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A CLASSIFICATION OF IDEALS
IN CROSSED PRODUCTS

DORTE OLESEN

Abstract.

Given a C*-dynamical system (4,G,2) and a closed subgroup H of the
locally compact abelian group G we show that the crossed product G x 4 is
prime if and only if two conditions are satisfied: (a) the sub-crossed product
H x A is G-prime (any two non-zero G-invariant ideals of H x A have non-zero
mtersecnon) and (b) the Connes spectrum I () contains the anmhllator H* of
H in the dual group G of G. When G/H is discrete, we obtain that the crossed
product is simple if and only if (a) H x 4 is G-simple (has no non-trivial G-
invariant ideals) and (b) I'(x) contains H*'.

Introduction.

Let (A,G,2) be a C*-dynamical system, (G % A, G, 4) its dual system. In an
earlier paper [8] it was shown that the existence of G-invariant ideals in A4 is
equivalent to the existence of G-invariant ideals in G x A. Here we pursue this
line of thought to show that given a closed subgroup H of G, the existence of G-
invariant ideals in the “sub’-crossed product Hx A is equivalent to the
existence of H*-invariant ideals in GxA. The result is based on the
characterization of H x 4 obtained in [6], and indicates that it is of interest to
classify the ideals in G x A by the largest closed subgroup of G under which
they are invariant.

Using the established correspondence between ideals in H x A and G x 4 we
get new criteria for the simplicity (and primeness) of G x A, formulated in terms
of properties of H x A. Our method also yields new results for W*-dynamical
systems, extending results in [4].

1. Notation.

This paper constitutes a sequel of [6] and [8], to which we refer the reader
for terminology. For more general reference on C*- and W*-dynamical
systems one may consult [9]. Let (4,G,x) be a C*-dynamical system, H a
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closed subgroup of the locally compact abelian group G. The action o of G on
the space K(H,A) of continuous functions from H into 4 with compact
support is defined by

@) = a(y(s))

and this is easily seen to coincide with the action Ad i (as defined in [8]) on
M(G x A) when restricted to K(H, A).

By «f we shall henceforth mean the canonical extension of the action on
K(H,A)to all of H % A, and whenever we speak of G acting on H X A we think
of (HxA4,G,a Hy,

2. An ideal correspondence.

LEMMA 2.1. Let (A,G,a) be a C*-dynamical system, (Gx A4, G,4) its dual
system. Let H be a closed subgroup of G, H* its annihilator in G. For every non-
trivial H*-invariant ideal J in G x A let Iy(J) denote the closed linear span of

{(xeHxA| IyeJ: x=Iy()} .

Then Iy(J) is a non-trivial G-invariant ideal in H X A.

Proor. By [6, Lemma 2.6] I4(J) is non-zero when J is non-zero since
AgyAg € J when y € J and f, g are in K(G). Furthermore, Iy(J)+H x A when J
#+G x A. Indeed, let ¢ be a non-zero functional on G x A which anmhllates J.
By the H*-invariance of J, ¢ annihilates I u(J), but ¢ cannot annihilate all of
H x A since this contains an approximate unit for G x A. That Iy(J) is a closed

-subspace of H x A is obvious, and that it is an 1deal follows easily from the
pointwise Hl-mvarlance of the elements of H % A which ensures that

X Ig(y) = Iy(x,y)
whenever x, € H X A, y € B§ByNJ. The G-invariance follows from
Iy(AyA¥) = Ady()Ak
for all y in BB, and t in G.
LEMMA 2.2. Let (A4,G,a), (Gx A,G,d) and H* be as in 2.1. Let N be a non-

trivial G-invariant ideal in H X A. Denote by ExtN the closed linear span of
elements

{xy,yxl xeN,ye GxA}.

