ČEBYŠEV SUBSPACES OF C*-ALGEBRAS

GERT KJÆRGÅRD PEDERSEN

A subspace V of a Banach space A is called a Čebyšev subspace if each vector in A admits a unique closest point in V. The story of Čebyšev subspaces is long and the monograph [7] tells it in painful detail. The highlight, however, is the theorem of Haar [2] characterizing an n-dimensional Čebyšev subspace of C(X), X compact, by the condition that no non-zero function in the subspace has more than n-1 zeros.

In the first section of the paper we shall consider the extension of the Haar's theorem to non-commutative C*-algebras. The second section contains a negative result about the existence of Čebyšev C*-subalgebras—they are almost all trivial.

The study of Čebyšev subspaces in operator algebras was initiated by Guyan Robertson in [5], later joined by Yost in [6]. Most of what we shall do is directly inspired by their work. Thus the characterization of one-dimensional Čebyšev subspaces was conjectured in [6] and the necessity of the condition, i.e. the implication (iii) \Rightarrow (i) in our Theorem 3 is Proposition 1.6 of [6]. Looking for Čebyšev C*-subalgebras B of a C*-algebra A, Guyan Robertson and Yost find the trivial examples B = A and B = C1; and in the case $A = M_2$ they also find $B = C^2$ (the diagonal matrices). They then ask whether these examples are the only Čebyšev C*-subalgebras and prove in [6, Theorem 1.5] that such is the case if A is a von Neumann algebra of type I. As we shall see, their result is actually true for general C*-algebras.

We use the notation from [4]. Thus A will denote a C*-algebra, A'' its enveloping von Neumann algebra. Moreover, regarding A as a subalgebra of A'' we let $\tilde{A} = A + C1$ and denote by M(A) the C*-algebra of multipliers of A in A''. When $1 \in A$ we have, of course, $A = \tilde{A} = M(A)$.

1. Finite-dimensional Čebyšev subspaces.

Our first result is a straightforward adaptation of known procedures (cf. [7, p. 29]) to the case of C*-algebras.

LEMMA 1. Let V be a finite-dimensional subspace of a C*-algebra A and assume that V is not a Čebyšev subspace. There are then elements y in A, x_0 in $V \setminus \{0\}$, and a state φ of A such that

- (i) $\varphi(yy^*) = ||y|| = ||\varphi|| = 1$;
- (ii) $\varphi(x_0^*x_0) = \varphi(yx_0x_0^*y^*) = 0$;
- (iii) $\varphi(vV) = 0$.

PROOF. By assumption there is an element y in A such that y^* has at least two nearest points in V. We may assume that zero is one and denote the other by x_0 . Normalizing y we may take ||y|| = 1. Thus $||y^*|| = ||y^* - x_0|| = 1$ and $||y^* - x|| \ge 1$ for all x in V. The functional ψ_0 on $Cy^* + V$ defined by $\psi_0(\lambda y^* + x) = \lambda$ is bounded by 1 and extends by Hahn-Banach's theorem to a functional ψ on A with $||\psi|| = 1$. Regarding A as operators on its universal Hilbert space H (cf. [4, 3.7]) there are then unit vectors ξ , η in H such that $\psi(a) = (a\xi \mid \eta)$ for all a in A. Since $(y^*\xi\mid \eta) = 1$ and ||y|| = 1 we conclude that $y^*\xi = \eta$ and $y\eta = \xi$. Since moreover $((y^* - x_0)\xi\mid \eta) = 1$ and $||y^* - x_0|| = 1$ we have $x_0\xi = x_0^*\eta = 0$. Finally, $(V\xi\mid \eta) = 0$. Put $\varphi(a) = (a\xi\mid \xi)$, $a \in A$. It is straightforward to verify that the triple y, x_0 , φ satisfies the conditions (i), (ii) and (iii).

LEMMA 2. Let V be a finite dimensional subspace of a C*-algebra A and assume that V is not a Čebyšev subspace of A. There is then a unitary operator u in \tilde{A} , a non-zero element x_0 in V and a non-empty, finite set $\{\varphi_i\}$ of orthogonal pure states of A (i.e. $\|\varphi_i - \varphi_j\| = 2$) such that $\varphi_i(x_0^*x_0) = \varphi_i(ux_0x_0^*u^*) = 0$ for all i. If there is a finite upper bound for the possible cardinalities of sets $\{\varphi_i\}$ we can further find a convex combination $\varphi = \sum \lambda_i \varphi_i$ such that $\varphi(uV) = 0$.

