec (4),
AYB, f~1(V),M) = H'(B,A,H°(f~'(V),M)).
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3.3) Let Z< X be locally closed. By [6, (3.2.10)] and [6, (3.2.11)] there is an
exact sequence

— A%(S,X,M) - A"(S,X.M) > A"(S,X —Z,M) — A% (S,X,M) —

where the groups A%(S, X, M) are the abutment of a spectral sequence given by
the term

Ef® = A7(S,X,H%(M)) .
If X =Spec(4) and Z=V(I) for a suitable ideal I = 4, we write
Hj(S,A,M) = A%(S, X, M) .

3.4) Let f: X — Y be an affine morphism of S-schemes. By [ 6, (3.3.4)] there
is a long exact sequence

— A"(S, M) > A"(S, X, M) - A"(S, Y, f M) — A"(S, L M) —

Let us now turn to the problem of relating the groups ,H'(B,A4,M) to
A'(S, f, M(v)). Suppose S is noetherian and let 4 and B be finitely generated,
positively graded S-algebras generated by elements of degree 1. Assume A,
=B,=S. Let

¢:B— A

be a surjective graded S-algebra morphism and let

f: X = Proj(4) —> Proj(B) = Y
be the corresponding embedding. Put

m = ]_[ A, and X' = Spec(4)—V(m).

v=1
Let II: X' —» X be the obvious morphism. IT is an affine smooth surjection.
Suppose b € B is homogeneous and a=¢(b). If M is a graded A-module of
finite type, we shall denote by M, the localization of M in {1,a,d%,...}. Let

M, be the homogeneous part of M, of degree zero.
Since B, — B, is flat and since 4, ®p, B,= A, it follows that

Hq(B(pr(a)’Ma) = Hq(BbsA(a)®Bb9Ma) = Hq(B,A’M)a .
B

)

Using this and (3.2) we find isomorphisms of Oy-Modules
Aq(f, IVl(v))(Spec B(b)) = Hq(B(b)a A(a), M(V)(a)) = H? (B, A, M(V))(u) .

Similarly by (3.1) we find that
A%(B, M)(Spec A,) = H(B,A,M,) = HY(B,A,M),
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as Oy-Modules. This proves

f41,,A%(B, M)

[

[T4(4¥w).
LeEMMA 3.5. With notations as above there is an isomorphism
A'(S, ,M(v) = ,A'(B, X', M)
where ,A'(B, X', M) is the homogeneous piece of A'(B,X’, M) of degree v.
ProoF. Going back to the definitions of A'(S, f, M(v)) and A'(B,X’, M) in
[6], we deduce a morphism
A(S, M) > ,A (B, X', M) .

The corresponding morphism of spectral sequences HP(Y, A(f, M(v)))
— ,H?(X', A%(B, M)) is an isomorphism for every p and g since

HP (X', A*(B,M)) = HP(Y, f,11,4%B,M)) .
THEOREM 3.6. Let n be an integer. If ¢: B — A is surjective and if depth,, M
=n then the morphisms
JH(B,A,M) — A'(S, f, M (v))

are isomorphisms for i <n and injections for i=n.

Proor. By (3.3) there is a long exact sequence
— H!(B,A,M)— H'(B,A,M) — A'(B,X',M)— H.*'(B,A,M) —
Since depth M = n, we conclude that
Hi{(M) =0 for gsn—1.

Moreover, H°(B, A, —)=0 since ¢ is surjective. By the spectral sequence of
(3.3) we deduce

Hi (B,A,M) =0 for i<n.

RemArk 3.7. If depth,,4 =2, then the morphisms
JHY(B, A, A) => A'(S, f,0x(v)
JH?(B, 4,4) — A*(S, £,0x(v))

are isomorphisms and injections respectively. Using this for v=0, it follows
from (2.2) and its corresponding theorem in [6] that their deformation theories
are the same. In particular, let S be a field, say S =k, and let | be the category of
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local artinian k-algebras. If Def® (¢, —)=Def® (A/B, —) are defined on this [ as
in chapter 2, using trivial liftings of B, and if Hilb, (—) is similarly defined in
the projective case, then

Def® (¢, —) = Hilb, (-).