Then Ext N is a non-trival H*-invariant ideal in G 3‘<}A.
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Proor. We regard H x A as the C*-subalgebra of M(G x A) satisfying the
conditions of [6, Theorem 2.1]. By the G-invariance of N, one easily verifies
that Ext N is an ideal in G x 4. The H*-invariance follows from

&,(xy) = x&,(»), 7yeH",

whenever x e Nandy e G X A. When N is non-zero, so is Ext N —if not, some
non-zero x in N would be orthogonal to G x 4, which is impossible. When N is
not all of H x A we want to conclude Ext N +G x A. Let #° be a representation
of H x A on a Hilbert space #°, or equivalently a pair (n° u°), where n° is a
representation of 4 on #° and u° is a unitary representation of H on #° such
that for s in H and x in 4

(o (1)) = ugm®(xu, .

Let #=(mu) be the induced representation of GxA (or covariant
representation of (A4, G,a)) on the Hilbert space s# of measurable functions
¢: G — #° satisfying that for all sin H and t in G é(t+s)=u® £(t) and that
fG/H €2 < oo, as defined in [11, Section 3]. Clearly (m,u) restricts to a
covariant representation of (4, H,a), and hence

7' (x) = J n(x(s))u,ds
H

extends from a representation of K(H, A) to H x A, cf. [9]. Since (u,)(t)=
E(t—s)= (ul&)(t) for s in H we have

#)(t) = 2% (-, (x)(0)

for all t in G. This shows that by choosing a non-trivial #° of H x A such that N
cker #° one obtains from the G-invariance of N that N cker ", hence Ext N
<ker i, and the conclusion follows.

RemaRrk 2.3. The above direct proof that N+ H x A implies ExtN+G x A4
was pointed out by the referee. Originally, a different proof of this was given,
using the complicated machinery of [5]. For the benefit of the reader
acquainted with [5] it might be worthwhile to point out that one can deduce
from [5, Proposition 12] that the quotient of G x A by Ext N is isomorphic to
the twisted crossed product of G with the quotient of H x 4 by N. Hence if the
latter is non-trivial, so is the former.

RemMARK 2.4. In [8], we worked with the case H={0} and established the
correspondence from a G-invariant ideal in G x A to a G-invariant ideal in 4
exactly as in 2.1 above —i.e. by using the conditional e)fpectation I=Iy,. To
go back, however, from a G-invariant ideal N in A to a G-invariant J in G X 4
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we simply referred to the Takai duality (cf. [10]), using that N®C(L?(G))
naturally identifies with a G-invariant ideal in the double crossed product, and
thus maps onto a G-invariant ideal in G x A.

This construction is in fact equivalent to the Ext-operation used in 2.2. One
way of seeing this is to note that when N is a G-invariant ideal in A,ExtN as
defined in 2.2 identifies with G % N. Indeed, observe that K(G, A) is dense in
GxA and for y in K(G, A), xy € K(G,N) when x € N. Now N®C(L*(G))
1dent1f1es with the double crossed product G><G><N thus the canonical
conditional expectation maps N®C(L?(G)) onto G x N, and we are back.

PROPOSITION 2.5. Let (A, G, a) be a C*-dynamical system, (G x A, G, 4) its dual
system, H a closed subgroup of G with annihilator H* in G. Then HxAis G-
prime (resp. G-simple) if and only if G x A is H*-prime (resp. H*-szmple)

ProoF. (i) Prime version: assume J, and J, are orthogonal non-zero H*-
invariant ideals in G x A. The associated G-invariant ideals I g(Jy) and Iy(J,)
obtained from 2.1 are then also orthogonal since

XXy = Ig(yy(y,) = JH* JH* &r()’l)&y()’z)dfd)’ =0

when y, € J, and y, € J,.

Assume conversely that N, and N, are non-zero orthogonal G-invariant
ideals in Hx A, and let Ext N, and Ext N, be the associated H'-invariant
ideals in Gx A4 obtained from 2.2. Take the four combinations X1V1V2X5,
Y1X1X2Y2, Y1X1Y2X; and x,y,x,y, where x, € N,, x, € N, and y, and y, are in
G x A. All such elements must be zero. Indeed, for y1X1Xx,y, this is obvious,
since already x,x, =0. To prove it for the other three cases note that whenever

y € K(G, A)
‘1<fI(Y(S))2s ds)xz

j).s).:x,},sl(a_s(y(s))xz)ds =0,

X1YX;

since 2*x,4, € N, by G-invariance, and 1{a-4(y(s))) belongs to the multiplier
algebra of H x A, thus 1(xx_,(y(s))x, € N,.
(ii) Simple version: this is obvious from lemmas 2.1 and 2.2.