PROOF. Choose y, x_0 and φ as in Lemma 1, and let p denote the support of φ , i.e. p is the smallest projection in the enveloping von Neumann algebra A'' such that $\varphi(p)=1$. Since p is a closed projection, hence universally measurable, and the atomic representation of A (extended to A'') is isometric on the space of universally measurable operators (cf. 4.3.13 and 4.3.15 of [4]) we may consider p as a projection on the atomic Hilbert space H_a of A. Take any finite subset $\{\xi_i\}$ of an orthonormal basis for pH_a , chosen such that each basis vector belongs to only one irreducible space. It is immediate from Kadison's transitivity theorem [1, Corollary 7] (or [4, 2.7.5] which covers also the case $1 \notin A$) that if $\varphi_i(a) = (a\xi_i \mid \xi_i)$, $a \in A$, then $\{\varphi_i\}$ is a set of orthogonal pure states of A.

Since $\varphi(yy^*) = ||y|| = 1$ we have $p \le yy^*$, whence $yy^*\xi_i = \xi_i$ for all *i*. It follows that $\{y^*\xi_i\}$ is an orthogonal set of unit vectors, so by the transitivity theorem quoted above there is a unitary u in \hat{A} such that $u^*\xi_i = y^*\xi_i$. As $\varphi(x_0^*x_0) = 0$ implies $x_0^*x_0 \le 1 - p$ we get $\varphi_i(x_0^*x_0) = 0$ for all *i*. Likewise

$$0 = \varphi_i(yx_0x_0^*y^*) = \varphi_i(ux_0x_0^*u^*)$$

for all i.

The number of φ_i 's is arbitrary unless p has finite dimension. In that case φ is an atomic functional and can be regarded as a functional on the matrix algebra pA''p. We can therefore express φ as a convex combination $\varphi = \sum \lambda_i \varphi_i$ of orthogonal pure states $\{\varphi_i\}$ (see [3, Proposition 4]).

For every x in V we have

$$\varphi(ux) = \sum \lambda_i(ux\xi_i|\xi_i) = \sum \lambda_i(yx\xi_i|\xi_i) = \varphi(yx) = 0,$$

as desired.

LEMMA 3. Let V be a subspace of a C^* -algebra A and assume that there are elements y in A, x_0 in $V \setminus \{0\}$, and a state φ of A satisfying the three conditions in Lemma 1. Let y = bv be a factorization with b in A_+ , v in M(A) and $\varphi(b) = \|b\| = 1$. Then neither vV nor vv are Čebyšev subspaces of vv.

PROOF. Put $x_1 = vx_0$ and note that $\varphi(x_1^*x_1) = \varphi(x_1x_1^*) = 0$ by condition (ii). Further, set

$$a = x_1^* x_1 + (1 - x_1^* x_1)^{\frac{1}{2}} b (1 - x_1^* x_1)^{\frac{1}{2}}$$
.

Then $\varphi(a) = ||a|| = 1$, and since $x_1^* x_1 \le a$ there is by [4, 1.4.5] an element x_2 in A such that $x_1 = x_2 a^{1/3}$. In fact, x_2 is the norm limit of elements of the form $x_1 (n^{-1} + a)^{-1/3}$. It follows from this that $\varphi(x_2^* x_2) = \varphi(x_2 x_2^*) = 0$.

Put $x_2 = h + ik$ with h, k in A_{sa} and define

$$z = (\|h\| - |h| + \|k\| - |k|)a^{1/3}$$
.

Since $x_2^*x_2 + x_2x_2^* = 2(h^2 + k^2)$ we have $\varphi(|h| + |k|) = 0$. Therefore

$$||z-vx|| \ge |\varphi(z-vx)| = ||h|| + ||k||$$

for every x in V, as $\varphi(vV) = \varphi(bvV) = 0$. On the other hand, if $|\lambda| \le 1$,

$$||z - \lambda x_1|| = ||(||h|| - |h| + ||k|| - |k|)a^{1/3} - \lambda x_2 a^{1/3}||$$

$$\leq \|\|h\| - |h| - \lambda h\| + \|\|k\| - |k| - i\lambda k\| \leq \|h\| + \|k\|,$$

since for every complex homomorphism ω of $C^*(h)$ we have

$$|\|h\| - \omega(|h|) - \lambda \omega(h)| \leq \|h\| - \omega(|h|) + |\lambda \omega(h)| \leq \|h\|.$$

Since $x_1 \in vV$ this set is not a Čebyšev subspace of A.

