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ALMOST ARTINIAN MODULES

JAMES HEIN

Introduction.

Let R be a commutative ring with identity. Call an R-module almost Artinian
if every proper homomorphic image is Artinian. The purpose of this paper is to
study the structure of an almost Artinian R-module 4 that is not Artinian. The
group of all rational numbers of the form a/p", where p is a fixed non-zero
prime, is an almost but not Artinian Z-module. In fact, Corollary 2.8 shows
that every almost but not Artinian abelian group is a finite sum of groups of
this type and a cyclic subgroup of the rationals. The special case when A =R is
known to beequivalent to the property that R is a one dimensional Noetherian
domain [3, Corollary 1]. And the case when 4 is the total ring of fractions of R
is equivalent to the property that R is a semi-local one dimensional Noetherian
domain. This is an easy consequence of a result of Matlis [5, Theorem 1].

It is shown in general that for any almost but not Artinian R-module 4, the
annihilator of 4 is a prime ideal of R, A is isomorphic to a submodule of the
quotient field of R/Anng(A), and that R/Anng(A4) is a one dimensional
Noetherian domain. The main result of this paper is Theorem 2.6: If R is a
Dedekind ring (an integrally closed Noetherian domain of dimension one)
with quotient field Q, then there is an ideal I in R, a non-zero element d € I,
and a finite set P,,. .., P, of maximal ideals of R such that 4 is isomorphic to
G(Py)+...+G(P)+1(1/d), where G(P)={x € Q | P"x< R for some m=0}.

1. General Properties.

First we remark that the property of being almost Artinian is equivalent to
the apparently more general property that every proper homomorphic image
is finitely embedded, where a module is finitely embedded if it is an essential
extension of it’s finitely generated socle. Vamos studied this property as dual to
the notion of finitely generated. For example, a module is Artinian if and only
if every homomorphic image is finitely embedded [7, Proposition 2]. The
above remark follows from this statement. It is also easy to see that if every
proper submodule of A4 is almost Artinian, then A is almost Artinian.
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The following theorem records the general facts about an almost but not
Artinian module.

THEOREM 1.1 Let R be a commutative ring and A an almost but not Artinian R-
module. Then:

(a) Every non-zero submodule of A is almost but not Artinian.

(b) For each r € R either Ann, (r)=0 or Ann, (r)=A.

(c) Anng (A) is a prime ideal of R:

(d) A is a torsion-free almost but not Artinian R/Anng (4)-module.

(e) A is an indecomposable R-module.

(f) A is isomorphic to a submodule of the quotient field of R/Anng (A).

(g) Endg (A) has no non-zero zero divisors.

ProoF. (a) If B is a non-zero submodule of A4, then A/B is Artinian and it
follows that B is not Artinian. If C is a non-zero submodule of B, then 4/C is
Artinian and it follows that B/C is Artinian. Therefore B is an almost but not
Artinian R-module.

(b) For each r € R there is an isomorphism r4=A4/Ann (r). If rA=0, then
Ann, (r)=A. If rA+0, then rA is not Artinian by (a). Therefore 4/Ann4(r) is
an improper image of A and it follows that Ann,(r)=0.

(c) Let rs € Anng (4) and suppose that s ¢ Anng (4). Then rsA=0 and sA
+0, and it follows that Ann, (s)=0 by (b). Since srA =rsA=0 it follows that
rA< Ann (s)=0. Therefore r € Anng (4) and Anng (A) is a prime ideal of R.

(d) If B is a R/Anng (4)-homomorphic image of the R/Anng (A)-module A4,
then B is a R-homomorphic image of the R-module A4, and the R-submodules
of B are the same as the R/Anng (4)-submodules of B. Therefore A is an almost
but not Artinian R/Anng (4)-module. Since Anng (A4) is a prime ideal of R we
may assume that R is an integral domain and Anng (4)=0. So let r € R and
ae A be such that ra=0 and a+0. Then Anny, (r)#0 and it follows that
Ann (r)= A. Therefore r € Anng (4)=0 and it follows that A is torsion-free.

(e) Suppose that A =B+ C where BN C=0and B*0. Then C=4/B which is
Artinian. Therefore C=0 and A4 is indecomposable.

(f) Since each non-zero submodule of A4 is indecomposable, it follows that no
two non-zero submodules of A can have a zero intersection. Therefore 4 is a
rank one torsion-free R/Anng (4)-module and it follows that A is isomorphic
to a submodule of the quotient field of R/Anng (A).

(2) Let fe Endg (4) and suppose that f+0. Then f(4) is not Artinian.
Therefore f(4) must be an improper image of A. Therefore fis a
monomorphism and Endg (4) can have no non-zero zero divisors.

The next theorem, due to. Cohen [3, Corollary 1], characterizes those rings
that are almost Artinian. We include a proof for the sake of completeness.
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THEOREM 1.2 (Cohen). A commutative ring R is almost Artinian if and only if
either

(@) R is an Artinian ring or

(b) R is a Noetherian domain of dimension one.