PROPOSITION 2.6. Let (A, G, ), (G XA, G, a), H and H*, Ext and Iy beasin2.l
and 2.2. Let J be an H*-invariant 1dea1 of G x A,N a G-invariant ideal of H x A.
Then

() Ext(Iy(J)=J, and
(i) Iy(ExtN)2N.
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ProoF. (i) Take G x A4 in its universal representation. By the H*-invariance,
Iy(J) is contained in the weak closure J” of J. Thus Ext (I5(J)) is a closed ideal
in J"N(Gx A)=J.

(i) Take A< B(H#), Gx A < B(L*(G, 5)). Let 9(I) denote the dense subset
of G x A of elements that are in the domain of I and map onto elements of
Hx A ([6, Lemmas 2.5 and 2.6]). Note that the range of such elements under
Iy is dense in H X A by the proof of [6, Lemma 2.6]. Thus the generating set for
Ext N has the dense subset {xy,yx | xe N, ye 9(Iy)} which maps onto a
dense subset of N, and so Iy (Ext N) must contain N.

When G is discrete, the crossed product G x 4 identifies with the C*-algebra
generated by 1(4) and Ag on L?(G, #). In this case we have the simple inclusion
chain

() c HxA = GxA

for every subgroup H of G. As a further simplification the dual system is now
based on a compact group G thus the map I becomes everywhere defined. For
this special setting, we obtain more transparent results concerning the ideal
correspondence.

ProrosiTioN 2.7. Let (4, G, ), (G % 4, G, ), H and H* be as in 2.1, and assume
G to be discrete. Let N be a G-invariant ideal in H X A. The extension of N is the
smallest ideal in G X A containing N and

I4(ExtN) = N .

ProoF. N is now a subspace of G x 4, thus
{xyyx| ye GxA4, x € N}
spans the smallest ideal containing N. Note that
ExtN = cl.span |J Nij,.

When applying Iy=[y.d,dy to elements in this closed linear span, we
obviously get the elements from N back.

PrOPOSITION 2.8. Let (4, G, ), (G % A,G,8), H and H* be as in 2.1, and assume
G to be discrete. Let J be an H*-invariant in G x A, then Iy(J)=J N (H % A) and

Ext(Iz(J)) = J .

PrOOF. H* is compact, thus Iy is a projection of norm one from G x 4 onto
H x A. Now take an element x in J, then a,(x) € J for every y in H*, thus

Math. Scand. 45 — 11
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Iy(x) e J, and at the same time Iy(x) is fixed under &,y in HY, so
Iy(x) € H x A. Conversely, every x in J which belongs to H x A satisfies that x
=Igy(x).

Take (u;) to be an approximate unit for J. By the H*-invariance of J and
compactness of H* it follows that (Iy(u,)) is an approximate unit for J.
However, (Iy(u;)) also belongs to H x A. Thus the smallest ideal in GxA
which contains JN(H x A) contains an approximate unit for ¥ and is
contained in J, therefore equals J.

3. Prime and simple crossed products.

In this section we obtain the natural generalizations of [8, Theorems 5.8 and
6.5].

THEOREM 3.1. Let (A, G,a) be a C*-dynamical system, (G X A, G,d) its dual
system, H a closed subgroup of G with annihilator H* in G. Then the following
conditions are equivalent

(1) GxA is prime;
(i) (a) Hx A is G-prime and (b) I'(®) 2 H*.

Proor. That (i) implies (ii) (a) follows directly from proposition 2.5. From
[8, Theorem 5.8] we know that (i) implies I' (@)= G, so obviously (ii) (b) holds.
For the reverse, note that by 2.4 above, (ii) (a) implies that G x A is H*-prime.
Assume that J, and J, were non-zero orthogonal ideals in G x A. Since
H*<TI'(«) we then have

Ji N oA‘-,(-]z) = {0}

for each y in H*, reasoning as in the proof of [8, Theorem 3.4]. But then J 1 has
zero intersection with the span J, of all &,(J,), y € H*, and repeating the
argument with J3,J, in place of J,,J, we obtain orthogonal H*-invariant
ideals, in contradiction with G x A being H*-prime.