The result for Vv follows by considering the state $\psi = \varphi(v \cdot v^*)$, which vanishes on Vv, and reason on the element x_0v as above.

Theorem 1. Let V be an n-dimensional subspace of a C^* -algebra A and assume that there is a unitary u in M(A) and a non-zero element x_0 in V such that $\varphi_i(x_0^*x_0) = \varphi_i(ux_0x_0^*u^*) = 0$ for at least n orthogonal pure states $\varphi_1, \ldots, \varphi_n$ of A. Then V is not a Čebyšev subspace of A.

PROOF. Since uV has the Čebyšev property if and only if V has it, we may assume that u=1 replacing otherwise x_0 and V by ux_0 and uV.

Let x_1, \ldots, x_n be a basis for V and consider the matrix with elements $\alpha_{ij} = \varphi_i(x_j)$. If $x_0 = \sum \lambda_j x_j$ we have $\sum \alpha_{ij} \lambda_j = 0$ for all i. Thus the determinant of (α_{ij}) is zero. Consequently there is a non-trivial solution μ_1, \ldots, μ_n to the system of equations $\sum \alpha_{ij} \mu_i = 0$, $1 \le j \le n$. Normalizing such that $\sum |\mu_i| = 1$ we put $\varphi = \sum |\mu_i| \varphi_i$.

Realizing A as operators on its atomic Hilbert space (cf. [4, 4.3.7]) there are orthogonal unit vectors ξ_1, \ldots, ξ_n such that $\varphi_i(a) = (a\xi_i \mid \xi_i)$. By Kadison's transitivity theorem ([1, 7] or [4, 2.7.5]) there is an element b in A_+ with ||b|| = 1 such that $b\xi_i = \xi_i$ for all i and also a unitary v in \tilde{A} with $v\xi_i = \mu_i |\mu_i|^{-1}\xi_i$ if $\mu_i \neq 0$, $v\xi_i = \xi_i$ otherwise. Put y = bv and note that $\varphi(b) = 1$ and $\varphi(v \cdot v^*) = \varphi$.

For each x_j we have

$$\varphi(yx_j) = \varphi(vx_j) = \sum \mu_i \varphi_i(x_j) = 0 ,$$

whence $\varphi(yV) = 0$. Furthermore,

$$\varphi(x_0^*x_0) = 0 = \varphi(x_0x_0^*) = \varphi(vx_0x_0^*v^*) = \varphi(yx_0x_0^*y^*)$$

so that the triple y, x_0 and φ satisfies the three conditions in Lemma 1. It follows from Lemma 3 that vV is not a Čebyšev subspace and since v is unitary, neither is V.

THEOREM 2. Let V be an n-dimensional subspace of a C^* -algebra A. The following conditions are equivalent:

- (i) V is not a Čebyšev subspace;
- (ii) There is unitary operator u in \tilde{A} , a non-zero element x_0 in V and an atomic state φ , which is a convex combination of m orthogonal pure states, such that

$$\varphi(x_0^*x_0) = \varphi(ux_0x_0^*u^*) = 0 \ .$$

If m < n we further have $\varphi(uV) = 0$.

PROOF. (ii) \Rightarrow (i) follows from Theorem 1 and (if m < n) from Lemma 3 by taking y = bu, where $b \in A_+$ with $\varphi(b) = ||b|| = 1$. The existence of such a b is assured by Kadison's transitivity theorem.

(i) \Rightarrow (ii): If we cannot find *n* orthogonal pure states $\{\varphi_i\}$ such that $\varphi_i(x_0^*x_0) = \varphi_i(ux_0x_0^*u^*) = 0$ for some unitary *u* in \tilde{A} and some non-zero x_0 in *V* then the

result follows from Lemma 2. If we can find n such pure states the assumptions in Theorem 1 are satisfied, and the proof of the theorem shows the existence of a state $\varphi = \sum |\mu_i|\varphi_i$ and a unitary v in \hat{A} such that $\varphi(v \cdot v^*) = \varphi$ and $\varphi(v(uV)) = 0$. Moreover,

$$\varphi(x_0^*x_0) = 0 = \varphi(ux_0x_0^*u^*) = \varphi(vux_0x_0^*u^*v^*),$$

so that (ii) is satisfied with vu in place of u.