PRrOOF. Suppose that R is almost but not Artinian. If r € R, r+0 then rR+0
and it follows that Anng (r)=0. Therefore R is a domain. Let {1} be an
ascending chain of ideals of R and assume that | 1#0. Then {I/I,} is an
ascending chain in the Artinian ring R/I,, and it follows that both chains are
finite. Therefore R is Noetherian. Since R is not Artinian it must have positive
dimension. Let 0=P,cP, <P, ... be a chain of prime ideals of R where P,
#0. Then P,/P, ... is a chain of prime ideals in R/P,. But R/P, is Artinian
and is therefore a field. Hence P, is a maximal ideal and R has dimension one.
The converse is clear.

Matlis showed that if R is a noetherian domain then R is semi-local of
dimension one if and only if it’s field of quotients is almost Artinian [5,
Theorem 1]. The following theorem is an easy consequence of this result.

THEOREM 1.3. Let R be a commutative ring and Q it’s total ring of fractions.
Then Q is an almost Artinian R-module if and only if either

(@) R is an Artinian ring or

(b) R is a semi-local Noetherian domain of dimension one.

Proor. If Q is Artinian then R is also Artinian. So assume that Q is almost
but not Artinian. Then R is almost but not Artinian and it follows from
Theorem 1.2 that R is a one dimensional Noetherian domain. Thus R is semi-
local by the result of Matlis. Conversely, if R is Artinian then €very non-zero
divisor is a unit and it follows that R=Q. If R is a semi-local Noetherian
domain of dimension one, then Q is almost Artinian by the result of Matlis.

The dual to the above situation for almost Noetherian modules has been
studied by Armendariz [2, Theorem 2.1]. The next theorem describes those
rings that possess an almost but not Artinian module.

THEOREM 1.4. Let R be a commutative ring with an almost but not Artinian
module A. Then either

(@) R is a Noetherian domain of dimension one ‘(equivalently every almost but
not Artinian R-module is faithful) or ,

(b) R has a non-zero prime ideal P such that R/P is a Noetherian domain of
dimension one (equivalently every almost but not Artinian R-module is not

Saithful).
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ProoF. If A4 is faithful, then Anng (4)=0 is a prime ideal of R. Therefore A is
torsion-free over the domain R. If x € 4 and x#+0, then Rx= R and it follows
that R is Noetherian of dimension one. If 4 is not faithful, then P =Anng (A) is
a non-zero prime ideal of R and A4 is a faithful almost but not Artinian R/P-
module. Therefore R/P is a Noetherian domain of dimension one. The
equivalences follow from the fact that R cannot be a ring of type (a) and a ring
of type (b).

We remark that any Noetherian ring of dimension =1 has an almost but
not Artinian module. On the other hand a perfect ring has none. If we define
the term torsion in terms of regular elements, then the words faithful and not
faithful in Theorem 1.4 can be replaced by the words torsion-free and torsion
of bounded order. We also note that it is easy to show that if R is a Noetherian
domain of dimensi>n one and A4 is a non-zero submodule of the quotient field
of R, then A is almost but not Artinian if and only if 4/4ANR is Artinian.

2. The Dedekind case.

We assume in this section that R is a Dedekind ring (an integrally closed
Noetherian domain of dimension one) and Q is it’s field of quotients. For a
maximal ideal P of R let R(P®) be the P-primary submodule of Q/R. So

R(P*) = {x+R e Q/R| P"x<R for some m20} .

Let G(P)={x€e Q | P™"x =R for some m=0}. Note that G(P)NG(P)=R il P
and P’ are distinct maximal ideals of R. Recall that an Artinian R-module is
isomorphic to a finite direct sum of modules R(P*) and a module of finite
length [4, Theorems 7, 8 and 9].

The following five Lemmas will constitute the proof of Theorem 2.6. We
assume that A is an almost Artinian R-module and R A4<0.

LEMMA 2.1. If P is a maximal ideal of R and f: A — R(P%)is an epimorphism
with R< Ker (f), then G(P)c A.

PRrOOF. Since R(P™) is divisible and hence injective, there exists an extension
g: Q0 —» R(P™)of f. Let x/y € G(P). Then there is an element a/b € A such that
f(a/b)=x/y+R. Let g(1/b)=u/v+R. Then g(1)=bu/v+R=0. Therefore there
exists an element r € R such that g(1/b)=r/b+R, and it follows that f(a/b)
=g(a/b)=ar/b+R. Thus x/y=ra/b+s for some se€ R, so it follows that
x/y € A and G(P)c A.

LemMA 2.2. Let P,,. . ., P, be the distinct maximal ideals such that R(P}°) is a
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direct summand of A/R. Then ¥"_, G(P)< A, and if P is a maximal ideal such
that G(P)< A then P=P, for some i.