In fact, by the long exact sequence in the proof of (3.6), this isomorphism
follows if
depth,4 =1 and (H%(B,4,4) =0.

Note that if depth,, 4=1, then

Oszn(Ba A’ A) = OHomB (I»Hrln(A))

where I =ker ¢.
In [2, prop. 1] there is essentially a direct proof for the isomorphism

Def® (¢, —) => Hilb, (—)
assuming depth,, A=2 and Y=P}.
REMARK 3.8. The isomorphism of deformation functors (3.7) together with
(2.9) makes it easy to prove the following theorem, due to Pinkham: Let X be a
closed subscheme of P} and let A4 be the minimal cone (which is characterized

by depth,, A=1). If X =Proj(A[T]) is the projective cone in P;*! and if
H'(k, A, A) is negatively graded, then there is a smooth morphism of functors

Hilbg (—) — Def (4/k, —)

on I

So far we have concentrated on deformations of embeddings. The relationship
between the groups ,H'(S, 4, M) and A'(S, X, M (v)) is given by our next theorem,
see also [6, (5.2.7)].

THEOREM 3.9. There are canonical morphisms

JHIS, A, M) — A(S, X, M(v))
for anyi=0 and any v. If n2 1 and if depth,, M 2 n+ 2, then the morphisms above
are bijective for 1 <i<n and injective for i=n.

Proor. Consider the following two exact sequences

— Hi(S,A,M) — H'(S,A,M) - A'(S,X',M) - H,[' (5,4, M) —
— A, I, M) — A'(S, X', M) — A'(S, X, M) — A'™*'(S,11,M)
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with
II: X' = Spec (4)—V(m) - X = Proj(A)

as before. By (3.2) A”(S, I1, M) is the abutment of a spectral sequence given by
E%9=HP(X, A%(I1, M)) where by definition

AY(IT, M)(Spec A,y) = HY (A, AnM,) .
It follows that

0 for g+0

AYIT, M) = ~
AN M) {H*M for g=0

Since depthM =n+2
AiS,I,M) = H(X,[I,M) = [ H{(X,M() =0

for 1<i<n. Furthermore if i<n+1, the depth condition implies that H} (M)
=0. By the spectral sequence of (3.3) we conclude that

Hi(S,A,M) = 0

for i<n+1. The theorem now follows from the two exact sequence stated at
the beginning of this proof.

RemArk 3.10. If depth,4=3 and if 4'(S,X,0x(v))=0 for every v, then
H!(S, A, A)=0. By (3.1) it follows that if X is locally rigid, i.e. if 4'(0x)=0,
then

AI(S’X9OX(V)) = HI(X’OX(V))

and the statement above reduces to a rigidity theorem of Schlessinger. See [4,
(2.2.6)] and [13].

4. Positive or negative grading of H'.

In this paragraph we shall see that if X < P¥ is closed and satisfies some
weak conditions, then after a suitable twisting the minimal cone B of the
corresponding embedding will satisfy ,H'(S, B, B)=0 for v=1 or for v<1.

Suppose § is noetherian and let

A=114,
v=0

be a graded A4,=S-algebra of finite type, generated by A;. Denote by m the
augmentation ideal of A;ie,m=11%, A,. Let M be any graded 4-module and
put M =11 _M,, for d=1. First we shall be interested in relating the

V= =00
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groups H'(S, 4, M) to the groups H'(S, A4, M ,); later we shall deduce some
corollaries concerning the grading of H!(S, B, B) where B=A4,. Again the

work of Schlessinger in [11] is good references for closely related results. See
also [7].
Note that there are morphisms

