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PROOF OF THE QUADRATIC
RECIPROCITY LAW IN
PRIMITIVE RECURSIVE ARITHMETIC

W. J. RYAN

1. Introduction.

The author extends Thoralf Skolem’s [8] development of PR (primitive
recursive) arithmetic beyond his proof of the fundamental theorem of
arithmetic, by proving Wilson’s and Fermat’s theorems and the quadratic
reciprocity law in PR arithmetic. In section 2, to allow the reader who is not
familiar with PR arithmetic to follow our proof, we briefly introduce the PR
functions, relations and concepts needed for this paper. In section 3 we prove in
PR arithmetic our key theorem, Theorem 3.2, and then we derive certain
consequences. (Theorem 3.2 is .proved set-theoretically as Corollary 4 to
Proposition 2 in no. 2 of § 4 of Chapter III of Bourbaki [1, p. 167].) Then in
sections 4, 5 we show that the results obtained in section 3 enable us to
transform the ordinary number-theoretic proof of the quadratic reciprocity law
given in [6] into a proof in PR arithmetic.

This paper is the result of research on Corollary 1 to Theorem 3.4, which
was suggested to the author by Professor R. L. Goodstein as a research
problem.

2. Preliminaries.

There are two equivalent formulations of PR arithmetic: sentential PR
arithmetic, introduced by Skolem [8], and equational PR arithmetic,
introduced independently by Goodstéin [4] and Curry [2]. Both formulations
of PR arithmetic assume the natural numbers and the successor function, x + 1,
as given. Then functions are defined by recursion and composition. Proof is by
mathematical induction, rules of equality, and, in the sentential formulation,
the inference rules of propositional logic. The reader is referred to Skolem [8,
9] and Goodstein [5] for detailed expositions of the sentential and equational
PR arithmetics, respectively.
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In this paper we use the notation of Goodstein [ 5] and Péter [7]. We use the
logical connectives ~ (negation), v (disjunction), & (conjunction), —
(implication) and «<> (equivalence). Note that while Skolem takes 1 as the first
natural number, we follow current practice and use O.

The functions of addition, multiplication and exponentiation, denoted as x +y,
x+y and x’, respectively, are defined recursively so that their usual properties
hold (by convention we define 0° = 1). Since we do not have negative integers in
PR arithmetic, we cannot define subtraction in the usual way, and so, following
current practice, we assume the recursive definition of restricted subtraction,
denoted as x~y, which satisfies

ey = 0 if x—y<0
V= x—y if x—y=20,

where x —y denotes ordinary subtraction. Then the inequalities x <y, x=<y,
x>y and x2=y are defined in terms of restricted subtraction so that their
usual properties concerning addition, multiplication and exponentiation hold.
We have the following basic propositions concerning restricted subtraction:

ProposiTion 2.1. (a) x-(y~2z)=xy=x-z. (b) (x+z2)=(@y+2)=x+y.
©) x=@y+2)=(x~y)~z

ProrosiTiON 2.2. (a) y= (y=x)=x=(x=y). (b) x+ (y=x)=y+ (x+y).
PropPosITION 2.3. (a) xSy e x=y=(=Xx). (b) xSy > y=x+(y=x).
PROPOSITION 2.4.(a) x<y <> x~y=0. (b) x<y & y=x+0.

The quotient function [x/y] and the remainder function RM (x/y) (which are
denoted as Q(x,y) and R(x,y), respectively, by Goodstein [5, p. 86]) give the
quotient and remainder, respectively, obtained by dividing x by y (by
convention we have [x/0}=0 and RM (x/0)=x). We have the following

nronngitinn+

ProposiTioN 2.5. (a) x=[x/y]'y+RM (x/y). (b) y+£0— RM (x/y)<y.
(©) RM (RM (x/y)/y)=RM (x/y).

For any PR function f(y), where there may be parameters in addition to y,
the summation function 3., f(y) and the product function [T;-,, f(y) (for
arbitrary limits m and n) are defined by Péter [7, pp. 24-25] so that if m<n,
then the usual results hold, while if n<m, then

S/0)=0 ad [[f0)=1.
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Next, Péter [7, p. 26] defines the signum functions sg (x) and sg (x) so that the
following propositions hold:

ProposITION 2.6. (a) sg (0)=0. (b) x+0 < sg(x)=1. (c) sg (x)=1=(1+x).

ProposiTioN 2.7. (a) sg(0)=1. (b) x+0 o sg(x)=0. (c) sg(x)=1=x.
(d) x=sg () x+5g (y)'x.

Péter [7, p. 54] shows that for any n-place PR functions f,,. . ., f, and any n-
place PR relations P,,...,P, such that for all x,,...,x, exactly one of
Pi(Xgs. . 5%y, - -, Po(Xy,. . ., X,) holds, one can define a “patched together” PR
function g(x,,...,x,) such that

filxg,. . ,x,)  if Py(xy,...,x,) holds
Xise ooy Xy if P,(xy,...,x,) holds

gy | Bl o) Pl )
£ty sx,) if Po(xy,...,%,) holds .