Proor. For each i let f; be the composition of the natural mapping A
— A/R — 0 followed by the projection map A/R — R(P) — 0. Then fiis an
epimorphism and RgcKer (f). Therefore by Lemma 2.1 it follows that
G(P)< A for each i. Now suppose that G(P)< 4. Then R(P*)<S A/R and it
follows that R(P*) is a direct summand of 4/R. Therefore P=P, for some i.

Let Py,..., P, be the distinct maximal ideals such that G(P;)< A for each i.
Define the submodule T of A as follows: T={a/b e A | b ¢ P; for each i}.
Notice that T is indeed a module and if n=0 then T = A.

LeMMA 2.3. If n>0 then ¥, G(P)N T=R.

Proor. It is easy to see that R€Y"_, G(P)NT, so we show the other
inclusion. Let x € 37_, G(P)N T. Then x=a/b where b ¢ P, for each i, and
x=371.1 (c;/d}) where for each i there exists m; 20 such that PM(c,/d,)< R. Let
J=[Ti~, P and let J;=TT,,; P™ Then we have

Jx = J(Z Ci/di> = Z J(cy/d) = z JiPM(c/d) = Y J, = R.
i=1 i=1 i=1 i=1

Since b ¢ J we can write 1 =rb+s for elements r € R and s € J, and it follows
that a/b=ra+sa/b. But sa/b € Jx<R and we have x=a/b € R.

LemMa 24. A=Y"_, G(P)+T.

PRrOOF. Let a/b € A. Then there exist integers m; >0 and an ideal I such that
Rb=T[T;- P{I where I ¢ P, for each i. Pick ce I—U, P; and let J =TTi-, P™
Then we can write 1=rc+s for elements r € R and s € J. Further, we have
sc € JI=Rb and it follows that sc=tb for some t € R. Therefore we can write
a/b=rca/b+sa/b. But we also have sa/b=sat/bt=sat/sc=at/c and it follows
that sa/b e T. Now let J;=TT],. jPi. Then we can write 1=3"_, u; where
u; € J, for each i. Therefore c=3Y"7_, u,c and PPu,c < Rb for each i. This says
that u,c/b € G(P;). Thus we have

i=1

rac/b =ra Z (ul.c/b) = rauic/b 6 }: G(Pl) .
i=1 =1

Therefore a/b=rac/b+sa/b € 3., G(P)+T.
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LEMMa 2.5. Every proper homomorphic image of T has finite length. Thus there
is an ideal I in R and a non-zero element d € 1 such that T=1I1(1/d).

PRroOF. Suppose that T/R does not have finite length. Then T/R has a non-
zero direct summand of the form R(P*) for some maximal ideal P of R.
Therefore G(P)< T and it follows that P= P, for some i. Let a/b € G(P). Then
there exists an integer m >0 such that P"(a/b)< R, and b ¢ P. Therefore there
are elements r € R and s € P™ such that 1 =rb+s, and it follows that a/b=ra
+sa/b. This implies that a/be R, and it follows that R(P*)=0, a
contradiction. Therefore T/R has finite length. Now let B be a non-zero
submodule of T and pick x € BNR where x=+0. Then there is an exact
sequence 0-— R/Rx — T/Rx — T/R — 0 with the two outside terms having
finite length. Therefore T/Rx has finite length and it follows that T/B has finite
length. Thus T'is finitely generated and, since R < T, there is an ideal I of R and
a non-zero element d € I such that T=1I(1/d).

The next theorem is the main result. It follows from the preceding lemmas
together with the fact that any non-zero submodule of Q is isomorphic to one
that contains R.

THEOREM 2.6. Let R be a Dedekind ring and A an almost but not Artinian R-

module. Then there is an ideal I in R, a non-zero element d € I, and a finite set
P,,...,P, of maximal ideals of R such that

A= ; G(P)+I(1/d) .

If R is a principal ideal domain and p € R is an non-zero prime we define

G(p) = {a/p"'| ae R and m20} .

Then G(p)=G(Rp) and we record the following two corollaries:

COROLLARY 2.7 Let R be a principal ideal domain and A an almost but not
Artinian R-module. Then there is a non-zero element d € R and a finite set
Pis- - -, Dy Of non-zero primes in R such that

A

IR

T G +RA/).

COROLLARY 2.8. An almost but not Artinian abelian group is isomorphic to a
group of the form
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Y Gp)+Z(1/d).
i=1

We remark that the structure of an almost Artinian module over a Dedekind
ring depends completely on the structure of the Artinian modules. In the
general case of an arbitrary one dimensional Noetherian domain the structure
of it’s Artinian modules is more complicated. Matlis has described the
structure of an Artinian module over a Noetherian domain of dimension one,
in fact, over a Cohen-Macaulay ring of dimension one [6]. We have not yet
found a corresponding structure for the almost Artinian modules in this case.
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