(pfi,v: wH'(S, A, M) — H'(S, Ay M)

for any i=0,d=1 and any v. In fact if D: A — M is an S-derivation of degree
dv, the composition Ay o A — M factorizes via Ag — My o M where
Ay — M, is an S-derivation of degree v, thus defining ¢3 .- The same idea
defines @} , as well for any i>0 since A o A induces a morphism

dei(S’ A, M) - Hi(S9 A(d), M)
and its image is contained in ,H'(S, A, M ,) via the injection
vHi(S, A(d)’ M(d)) S Hi(S, A(d)’ M)

defined by M, < M. This follows since one may prove, using the isomorphism
2) of the proof of (1.7), that the composition

dei(S’ A’ M) - Hi(sa A(d)a M) - Hi(S, A(d), M/M(d))
is zero.
LEMMA 4.1. Let d>1 be an integer which is invertible in .
If X’ =Spec (A)—V(m) and X, =Spec (Ag) = V(myy), then
ANS, X', M)y — A'(S, Xy, M)
are isomorphic for every i.

Proor. The canonical morphism 4, < A induces a morphism of schemes
X' — X{,, thus a homomorphism

ANS, X', M) — A'(S, X4, M) .

The Ay -linear map M, o M, which is split, gives rise to an injection
A8, X(gy M) & A'(S, X\, M)

and it follows that there is a morphism
ANS, X', M)y — A'(S, Xy, M g))

for any i. Consider the commutative diagram

Math. Scand. 45 — 15
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where X = Proj (4)= Proj (4,). The morphisms of this diagram give long exact

sequences (see (3.4)) and morphisms between them as follows:

- Ai(S’ H) A7’)(11) I Ai(S, X,’ A‘;I)(d) e Ai(Sa Xs H*M)(d) - Ai+ ! (Sv n’ AQd)(d) hd
! -l I= l

— A'(S, My, M) = A'(S, Xigp M) = AY(S, X, T4y M) — AH(S, g, M) —

It is therefore enough to prove that

Ai(sa H9 M)(d) i Ai(S’ H(d)’ M(d))

are isomorphic for any i. In the proof of (3.9) we found that
A¥(S, 1T, M), ~ H\(X, I, M), = v:ﬁw H(X,M(av)) .
In the same way, we prove that
ANS, T4 M) = v=]°_i1w H(X, M(dv)) .

And it is not difficult to check that the morphism A'(S, 1, M),
— AYS, Iy, M,), via the isomorphisms above, is given as the multiplication
by the number d. This proves (4.1).

Having the following commutative diagrams of long exact sequences in mind

- dei(S’A’M) - dvAi(varvm) - dein+l(S’A9M) - dei+1(S’A’M) -
(*) llpi,\- l~ l,,.(pf,, l‘le
- vH'(S,A(d), M{d)) - A'(S, X;d), (a)) - H S, A(d)’ M(d)) - H H(S A(a)’ M(a)) -

M) (

w€ may prove

THEOREM 4.2. Let d 2 1 be invertible in S and let n=0 be an integer. If M is a
graded A-module of finite type satisfying depth ,M =n+1 then

(pii,v: dei(S’ A, M) - vHi(S’ A(d)’ M(d))

are isomorphisms for i<n and injections for i=n.

ProOF. Since depthM=n+1 and since Hi, (M), =H}, (M) for any i, it
follows that depth M, 2n+1. Hence by the spectral sequence in (3.3), we
deduce

H'(S,A,M) = H, (S, AgyMy) = 0 for i<n.

"'w

and (4.2) follows easily by (*).
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In particular (4.2) states that if depth,, A>3, then
(*%) wH' (S, 4,4) = H'(S, A4, Aw)
d\,Hz (S, A, A) S \»HZ(S, A(d)’ A(d))

for every v. We shall be interested in proving (**) under less restrictive
hypotheses.