For any PR relation P(y), where there may be parameters in addition to y,
we define the operators A4}, E}, L}, G} and N}, as follows:

The bounded universal operator A} is defined so that AJ[P(y)] is a PR
relation which holds if and only if P(y) holds for all y, 0<y<n. The operator
A} is read “for all y from 0 to n”.

The bounded existential operator E} is defined so that Ej[P(y)] is a PR
relation which holds if and only if there exists a y, 0<y<n, such that P(y)
holds. The operator Ej is read “there exists a y between 0 and n (inclusive)”.

The bounded minimal operator L} is defined so that L[ P(y)] is a PR function
which, if EJ[ P(y)], gives the least y, 0<y<n, for which P(y) holds, and which
has the value 0 if ~EJ[P(y)]. We always have Lj[P(y)]<n, and, if E}[P(y)], we
have P(L}[P(y)]). The operator L} is read “the least y from 0 to n”.

Using [5, Example 3.6, p. 84], one defines the bounded maximal operator G,
so that GJ[P(y)] is a PR function which, if EJ[ P(y)], gives the greatest y,0<y
<n, for which P(y) holds, and which has the value n if ~EJ[P(y)]. We always
have G}[P(y)]<n, and, if E}[P(y)], we have P(G}[P(y)]). The operator G} is
read “the greatest y from 0 to n”.

The counting operator N, is defined so that Nj[P(y)] is a PR function which
gives the number of values of y,0<y < n, for which P(y) holds. The operator N}
is read “the number of y from 0 to n”. For brevity, for any PR function f(y),
where there may be parameters in addition to y, we abbreviate the function
N3Lf(5)=0] as Ny(n).

We give the following proposition solely for later reference:

Prorosition 2.8. y+0 — [x/y]=G[z-y+-x=0].
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Next, we let y|x denote the divisibility relation RM (x/y)=0. The usual
divisibility properties concerning addition, multiplication and exponentiation
are easily proved. Also we have the following proposition concerning
divisibility and restricted subtraction, which is proved using Proposition
2.3(b):

PRrOPOSITION 2.9. {z<x & y|(x~2)} = {y|x < y|z}.

Since we do not have ordinary subtraction in PR arithmetic, we define the
congruence relation as follows: We let x=y (modn) denote the relation
RM (x/n)=RM (y/n). Using Proposition 2.5(a), one verifies the usual
congruence properties which concern addition, multiplication and exponen-
tiation. In particular, we always have x=RM (x/n) (mod n). We now give four
propositions which concern congruences and restricted subtraction. The proof
of each of Propositions 2.10-2.13 uses Proposition 2.3(b). In proving
Proposition 2.11 we first obtain

n’+x-y = (x+(m=x) +m=y)+xy,

and in proving Proposition 2.13 we consider the cases n=0 and n+0.

ProposiTION 2.10. {z2x & z2y} —
{x=y (modn) & z=x=z=y (modn)} .

ProposiTION 2.11. {n2x & n2y} - (n=x) (n=y)=x-y (mod n).
ProposiTION 2.12. {n2x & z+0} > n+-x=z-n+x (modn).

ProrosITION 2.13. x-n=x=n-RM (x/n) (mod n).

We denote as Prime (n) the PR relation which holds if and only if n is a
prime number. Next, the PR function p(n) enumerates in order the prime
numbers with p(0)=2, p(1)=3, and so on. Lastly, the PR function v(n, k) is
defined so that the following proposition holds:

ProprosITION 2.14. For n=2, v(n, k) gives the exponent of p(k) in the prime
Jactorization of n, and we have v(0,k)=v(1,k)=0.

Theorems 2.15 and 2.16 constitute the fundamental theorem of arithmetic:

THEOREM 2.15. n>1 — n=[t_,p(y)"™".

THEOREM 2.16. n>1 & n=TT}_op(y)’™? — AL f(n,y)=v(n,y)].
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We conclude section 2 with a discussion of induction restricted to an interval.
Let P(y) be a PR relation, where there may be parameters in addition to y, let z
be a variable which does not occur in P(y), and let M and N be PR terms which
do not contain z. Then if z is not contained in the hypotheses, if any, that are
in effect at a certain point in a proof, then at that point in the proof either of
the two following inferences can be made:

(i) If at that point in the proof we obtain P(M) and from the hypotheses P(z)
and M <z <N we can obtain P(z+1), then at that point in the proof we can
infer

AYIM <y - PO,

and, further, if P(y) is an equation f(y)=g(y), then we can also infer

N N
Y fo) = ;Mg(y) and H fo) = H gy) .

y=M
(ii) If at that point in the proof from the hypothesis M <z < N we can obtain
P(z), then at that point in the proof we can infer
AYIM<y - PO,
and, further, if P(y) is an equation f(y)=g(y), then we can also infer
N N N N
Y f0)= % g0) and ] f0) = ] g0)-
y=M y=M y=M y=M
We establish the validity of (i): Let H be the conjunction of the hypotheses, if
any, that are in effect at that point in the proof. Then

H&Piz)&M =z < N-> P(z+1)

is a theorem, and so one can prove by induction on z, using Propositions 2.3(a)
and 2.2(a), that

H— AY~V"9M<y - Py)]
is a theorem. It is easily shown that from

ANM <y = f()=2g()]

one can obtain

N N N N
Y o) =% g0 and [] fO) = [] g0
y=M y=M .V’=M

The validity of (ii) follows from (i).
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Remark. In applying induction restriction to an interval, we shall make use
of the equivalence 4)[0<y — P(y)] = AN[P()].