REMARK 1. In the commutative case there is a converse to Theorem 1, viz. Haar's theorem, [2] or [7, p. 215]. This theorem is easily obtained from Theorem 2 by linear algebra plus the (commutative) fact that $|\varphi(x)| = \varphi(|x|)$ for any pure state. In the non-commutative case this is not so, and Theorem 2 seems to be the best we can do.

A specific counterexample to the converse of Theorem 1 is obtained by taking $A = M_3$ and $V = Ce_{11} + Ce_{22} + Ce_{33}$, i.e. V is the 3-dimensional space of diagonal 3×3 -matrices. Since V is a C^* -subalgebra of A it follows from Theorem 5 that V is not a Čebyšev subspace of A. This can also be verified by direct computation, since the distance from e_{12} to an element $x = \alpha e_{11} + \beta e_{22} + \gamma e_{33}$ in V does not depend on γ if $|\gamma| \le 1$. However, if $\varphi_1, \varphi_2, \varphi_3$ are three orthogonal pure states of A then $\varphi_1 + \varphi_2 + \varphi_3 = \text{Tr}$. Therefore we cannot have $\varphi_i(x^*x + wxx^*w^*) = 0$ for all i if x is a non-zero element of V.

The one-dimensional case can, however, be expressed in the classical form.

THEOREM 3. Let x_0 be a non-zero element in a C*-algebra A. The following conditions are equivalent:

- (i) Cx_0 is a Čebyšev subspace of A;
- (ii) $x_0^*x_0 + ux_0x_0^*u^*$ is strictly positive in A for every unitary u in M(A);
- (iii) In no irreducible representation (π, H) of A do the operators $\pi(x_0)$ and $\pi(x_0^*)$ both have zero as an eigenvalue.

PROOF. (i) \Leftrightarrow (ii) is a special case of Theorem 2. Since the unitary operators in M(A) act transitively on the set of unit vectors in any irreducible representation it is straightforward to show that (ii) \Leftrightarrow (iii).

REMARK 2. Note that when $1 \in A$, condition (ii) says that $x^*x + uxx^*u^*$ is invertible for every unitary u in A.

PROPOSITION 1. Let x_0 be an element in a C*-algebra A with unit and assume that x_0 is not proportional to 1. The following conditions are equivalent:

(i) The 2-dimensional space $V = C1 + Cx_0$ is a Čebyšev subspace of A;

(ii) For a given complex number λ there is at most one irreducible representation (π, H) of A (up to equivalence) in which x_0 and x_0^* have the eigenvalues λ and $\bar{\lambda}$, respectively. Moreover, none of the multiplicities of λ and $\bar{\lambda}$ in H exceed 1 and the corresponding eigenvectors are not orthogonal.

Proof. (i) \Rightarrow (ii): Suppose that (π_1, H_1) and (π_2, H_2) are inequivalent irreducible representations such that

$$\pi_i(x_0 - \lambda)\xi_i = \pi_i(x_0 - \bar{\lambda})\eta_i = 0$$

for some unit vectors ξ_i , η_i in H_i , i=1,2. Choose by Kadison's transitivity theorem a unitary u in A such that $\pi_i(u)\eta_i = \xi_i$, i=1,2, and define two orthogonal pure states φ_1 and φ_2 by $\varphi_i(y) = (\pi_i(y)\xi_i | \xi_i)$, $y \in A$. Then

$$\varphi_{i}((x_{0}-\lambda)^{*}(x_{0}-\lambda)+u(x_{0}-\lambda)(x_{0}-\lambda)^{*}u^{*})$$

$$= \|\pi_{i}(x_{0}-\lambda)\xi_{i}\|^{2}+\|\pi_{i}(x_{0}^{*}-\bar{\lambda})\eta_{i}\|^{2}=0$$

for i=1,2, which by Theorem 1 implies that V is not a Čebyšev subspace of A. If (π,H) is an irreducible representation of A in which x_0 and x_0^* have eigenvalues λ and $\bar{\lambda}$ we must exclude the cases where the eigenspaces of λ or $\bar{\lambda}$ have dimension higher than 1 and where the eigenvectors corresponding to λ and $\bar{\lambda}$ are orthogonal. Assume that

$$\pi(x_0 - \lambda)\xi = \pi(x_0^* - \bar{\lambda})\eta = 0$$

for some unit vectors ξ, η in H. If $\pi(x_0 - \lambda)\xi' = 0$ for some unit vector ξ' not proportional to ξ then we can find a linear combination ξ'' of ξ and ξ' such that $(\xi'' | \eta) = 0$. Similarly if $\pi(x_0^* - \bar{\lambda})\eta' = 0$ we find η'' such that $(\xi | \eta'') = 0$. We may therefore concentrate on the last case and assume that $(\xi | \eta) = 0$.