Assume for a moment depth,, 4 >2. If @3 , is injective, then using (*) for
i=1 (**) follows. Note that the map

mPa,v: Ders (4, H2(4)) — Ders (A, H3(A)q)
is precisely the map ¢ , for M = H(A4). So when is @3, injective?
If M is any graded A-module, then define
Ys.a: M;_y — Homg (4, M)
to be the S-linear map given by [y, ,(m)](g)=gm where g e A,
LEMMA 4.3. Let d>1 be invertible in S and let v € Z. Put s=dv+d+1. If
Vs.at Ms_4 » Homg (4, M)
is injective, so is the natural map

©3.,: o,Derg (4, M) — yDers (Ay, M) .

Proor. Let D e ,Der (4, M) satisfy 93 ,(D)=0, ie. the composition
Ay & A 5> M is zero. I claim that the composition

Ass1 o A5 M

is zero too. In fact, it is enough to prove that D(f)=0 where =TIl fiisa
product of linear forms. By the product rule for derivations we have

d+1

D(f) = Z gD

where g;f;=f. Furthermore, since degg,=d, it follows that

D(f) = gD(f)+fD(g) = gD(f),

thus dD(f)=0. To prove that D= 0, it suffices to prove that D(x)=0 where x is
any element in A,. Since D(x) e M av+1=M;_, it is enough to prove that gD(x)
=0 for any g € A, by the injectivity of ¥, q- This follows from the first part of
the proof since

gD(x) = D(gx)—xD(g) .
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THEOREM 4.4. Let d=1 be invertible in S and let v € Z. If depth,, A =2 and if
HY(X,0x(dv+1)) - Homg (4,4 H*(X,0x(dv+d+1)))

is injective, then (**) holds.

A consequence of (4.4) is that if
H'(X,0x(1)) —» Homg (A4 H'(X,0x(d+1)))
is injective and if depth,, 4 =2, then
R}(A/S) = Ry(A/S)
are isomorphic.

REMARK 4.5. i) Let S be a field and assume that X =Proj(4) is of pure
dimension 1. The injectivity of

H'(X,0x(s—d)) - Homg (H°(X,0x(d)), H' (X, 0x(s)))
is by duality equivalent to the surjectivity of

HO(X,Ox(d)@HO(X,wx(—S)) — H°(X,0x(—s+d))

where wy is the dualizing sheaf. If wy(—s) is generated by its global sections,
the surjectivity follows for d>>0. In particular if s=dv+d+1 and d is large,
this morphism is surjective for v< —2 and it is surjective for v=—1if wx(—1)
is generated by its global sections. The surjectivity for v=1 and d>>0 is
trivially true.

EXAMPLE 4.6. Suppose S is a field and d= 1 is invertible in S. Let X SPY be a
curve such that the dualizing sheaf wy satisfies wy = Oy (r) where r=1 and such
that the minimal cone A satisfies depth,, A =2. Let s=dv +d + 1. By duality it is
easy to see that

H'(X, Ox(s—d)) — Homg (H°(X,0x(d)), H'(X,0x(s)))
is injective for s<r. So (**) holds for v< —1 and any invertible d 2 1. Moreover
RY(4/S) = RY(Aw/9)

when d <r—1. Finally (**) holds for v 1 if d>r — 1 since in this case we easily
prove N
HY(X,0x(dv+1)) = 0.

A consequence of the isomorphism of the hulls above is that if X is reduced,
and if X <P} is locally a complete intersection, RY(A4,/S) for all invertible
d=1 in S are smooth local S-algebras if R},(4/S) is.
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Before deducing some corollaries on the grading of H' (S, A, Ay), note the
following result.
ProPosSITION 4.7. Let d=1 be an integer which is invertible in S and let v € Z.

i) If depth,, A= 1, then (**) holds for v=1 and d>0.
ii) If depth,, 422, and if H'(X,0x(n))=0 for n <0, then (**) holds for v< —1
and d>0.