3. Finite bijections.
Let f(x), g(x) and h(y) be PR functions and let S 1 and S, be sets defined by:

S, = {x| xs<n & g(x)=0}, S, = {y]| y=m & h(y)=0} .

Theorem 3.2 asserts that if g(n)=h(m)=0 and S, and S, are of the same
cardinality, then the following three conditions are equivalent:
(i) the restriction of f to S, is a surjection onto AP
(i) the restriction of f to S, is an injection into APH
(iii) the restriction of f to S, is a bijection onto S,.

(In Theorem 3.3 we show that the condition g(n)=h(m)=0 can be eliminated.)

We first define a PR function a(n) by the equation a(n)=3"%_,v(n,x) which
gives the following proposition:

PRroOPOSITION 3.1. For n22, a(n) gives the sum of the exponents in the prime
Jactorization of n, with ¢(0)=0(1)=0. Moreover, if m+0 and n+0, then c(m-n)
=ag(m)+a(n).
THEOREM 3.2
{g(n)=h(m)=0 & N,(m)=N,(m)} —
{47[h()=0 — Ej[g(x)=0 & f(x)=y]] &
{A[e()=0— h(f(x)=0.& f(x)<m] &
A:A[2(x)5°8(2)=0 & x*z > f(x)+f(2)]}} .

PrOOF. We first define “patched together” functions a(x) and B(y) such that
for all x,y,

_ p(f(x) if g(x)=0
) ) = {1 if g(x)%0,
_ e if (=0
@ BO) = {1 if h(»)*0.
Next, we let

) Am) = ] «),  B(m) = ﬁo 80).

x=0
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Lastly, we define a “patched together” function y(n,y) such that for all n,y,

_ v(Am),y)=1  if h(y)=0
@ v )"{v(A(n),y) if h(y)+0.

With (1), (2), (3) and Proposition 3.1 one proves by induction on n and m
that ¢(A(n))=N,(n) and o(B(m))=N,(m), which with N (n)=N,(m) yields
a(A(n)=0(B(m)).

We now prove the direct part of the theorem. Assume

r A7[h(y) = 0 - Eifg(x) = 0 & f(x) = y]].

From (5), since h(m)=0, there exists an x, <n such that g(x,)=0 and f(x,)
=m, and from (1) we have a(xy)=p(f(xo))=p(m). Thus by (3) we have
m<p(m)=<A(n).

Let yo<m. If h(yo)=0, then by (5) there exists an x,<n such that g(x,)=0
and f(xo)=yo, and with (1) we have a(xo)=p(yo). Thus with (3) and
Proposition 2.14 we have v(A4(n),y,)+0, and so with (2) and (4) we obtain

P (AT = B(y) p gl ™).
If h(y,) %0, we obtain this same result with (2) and (4), and so

m

p(y)r(n.y) .
=0

s

P = T] BO)
y=0

0

]

y y

Recalling that m< A(n), we multiply both sides of this last equation by
[T44),, , p(y)™™) and apply o to both sides, and then with (3), Theorem 2.15
and Proposition 3.1 we obtain

m A(n)
o(A(m) = o(B(m))+o( p(y>“"~y’>+a< I p(y)v‘/*"'”’),
0

y= y=m+1

and since (A (n))=0o(B(m)), it follows that
(6) 0(1—[ P(Y)y‘"”") =0,
y=0

A(n
(7) a( i p(y)“‘f“">~”> - 0.
y=m+1

Now let x, <n with g(x,)=0. Then with (1) and (3) we have p(f(x0))| A(n)
(whence f(xo)<A(n)). Thus if it were the case that m<f(x,), then with
Propositions 2.14 and 3.1 we would obtain a contradiction of (7). Thus f(x,)
<m. Then, if it were the case that h(f(x,))+0, then with (4) and p(f(xo)| A(n)
and Propositions 2.14 and 3.1 we would obtain a contradiction of (6). Thus
h(f (xo))=0, and so we obtain
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] Adlg(x) = 0= h(f(x) = 0 & f(x) < m].

Now let x,<n and z,<n with g(x,)=g(z)=0 and x, % z,. Without loss of
generality, let x,<z,. If it were the case that f(x,)=f(z,), then with (1) we
would have a(xo)=p(f(xo))=p(f (z0) =(z,), and it would follow that

PN [] a0 and s [T a0,

x=x9+1
and with (3) we would have p(f(x,))*|A(n), which in turn would yield
1 =v(A(n), f(xo)) = 1. Thus, since by (8) we have h(f(x,))=0and f(x,) < m, from
(4) we would have 1=y(n, f(x,)), which would yield a contradiction of (6).
Thus f(xo) #f (2,), which completes the proof of the direct part of the theorem.
We now prove the converse part of the theorem. Assume

© Alg(x) = 0= h(f(x)) = 0 & f(x) < m],
(10) AALEX) =g =0 & x + 2z f(x) + f(2)] .