Choose a unitary u in A such that $\pi(u)\eta = \xi$ and define $\varphi(y) = (\pi(y)\xi \mid \xi)$, $y \in A$. Then as before

$$\varphi((x_0 - \lambda)^* (x_0 - \lambda) + u(x_0 - \lambda)(x_0 - \lambda)^* u^*)$$

$$= \|\pi(x_0 - \lambda)\xi\|^2 + \|\pi(x_0^* - \overline{\lambda})\eta\|^2 = 0.$$

Moreover

$$\varphi(u1) = (\pi(u)\xi \mid \xi) = 0,$$

$$\varphi(ux_0) = (\pi(ux_0)\xi \mid \xi) = \lambda(\pi(u)\xi \mid \xi) = 0,$$

so that $\varphi(u \cdot)$ annihilates the subspace V. It follows from Theorem 2 that V is not a Čebyšev subspace of A.

(ii) \Rightarrow (i): If V is not a Čebyšev subspace of A then by Theorem 2 there is either a pure state φ of A, a complex number $\hat{\lambda}$ and a unitary u in A such that $\varphi(uV) = 0$ and

$$\varphi((x_0 - \lambda)^*(x_0 - \lambda) + u(x_0 - \lambda)(x_0 - \lambda)^*u^*) = 0;$$

or else there are two orthogonal pure states φ_1 and φ_2 of A, a complex number λ and a unitary u in A such that

$$\varphi_i((x_0 - \lambda)^*(x_0 - \lambda) + u(x_0 - \lambda)(x_0 - \lambda)^*u^*) = 0$$

for i = 1, 2.

It is straightforward to check that the first case corresponds to x_0 and x_0^* having eigenvalues λ and $\bar{\lambda}$, respectively, with orthogonal eigenvectors (since $\varphi(u1)=0$); whereas the second case corresponds either to x_0 and x_0^* having eigenvalues λ and $\bar{\lambda}$ in two (classes of) irreducible representations (if φ_1 and φ_2 are inequal valent) or to x_0 and x_0^* having eigenvalues λ and $\bar{\lambda}$ in one irreducible representation, both with multiplicity 2 (if φ_1 and φ_2 are equivalent). But these are precisely the situations prohibited by (ii).

REMARK 3. Let $A = M_3$ and consider the matrix $x_0 = e_{22} + 2e_{33}$. The eigenvalues of x_0 have multiplicity 1, and $x_0 = x_0^*$. Thus x_0 satisfies the conditions in (ii) so that $C1 + Cx_0$ is a 2-dimensional Čebyšev subspace of A. However, the 3-dimensional subspace $C1 + Cx_0 + Cx_0^2$ is equal to the set of diagonal elements in M_3 and therefore not a Čebyšev subspace, cf. Remark 1.

Given Theorem 2 it should in principle be possible to find necessary and sufficient conditions on an element x_0 in a C*-algebra under which each subspace of polynomials in x_0 with a given degree is a Čebyšev subspace. Proposition 1 may serve as an example of the difficulties one must expect in order to generalize Čebyšev's original theorem [8].

2. Čebyšev subalgebras.

Throughout this section B will denote a non-zero C*-subalgebra of A which at the same time is a Čebyšev subspace. For each x in A we shall denote by $\alpha(x)$ the unique best approximant to x in B. Note that $\alpha(x+b) = \alpha(x) + b$ for every b in B.

As proved in [6, Theorem 1.3], if A has a unit 1 then $1 \in B$; and if B has a unit this is also a unit for A.

LEMMA 4. For each selfadjoint x in B with 0 in Sp (x) we have $xAx \subset B$.