THEOREM 3.2. Let (A, G,a) be a C*-dynamical system, (Gx A, G,4) its dual
system. Let H be a closed subgroup of G such that the quotient group G/H is
discrete, and denote by H* the (compact) annihilator of H in G. Then the
Sollowing conditions are equivalent

(i) GxA is simple
(i) (a) Hx A is G-simple and (b) I'(@)2 H*.

Proor. That (i) implies (ii) (a) follows from 2.5 (simple version), and that (i)
implies I' (@) =G, a fortiori that I (®) 2 H* follows from [8, Theorem 6.5]. That
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(i) (a) and (b) imply that G x 4 is prime follows from 3.1, and that G x Ais H*-
simple from 2.5. To complete the proof we need just the following
generalization of [8, Lemma 6.4].

LEMMA 3.3. Let (B, K, B) be a C*-dynamical system and N a compact subgroup
of K. If B is prime and N-simple, then it is simple.

Proor. A verbatim repetition of the proof of [8, Lemma 6.4] shows that
given a non-zero ideal I in B there exists a non-zero y, which belongs to §,(I)
for all n in N, thus the intersection over these form a non-zero N-invariant
ideal.

A natural question at this point concerns the exact relationship between
I'(@¥) and I'(®). We obtain the following, using notation as above.

ProvosiTioN 3.4. I'(af)=T () N H*.

Proor. (i) It follows from the proof of [7, 4.2] that the annihilator I'(af)*
must contain all ¢t in G for which «f is multiplier-inner in the fixed-point
algebra of the bitransposed action («f)”. Obviously, «/ is inner in this sense for
all h in H, whence I'(«¥)* 2 H, thus I'(a")c H*.

(i) To see that I'(e¥)cI'(x) note that whenever B e #7*(A),
HxBe #"(H x A). It is easily checked that the Arveson spectrum Sp (x| B)
equals Sp (2" | H x B). From this we conclude that

re”y s Nsp@”|HxB) = NSp|B) = I'.

(iii) To prove I'(e")2I(@)NH* we appeal to results in [5]. Indeed, let
y e F(@)NH, then we want to see that for every non-zero ideal J in
G % (H x A),
ANy 0.
By [5, Proposition 1] the crossed product G x A4 identifies with the quotient
G x (Hx A)/ly

where I is the intersection of Ga>§’ (H x A) with the ideal in M (G:;l (H x A))
generated by

{fl()) =iy | he H, ye Hx A},

cf. [5, p. 196]. Using that by [6, 2.1] o;f leaves H x A pointwise invariant we
have that for y € H*

o (ol (1) — Ay) = o (o6 () — (b ina () = ol )= Ay -
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This means that Iy is pointwise invariant under az’. Hence if JNIg+{0},
we immediately obtain the desired conclusion. If JNIy=/{0}, the quotient
J=J/Iy is a non-zero ideal in G x 4, and furthermore ozz’(J)/I u=a,(J), hence
it follows from y e I'(a) that &,(J)% {0}, so J Naf (J)+{0}.

4. The von Neumann algebra case.

Let (M, G,a) be a W*-dynamical system with M o-finite and G separable,
I'(a) its Connes spectrum as defined in [3, 2.2.1]. Using the above ideas and
the characterization in [4, III, Theorem 3.2] of I'(x) as the kernel of the
restriction of & to the center Z(G % M) of the W*-crossed product G x M we
obtain the following generalization of [4, III, Corollary 3.4].

THEOREM 4.1. Let (M, G,a) be a W*-dynamical system, (G x M, G, 4) its dual
system, H a closed subgroup of G with annihilator H* in G. Then the following
are equivalent

() GxM is a factor

(ii) (a) a acts centrally ergodic on H x M
and
(b) I'(@=2H"

To see this, let us first prove the following

LemMa 4.2. Let (M,G,a), (GxM,G,8), H and H* be as above. The H*-
invariant central projections in GxM identify with G-invariant central
projections in HxM. °

ProoF. Let p be a G-invariant central projection in H x M. Since M is a
subalgebra of H x M, p commutes with M, and the G-invariance ensures that p
commutes with {4}, thus p is central in G % M. Since H x M by [12, Theorem
7.1] identifies with

{yeGxM| d(p)zy Vye H'},

p is H*-invariant.
Conversely, assume p to be central and H*-invariant in G x M, then by the
above p € H x M and is G-invariant and central since it is central in G x M.