Assume m< A(n) and let m+ 1<y, < A(n). Next, let x,<n. If 8(xo)=0, then
by (9), f(xo)Sm<y,, and so f(x,)*y,. Thus with (1) we see that p(yo)*a(xo).
The same result follows by (1) if g(x,) +0, and so by (3) we see that p(yo)*A (n),
and so v(A4(n),yo)=0 (Proposition 2.14), whence 34 .. v(4(n),y)=0, which
yields 353 v(A(n), y)=3"_, v(A(n),y). We obtain this same result if A(n)<m
(trivially, if A(n)=m), since if y,> A(n), then v(A(n), ¥0)=0 (Proposition 2.14).
Thus with the above definition of o,

(11) o(A(n) = i VAn),y).

Now, using (1) and (3), one proves by induction on n that for all y,

(12) PO) A — Efg(x) = 0 & f(x) = y],

and, using this result, together with (1) and (3), one proves by induction on n
that for all y,

POY | A(n) — EXENg(x) = g(2) = 0 & x + z & f(x) = f(2)] .

Thus for y,<m if it were the case that p(y,)?| 4(n), then we would obtain a
contradiction of (10). Thus p(yo)z,{'A(n) and so

(13) ATV AM),y) < 17.

Now let yo=m with v(A(n),yo)+0, in which case p(yo)| A(n). Then by (12)
there exists an x, <n such that g(x,)=0 and f(x,)= Yo- Thus from (9) we have
h(f (xo))=h(yo)=0, and so

(14) AT[v(A(n),y) + 0 — h(y) = 0].
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If it were the case that E}[v(A(n),y)=0 & h(y)=0], then from (13) and (14)
we would clearly have 3V, v(4(n),y)<N,(m), which with (11) would yield
o(A(n)) <N,(m)=N,(n), contradicting (A4 (n))=N,(n). Thus

~ EJ[v(A(n),y) = 0 & h(y) = 0],
whence
(15) AT[h(y) = 0 — v(A(n),y)*0] .

Now let yo <m with h(y,)=0. Then from (15) we have v(A(n),y,)+0, whence
by Proposition 2.14, p(y,) | A(n), and so from (12), E%[g(x)=0 & f(x)=y,], and
the converse part of the theorem follows.

We now prove that the hypothesis g(n)=h(m)=0 of Theorem 3.2 can be
eliminated.

THEOREM 3.3.
{Ng(n) = Ny(m)} —
{A7[h() = 0> E5[g(x) = 0 & f(x) = y]] &
{Ai[gx) = 0> h(f(x) =0 & f(x) = m] &
A0 = g(2) =0 & x + z— f(x) + [} -
Proor. Clearly true for N,(n)=N,(m)=0. If N,(n) and N,(m) are nonzero,
then let n'=G}[g(x)=0] and m’'=G}[h(y)=0]. We then have g(n')=h(m)=0

and N,(n')=N,(m’), and the theorem follows from Theorem 3.2 in a
straightforward manner.

COROLLARY.

AELS(x) = y] & {AULSf(x) = n] & AZAx * 2> f(x) + ()]} .

ProoF. Define g(x)=x-=n and h(y)=y-=n.
THEOREM 3.4.

{Ng(n) = Ny(m) & A3[h()) = 0— Ej[g(x) = 0 & f(x) = yI]} =

Y sg(@(x)fx) = Y sg(h()y-

x=0 y=0

Proor. We define a “patched together” function 8(x,y) such that for all x, y,

5(x,y) = {0 if f(X)+y v g(x)%0 v h(y)%0
Y=y i fx)=y & g(x)=0& h(»)=0.
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Then we prove that 7 oF7,8(x,))=3"-058 (2(x))-f(x) and
m0Xh-08(x,) =058 (h(3))-y, using Theorem 3.3,

CoroLLARY 1. ATEL[f(x)=y] = Ti_o f(X)=2"_0).

Proor. Define g(x)=x-n and h(y)=y=n.
COROLLARY 2.

{Am < x> m<f)<n] &

AlAm < x & m £

z2& x %z f(x) * f(2)]} — Z":f(x)= i

y=m
Proor. For n<m we use the definition of the summation function (section
2), while if m<n, then we define g(x)=m=x and h(y)=m-y.

THEOREM 3.5.

(Ng(n) = Ny(m) & AJ[h() = 0 - Eilg(x) = 0 & f(x) = y]]} —
I;I g(x) f(x)+sg (g(x)} =

I_T {sg (h(»))'y+sg (h(y))} .

ProoF. We define a “patched together” function ¢(x, y) such that for all x Y,

e(x.y) = {1 if f(x)*y v g(x)#0 v h(y)+0
’ y if f(x)=y & g(x)=0& h(y)=0.
The proof then follows the lines of the proof of Theorem 3.4

COROLLARY.

{Affm s x> m < f(x) = n] &

AAm=x&msz&x+z-f(x)+ (]}~

[:If(x)= 1

Proor. Parallel to the proof of Corollary 2 to Theorem 3.4

PROPOSITION 3.6. m>n — ~ATEY f(x)=y].
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Proor. From ATES[ f(x)=y] there would exist an x,<n with f(x,)=m.
Further, we would have AJE}[ f(x)=y], and with the Corollary to Theorem 3.3
we would obtain m=f(x,) <n, contradicting m>n.