Proor. If depth,, A =2, then i) and ii) are trivial consequences of (4.4). If
depth,, A =1, we have
derln(S’AaA) = deo(S,AaHrln(A)) = O
Hro (S, Ay Ag) = HO(S, Ay, Hy(A)y) = 0

for v 1 and large d since the group ,H.(A) vanishes for large t. So by (*) it
suffices to prove that ,¢7 , is injective, hence it is enough to prove that

oHE(S,4,4) = 0

for v 1 and large d. Clearly ,,H°(S, A, H%(A))=0 for such v and d. Moreover if
¢: F — A is a surjective graded S-algebra homomorphism where F is S-
smooth, then

deomF (ker o, Hrln(A)) = del(Fa A, Hrln(A)) - del(Sa Aa Hrln(A))

is surjective. Since ,,Homy (ker ¢, H.(A))=0 for v and d as above, it follows
that

owH'(S,A,Ho(4) = 0.
which proves (4.7).
Let B=A,. If (**) is satisfied for v+0, it is easy to see when H'(S, B, B) is
negatively or positively graded. We only need to know when ,H!(S, A4, A)

vanishes for small, respectively large, t. Recall that if depth,, 4=1 and X
=Proj (A) satisfies A'(04)=0, then

H'(S.A,A) = 0 for large t .
This follows since, as we have seen, there are exact sequences
H°(S,A,HL(A) —> H'(S,A,4) > ,A'(S,X',0x) — ...
and

AYS, I1,0y) — ,AYS, X', 0x) — A (S, X, [1,04) > ...
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where
AYS,I1,05) = H'(X,0x(t) and ANS, X, 1T,0y) = HY(X,0x(1)) .

The vanishing of ,H!(S, A4, A) for small ¢ is always true since if : F —> A is a
surjective S-algebra morphism where F is S-smooth, then

Homg (ker ¢, 4) — H'(S, 4, A)

is surjective. Thus we have proved

THEOREM 4.8. Let X =Proj (A) where depth,, A=1.

i) If X is S-smooth, then there is a graded S-algebra B satisfying X =~Proj (B)
such that

JHY(S,B,B) = 0 for v21.
ii) If depth,, A=2 and if the morphism
Hl(X’OX(t)) - Homs (HO(X’OX(~t+ 1))aH1(X,0X(1)))

L4
is injective for small t, then there is a graded S-algebra B satisfying X
=~ Proj (B) and

JHY(S,B,B) =0 for v —1.

iii) If X satisfies the conditions i) and ii), then there is an S-algebra B where
X = Proj (B) such that

oH'(S,B,B) ~ H'(S,B,B) .

REMARK 4.9. By (4.5),.if dim X =1 and if wy(—1) is generated by its global
sections, then (4.8, ii) holds. Mumford proves in [7] by different methods that
if X is a smooth curve over the complex numbers and is not hyperelliptic,
then (4.8, iii) holds. Schelssinger treats the higher dimensional cases, i.e.
dim X =2, over the complex numbers and proves (4.8, iii) in [11] using B= 4,,
with d>0 and (4.7, ii).

5. The existence of a k-algebra which is unliftable to characteristic zero.

In [12] Serre gives an example of a k-smooth projective variety X in
characteristic p which cannot be lifted to characteristic zero. This means that
for any complete local ring V of characteristic zero such that V/m, =k, it is
impossible to lift X to V. His variety is of the form X=Y/G where Y is a
complete intersection of dimension 3 and G is a finite group operating on Y
without fixpoints. Furthermore p divides the order of G.
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X =Proj (B). Hence (2.7) proves that B cannot be lifted to any complete local
ring V of characteristic zero. In fact the example of Serre satisfies even (4.8, iii),
thus proving the existence of a graded k-algebra C satisfying H!(k,C,C)=0
for v£0, such that X =Proj (C). (2.7) reduces to the almost trivial result

RY(C/k) = R,(CJk).

Clearly C is unliftable to any complete local ring V of characteristic zero.
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