PRrOOF OF THEOREM 4.1. Assume (i), then (ii) (a) holds by 4.2, and by [4, III,
Theorem 3.2] I'() = G, a fortiori I'(0)2 H*. Conversely, assuming (ii) (a) we
know by 4.2 that G x M has no H*-invariant non-trivial central projections
and now the characterization
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I(a) = kerd|Z(G x M)

tells us that (ii) (b) implies that all central projections in G X M must be H*-
invariant. Thus G x M is a factor.

5. An example: the gauge group on the Fermion algebra.

Let (F, T, ) be the C*-dynamical system where F is the Fermion algebra, T
the circle group and a the action of T as gauge automorphisms. One way of
viewing this is to see F as the infinite tensor product of 2 x 2-matrices, and the
gauge automorphism «, as the product type automorphism which on each
2 x 2-matrix algebra is implemented by the unitary u,,

u_e“O
T\ 1

(see [2, Section 4] or [9, 8.12.11])..
In [2, Section 4] the diagram of the crossed product T x F was shown to be

2

\ 4/2\ 4/2\4/2
. 8< \8/ \8/ \8 .
./ 16/ \16/ \16/ \,

. .
. . .
.

v

and the dual action represents a “shift” in the diagram. The non-trivial ideals in
T x F correspond to subsets of the diagram of the form ([2, Section 47])

I\ N A7 W

thus no ideal in T x F is invariant by any d,, y=+0.

This shows that only one class of ideals in T x F has non-trivial elements,
namely the O-class. Whenever N is a proper suogroup of T, the ¢lass of ideals in
TxF invariant under N* contains only 0 and TxF. This corresponds
according to section 2, to N x F being T-simple. But in fact we have even more
here: N x F is always simple. Indeed, N is a finite (thus discrete) group and so
by [8, Theorem 6.5] N x F must be simple if F is N-simple and r'e|N)=N.
But F is actually simple, and every gauge automorphism is outer, thus by [7,
Theorem 4.2] I'(a| N)*={0}, so I'(@| N)=N.
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6. Actions on the compact operators.

Let A= C(H), the algebra of all compact operators on a Hilbert space H, and
let G be any locally compact abelian group acting on C(H). Combining [5,
Theorem 18 and Proposition 34] with [7, 4.2 Theorem] we get the following

ProposiTioN 6.1. Let (C(H), G,a) be a C*-dynamical system, (G x C(H), G,d)
its dual system. The ideals of G x C(H) all have the same stabilizer under the dual
action, and this coincides with the Connes spectrum I (a).

ProoF. By [5, Theorem 18] the crossed product G x C(H) is isomorphic to
the tensor product C(H)® (G’ x C) where, denoting by U the unitary group in
B(H)

G ={(ssueGxU| a=u-u*},

and the twisting map is defined by mapping the subgroup N’ of G’ consisting of
elements (0, e 1) into the circle group by the canonical procedure. Obviously,
this is an isomorphism of the group N’ onto T, so the twisted C*-dynamical
system in question is a reduced abelian system in the sense of [5]. Hence by [5,
Proposition 32 (ii)] the stabilizer of any primitive ideal P in G %C is the
annihilator in G of the quotient Z/N’ where Z denotes the center of G'. By the
proof of [7, 4.2 Theorem] this annihilator always contains I'(«), and by [8, 3.2
Lemma] the stabilizer is always contained in I'(x), hence equality holds
between the stabilizer and I' ().

The above exhibits the marked contrast between the Fermion algebra case
treated in section S and the case for any C*-dynamical system based on the
compact operators. In the latter case, all ideals of the crossed product belong
to the Connes spectrum-class.
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