COROLLARY. m>n — EJAS[f(x)*y].

X

Next, for any PR relation P(x, y), where there may be parameters in addition
to x and y, we define a PR function yp(m,n, w) such that if:

(i) m=n,

(ii) for each x,, m < x,<n, there exists a unique y, such that m=y,<n and
P(xq,y0) holds,

(iii) for each x,, m<x,<n, we have ~ P(x,,Xx,),

(iv) for each x,, m<x,<n, and each y,, m=<y,=<n, if P(xq,),) holds, then
P(yo, Xo) also holds,

then the sequence S:yp(mn,m), Yyp(mnm+1),...,y¥p(mnn) is a per-
mutation of the sequence m,m+1,...,n, and, as we prove in Lemma 2 for
Theorem 3.11, P holds for the first and second members of S, the third and
fourth members of S, and so on.

DEeFINITION 3.7. For any PR relation P(x,y), where there may be parameters

in addition to x and y, we let Yp(m,n,w) denote the PR function defined
recursively (with yp(m,n,0)=0 and Yp(m,n,w+1) defined by a “patched
together” function) so that the following three propositions hold:

ProrosiTiON 3.8. w<m — Yp(m,n,w)=w.

ProrposiTiON 3.9.
w > m & RM (w/2) & RM (m/2) —

.I/P(m9n’w) = L;[m é y & P(.I/P(m,n,w:—l)’y)] .

ProvrositioN 3.10.
w > m & RM (w/2) = RM (m/2) —
./lP(m’ n, W) = L;[A;v_l[wl’(m’ n,z) * Y]] .

REMARK. We note that for any w and m, the hypothesis of exactly one of
Propositions 3.8-3.10 holds.
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LemMma 1.
Al[m < x — Ej[m < y & P(x,y)]] —

Afm S w—m < Yp(mnw) < n] .

Proor. Assume the hypothesis of the lemma. We derive
(1) Afm = w S n—>m< Yp(mnw) < n]

using induction on t. Clearly (1) holds for t=0.

Assuming that (1) holds for t=k, we prove that (1) holds for t=k+1 by
letting w<k+1 with m<ws=n. If w<k+1, then m=yp(m,n,w)<n by the
induction hypothesis. If w=k+1, then we obtain m=yp(m,n,w)<n by
considering the three cases determined by the hypotheses of Propositions 3.8
3.10. In applying Proposition 3.9 we use the induction hypothesis and the
hypothesis of the lemma, and in applying Proposition 3.10 we use the
Corollary to Proposition 3.6 to obtain E3AY " '[Yp(m,n,z)#y], and then use
Proposition 3.8 to show that yp(m,n,w)<m. The lemma then follows easily.

LEMMA 2.
{45[m = x > Ejlm < y & P(x,»)]] &
ms=w=sn & RM(w/2) = RM (m/2)} -

P(Yp(m,n,w), yp(m,n,w+1)) .

A

Proor. By Lemma 1 we have m<yp(m,n,w)<n. Then use the first
hypothesis of the lemma and, noting w+1>m and RM ((w+1)/2)%=RM (m/2),
use Proposition 3.9.

THEOREM 3.11.
{4im < x> Efm < y & P(x,)]] &
AMAYm < x & m <y & P(x,y) > P(y,x)] &
AYm < x > ~P(x,x)] &
AAAIM S x&mSy&m<sz:&y+2z& P(x,y) - ~P(x,z)]}

- li.I l/lp(m,n,X) = H y.

Proor. We note that the hypotheses of the theorem are conditions (ii)—(iv)
given in the remark preceding Definition 3.7. We denote the hypotheses of the
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theorem by H,, H,, H; and H,, respectively, and we abbreviate the function
Y p(m,n, x) by Y(x). We now derive the relation

(1) AZAm S x & m Sz & x * z - Y(x) £ Y(2)]

using induction (restricted to an interval) on n. We see that (1) holds for 0 since
we cannot have x, <0, z,<0 and x, = z,,.

Assume as induction hypothesis that (]) holds for some k <n, and let m< x,
<k+1 and m=zy,<k+1 with x,%2z, Without loss of generality, let x, < z,,.
With H; and Lemma 1 we have mSy(xo)Sn, mSy(zo)Sn, mZy(xo+1)<n
and m=y(zo=~1)<n. We have two cases to consider:

Case 1. If RM (z4/2)+RM (m/2), then RM ((zo=1)/2)=RM (m/2), and so
with H, and Lemma 2 we have

03] P(Y(zo=1),¥(20)) -

Subcase 1a. If RM (x,/2)+RM (m/2), then m<x,~1 and so with Lemma 1
we have mZy(xo=1)<n. Since RM ((x, = 1)/2)=RM (m/2), by Lemma 2 we
have P(y(xo~1),¥(x,)). We have x,~1%z,+1, and so by the induction
hypothesis we have VY (x,~1)*+y(zo~1). From (2) and H, we have
P(W(zo),¥(zo=1)). If it were the case that yY(xy,)=W¥(z,), then with
P((xo~1),¥(x,)) we would have P(y(xq~1),¥(z,)), which with H, would
yield P(y(zo), ¥ (xo 1)), and so with H, we would have ~ P(y(z,), ¥(zo = 1)).
Thus ¥ (xo) + ¥ (zo).

Subcase 1b. If RM (x,/2)=RM (m/2), then with Lemma 2,

(©) P (x0), ¥ (xo+1)) .

We have x,+1=Zz,. If xq+ 1=z, then from (3) we have P((xo), ¥(zo)),
which with Hj; yields Y (xy) £y (zo). If xo+ 1<z, then

RM ((xo+1)/2) + RM(m/2) and RM ((zo=1)/2) = RM (m/2),

and so xo+ 1%z, 1, and by the induction hypothesis we obtain ¥ (x,+1)
*Y(zo~1), and so with (3) and H, we obtain ~ P((x,), ¥ (zo = 1)). If it were
the case that ¥ (x,) =/(z,), then from (2) we would obtain P(y(z - 1), ¥(x,)),
which with H, would yield P(y(x,,), ¥ (zo = 1)). Thus again y(x,)+y(zo).

Case 2. Let RM (zo/2)=RM (m/2). By the Corollary to Proposition 3.6,
EjA% " '[y(w)*y], which with Proposition 3.10 yields AZ™'[y(w) % (zo)],
and again ¥ (xo) + ¥ (2,).

Thus (1) holds for all k<n, and so holds for n. The theorem then follows
with H;, Lemma 1 and the Corollary to Theorem 3.5.

4. Wilson’s and Fermat's theorems.
We begin with the following necessary lemma:
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LEMMA.

Prime (p) > 42" [2 S x> EF* 2 <y & x'y = 1 (modp)]] .

Proor. Let 2<x,<p=2 and derive A% '[RM (x, w/p)<p-=1] and
ALTAZT [w # 2 — RM (xo'w/p) + RM (xo-2/p)] .

Then by the Corollary to Theorem 3.3, there exists a Yo=p-—1 such that
RM (xo°yo/p)=1, whence x,°y,=1 (mod p). Then show that 25y,<p=2.

THEOREM 4.1 (Wilson’s theorem).

p>1-{(p-1)! = p=1 (modp) & Prime )} -

Proor. The direct part of the theorem is easily proved. So assume Prime (p).
If p=2 or p=3, then we obtain (p~1)!= p=1 (mod p) by computation. So
assume p25. Let P(x,y) denote the relation x-y=1 (mod p). Then by the
Lemma and Theorem 3.11, denoting Vp(2,p=2,x) by Y(x), we obtain
[1223v(x)=T1222y=(p=2)!, whence, multiplying both sides by p=1, we
obtain

[(p=2)/2]+1

(1) =D [ e =) yEx=1} = p=1).

x=2

Using the Lemma and Lemma 2 for Theorem 3.11, we derive
(p=2)21+1

[ We&x=1)yex=1)} =1 (modp),

x=2

and with (1) we obtain (p=1)!=p=1 (mod p).

THEOREM 4.2 (Fermat’s theorem).

Prime (p) & pfa— a**! =1 (modp).

ProoF. Using the Corollary to Theorem 3.5, we obtain
p=1

p=1
[l RM (x-a/p) = ljl y= @@=,

x=1

and so clearly [221 (x-a)=(p~1)! (mod p), and the proof is finished in a
straightforward manner.

S. The quadratic reciprocity law.
Using Fermat’s theorem (Theorem 4.2), we obtain:
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ProposITION 5.1. Prime (p) & pfa — EZ[ax=b (mod p)].

Throughout this section we denote [(p=1)/2] and [(q=1)/2] by p’ and ¢/,
respectively. Also, using the notation of Gauss [3, p. 88], we make the
following two definitions (recall that RM (x/n)=x (modn) and n>0
— RM (x/n)<n):

DEFINITION 5.2. aRn < E"[x?>=a (mod n)].
DEeFINITION 5.3. aNn & ~aRn.

The expression aRn is read “a is a quadratic residue of n”, and the expression
aNn is read “a is a quadratic nonresidue of n”.

ProrosiTiON 5.4.
{Prime (p) & 2}p & pfa} —
{{aRp & a” =1 (modp)} & {aNp <> a” = p=1 (modp)}} .

PrOOF. As in [6, p. 70] we obtain
) aRp — a” =1 (modp).

Alternatively, assume aNp and let P(x, y) denote the relation x-y=a (mod p).
Since for all x,, 1=x,<p—-1, p*xo, with Proposition 5.1 we obtain

AT S x> B2 S y & Pyl

and so with Theorem 3.11 and Wilson’s theorem (Theorem 4.1), abbreviating
Yp(l,p=1,x) by Y(x), we have [J2Z} y(x)=p=1 (mod p), and so with p=1
=2p’ we obtain

& [T (W@ (x=1)+1)-y(2x)} = p=1 (modp).
x=1
With Lemma 2 for Theorem 3.11 we obtain
ARl £ x > (2 (x=1)+1) ¥(2x) = a (modp)],

and so [T2_, {¥(2- (x = 1)+ 1)-¢¥(2x)} =[12-, a (mod p). Thus with (2) we have
[1?-,a=p+1 (modp), and so

3) aNp — a” = p=1 (modp).

The converses of (1) and (3) follow from p=~1%1 (mod p).
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DEerFiNITION 5.5. For any PR function g(X,,y), where X,, denotes the m
parameters, if any, which g contains in addition to y, we define a PR function
Ty (X, 1) by the equation T, (X, n)=3]_, sg (8(X ).

PROPQSITION 5.6. For n>0, T,(X,, n) gives the number of values of y, 1<y=<n,
Jfor which g(X,,y)*0. Further, for n>0, if g(X,,n+1)=0, then T,(X,,n+1)
=To(Xpmn), and if g(X,,n+1)%0, then T (X,,n+1)=T,(X,,n)+1.

Next, for any PR functions f(X,, y) and g(X,,y) (m=0), we define a “patched
together” function n, ,(X,,n,y) so that the following two propositions hold:

PROPOSITION 5.7. g(X,, )=0 — 1 (X, 1Y) =1 (X, y).
ProposiTION 5.8. g(X,,, )0 — 1, (X, n,y) = n=RM (f(X,,y)/n).

We were able to eliminate the use of the negative number —1 from the
statement of Wilson’s theorem (Theorem 4.1) by using p=1 instead. We use
the following procedure for eliminating the need for negative numbers in
proofs concerning congruences: We replace any negative number —x
occurring in a proof in ordinary number theory by n~RM (x/n), where n is the
modulus in question, observing that for n>0,

n=RM (x/n) = —x (modn).

Proposition 5.9 thus corresponds to the assertion in ordinary number theory
that a product is nonnegative if it contains an even number of negative factors
and is nonpositive otherwise.

PropoSITION 5.9.

n>0-

{{2|T3(Xm9t) - l—[ "f,g(Xm’nLy) = l—'-[ f(mey) (mOdn)} &
y=1 y=1
{2)( Ty (X 1) -

[T #/.¢(Xmn,y) = n=RM ({f[ f(Xm,y)}/n> (modn)}}.
y=1 y=1

Proor. We first observe that for t>1, T,(X,,?) is the number of factors of
the form n=RM (f(X,,y)/n) in the product [T}_, n ,(X ., n,).
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Proof is by induction on t. The proposition holds for t =0 by Definition 5.5
and the definitions of the summation and product functions (section 2).
Assume that the proposition holds for t=k. If k=0, then, using Definition

5.5 and Propositions 5.7, 5.8 and 2.6, we show that the proposition holds for
t=k+1.

Alternatively, assume that k0. First, let 2| T,(X,,, k+1). If g(X,,, k+1)=0,
then we obtain the desired result with Proposition 5.6, the induction
hypothesis and Proposition 5.7. If g(X,,, k+1)+0, then we obtain the desired

result with Proposition 5.6, the induction hypothesis and Propositions 5.8,
2.5(b) and 2.11.

Next, let Z*TE(X,,,, k+1). If g(X,, k+1)=0, then we obtain the desired result
with Proposition 5.6, the induction hypothesis and Propositions 5.7 and 2.13.
If g(X,, k+1)%0, then we first use Proposition 5.6, the induction hypothesis
and Proposition 5.8. Next, if I"[‘;=1 f(X )3)=0, then the desired results follows

immediately, while if [T, f(X,,y)+0, then we use Propositions 2.5 (b), 2.10
and 2.12.

Preparing for our proof of the lemma of Gauss, we make the following two
definitions:

DeriniTION 5.10. t(a, p, x)=RM (x-a/p).
DEerFINITION 5.11. w(a, p,x)=RM (x-a/p)~p'.
ProrosiTiON 5.12. w(a,p,x)=0RM (x-a/p)<p'.

ProrposITION 5.13.

2fp — {w(a,p,x) + 0 [(p+1)/2] < RM (x-a/p)} .

With Propositions 5.7, 5.8 and 2.5(c) and Definition 5.10, we also have the
following two propositions:

ProrosiTION 5.14.

w(a,p,x) = 0 - n, ,(a,p,p,x) = RM (x-a/p) ..

ProrosiTiON 5.15.

w(a,p,x) * 0— n, ,(a,p,p,x) = p~RM (x-a/p).

REMARK. The following lemma asserts that if p is an odd prime with p,{’ a and

S = {RM (a/p),RM (2a/p),...,RM (¢"*a/p)} ,

Math. Scand. 45 — 13
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and r,,...,r, denote the members of S exceeding p’, and s,,. . .,s, denote the
remaining members of S, then the sequence s,,...,s,p=r,...,p=r, is a
permutation of the sequence 1,2,...,p".

LEMMA.
{Prime (p) & 24p & p)a} —
{AfT1 < x> 1 < n.u(ap,p,x) S p] &
APAP1 £ x & 1S z2& x 2z
Me,0(@: P, P,X) * 1. ,(a,p,p,2)]} .

Proor. First, for any x,, 1 <x,<p’, from Propositions 5.12-5.15 it follows
that if w(a, p, x0)=0, then n, ,(a, p, p, x,) corresponds to an s; in the preceding
remark, while if w(a, p, x,) 0, then #, ,(a, p, p, x,) corresponds to a p=r;in the
preceding remark. The proof then follows in the usual way (see, e.g., [6, p. 70,
proof of Theorem 3.2]).

Before proving the lemma of Gauss, we observe that for any odd prime
p, T,(a,p,p)) gives the number of members of the set

{RM (a/p),RM (2a/p),. . .,RM (p'-a/p)}
which exceed p’ (see Propositions 5.6 and 5.13).

THEOREM 5.16 (Lemma of Gauss).

{Prime (p) & 2}p & pfa} — {aRp < 2| T,(a,p.p)} .

Proor. Since [12., RM (x-a/p)={I12-, x}-a* (mod p), with Proposition
5.9, Definition 5.10, the Lemma, the Corollary to Theorem 3.5 and
Proposition 2.13 we obtain "

(1) 2T @pp) — [] x = {ﬁ x}-a" (modp) |

x=1

2 2} T,(a,p,p) — ﬁ x = {f]

x=1

x} ‘a”-(p=1) (modp).
The theorem then follows with Proposition 5.4.

LEMMA 1.

p

) [x'a/p]} -

x=1

{Prime (p) & 2fp & 2fa & p)a} — {aRp 2
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Proofr. Trivial for a=1. So let a= 3. With Propositions 2.5 (a) and 2.7 (d) we
have

» o »
o a g,l X =p Z,l [x-a/p]+ Y sg(w(a,p,x)'RM (x-a/p)+

x=1
"
;1 sg(w(a, p,x))'RM (x-a/p) .

Next, with the Lemma for Theorem 5.16, Corollary 2 to Theorem 3.4 and
Propositions 5.14 and 5.15 we obtain

x = 21 sg (w(a, p,x)):RM (x-a/p) +

e

1

o
Y. sg(o(ap,x) (p=RM (x-a/p),
x=1 :
which subtracted from (1) yields

x= x=

@15 x = {p & rean+ £ setoan) R x-aip} =
5 {58 (000, p ) p--se (0la.p. ) RM (x-ap)

x=

- {p- § teapl+ ¥ se(@lep) RM (x-a/p)};

{pZ sg (w(a,p,x)) p= i sg (w(a, p,x))'RM (x-a/p)}
x=1 x=1

x=

p p
= {p' Y, [x-a/pl+2- } sg(w(a,p,x) RM (x'a/p)}*
1 x=1
p-T,(a,p,p)
(see Definition 5.5). Thus, since (a=1)-32_, x+0, we have

p p
p-T,(ap,p) < p Y, [x-a/p]+2:
1

X = x=

sg (w(a,p,x))'RM (x-a/p) ,
1
and then, since 2|(a~1), the lemma follows from the lemma of Gauss
(Theorem 5.16) and Proposition 2.9.

LEMMA 2.

{Prime (p) &‘Pri}ne(q) &p+q & 2,[’p & Z*q &1 xsp}—
.

Y sg(xq=y-p) = [xq/p].

y=1



196 W. J. RYAN

Proor. If 39 sg(x g~y p)=0, then sg(x-g=1-p)=0, whence x-gq<p,
and so [x-q/p]=0.

37 sg(x g~y p)+0,then EX[1 <y & y-p <x-q], and so, denoting G[1
Sy & y'p<x-q] by y,, we have 1<y, and y,-p<x-q. We also have Yo=¢q.

If yo <4/, then clearly 3¢_, , sg(x-g=y-p)=0, and so

q Yo
@ 2 sg(xg=yp)= ) sg(xqg=yp),
y=1 y=1

while if y,=4¢’, then (1) holds trivially.

From y,-p<x-q we have A?[1<w — sg(x-g=w-p)=1], and so with (1)
we obtain

"
@ Y sglxq=yp) =y,.
y=1

Now let wo<x-g with y,<w,. If wy<q/, then from the above definition of
Yo we have w,-p£x-q, whence x-q<w,-p. If, on the other hand, q' <wy,
then(q'+1):p<wyp. Also, from x<p' we have x-q<p'-q, and so, since
P'"q9=(q'+1)' p, we again have x-q<w,p. Further, from pfx-q we have x-q
<wo'p, whence wy-p=x-q+0. Thus y,=G> 9y p-x-¢g=0] and so with
Proposition 2.8 and (2) we again have the desired resuit.

THEOREM 5.17 (Quadratic reciprocity law).
{Prime (p) & Prime(q) & p + q & 2}p & 244} —
{{rRq < qRp} = 2|p'" ¢} .
Proor. We first observe that

(1) > qZ sg(xy) =p-q.

x=1 y=1

Next, if 1=x,=<p’ and 1<y,<¢/, then since p,{/x(,'q we have x5 q+y,°p,
and so either x,-g<y,'p or yo,-p<x,-g, and in either case we have

S8 (Xo"Yo) = $g (X0 g =o' P)+58 (Vo' P=X0"9) -

Thus we have

p q r q q »
YY) =Y Y sgaryp+ Y Y sg0pexa),

x=1y=1 x=1 y=1 y=1x=1

and so with (1) and Lemma 2 we have
p q
pPd =3 [xqpl+Y yp/adl,
x=1 y=1

and the theorem then follows by Lemma 1.
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