PROOF. Assume first that $1 \in A$ (whence $1 \in B$). Given $\varepsilon > 0$ there are continuous functions f, g and h on Sp(x) such that f, g vanish in an neighbourhood of 0, h(0) = 1; and such that fg = f, gh = 0 and $|f(t) - t| \le \varepsilon$ for all t in Sp(x). Applying these functions to x we obtain elements y, e and z in B

such that ye = y, ez = 0 and $||y - x|| \le \varepsilon$. Since $0 \in \text{Sp }(x)$ we have $z \ne 0$ and may assume therefore that $||e|| \le ||z|| = 1$. If $yAy \ne B$ take a in $yAy \setminus B$ and let $b = \alpha(a)$. Then

$$||a-ebe|| = ||e(a-b)e|| \le ||a-b||$$
,

whence ebe=b since b is unique. But for each λ in C we have

$$||a - (b + \lambda z)|| = ||e(a - b)e - \lambda z|| = ||a - b|| \vee ||\lambda z||,$$

so that $b + \lambda z = \alpha(a)$ for all λ with $|\lambda| \le ||a - b||$, a contradiction. Consequently $yAy \subset B$. With $\varepsilon = n^{-1}$ we find a sequence $\{y_n\}$ in B such that $y_n \to x$ and $y_nAy_n \subset B$ for all n. Since B is closed it follows that $xAx \subset B$.

If $1 \notin A$ there are two cases: either 0 is an isolated point in Sp (x) or not. If not, we can use essentially the same argument as above; taking now h(0) = 0 (in order that $z = h(x) \in B$), but $h(\lambda) = 1$ for some λ in Sp $(x) \cap [-\epsilon/2, \epsilon/2]$.

If 0 is isolated in Sp (x) there is by spectral theory a projection e in B with ex=x. Since $1 \notin A$, e is not a unit for B, so there is a non-zero element z in (1-e)B(1-e). If now $xAx \notin B$ take a in $xAx \setminus B$ and put $b=\alpha(a)$. As we saw above this implies that b=ebe, and again we reach a contradiction by showing that $b+\lambda z=\alpha(a)$ for all small λ .

THEOREM 4. If A is a C*-algebra without unit and B a Čebyšev C*-subalgebra then B = A.

PROOF. Since $1 \notin A$, $0 \in \operatorname{Sp}(x)$ for every x in B_{sa} , whence $xAx \subset B$ by Lemma 4. It follows from the polarization identity that $xAy \subset B$ for all x, y in B.

We claim that $xa \in B$ for all x in B and a in A. Indeed, take y in B_{sa} and put $u = \exp(ity)$ in \widetilde{A} . Then $1 - u \in B$ so $\alpha(xa)u \in B$. Since u is unitary it follows that $\alpha(xau) = \alpha(xa)u$, so the distance of xa and xau to B is the same. On the other hand, $xa(1-u) \in B$ from what we proved above. Since B is a Čebyšev subspace this implies that $\alpha(xau) = \alpha(xa) - xa(1-u)$.

Combining these equations gives $\alpha(xa)u = \alpha(xa) - xa(1-u)$ or

$$0 = (xa - \alpha(xa))(1 - u) = (xa - \alpha(xa))(1 - \exp(ity)).$$

Differentiating at t=0 we conclude that $(xa-\alpha(xa))y=0$ for every y in B_{sa} . Put $z=xa-\alpha(xa)$ and note that $\alpha(z)=0$. However, z is orthogonal to B, so $\|z-b\|=\|z\|\vee\|b\|$ for every b in B. Since $B\neq 0$ this leads to a contradiction unless z=0, whence $xa=\alpha(xa)\in B$.

Now take a in A and x in B_{sa} and put $v = \exp(itx)$ in \tilde{A} . Then $1 - v \in B$ whence $(1 - v)a \in B$ from the argument above. Consequently

$$v\alpha(a) = \alpha(va) = \alpha(a - (1-v)a) = \alpha(a) - (1-v)a,$$

or, equivalently,

$$0 = (1-v)(a-\alpha(a)) = (1-\exp(itx))(a-\alpha(a)).$$

Differentiating a t = 0 gives $x(a - \alpha(a)) = 0$ for every x in B_{sa} so that $a - \alpha(a)$ is orthogonal to B. As above this forces $a - \alpha(a) = 0$, and therefore A = B.

LEMMA 5. If $1 \in A$ and $x \in B$ with $0 \le x \le 1$, such that $\{0, 1\} \subset \operatorname{Sp}(x)$ then $x(1-x)A \subset B$.

PROOF. Applying Lemma 4 to x and 1-x we obtain $xAx + (1-x)A(1-x) \subset B$, whence

$$x(1-x)A = x(1-x)Ax + x(1-x)A(1-x) \subset B$$
.

LEMMA 6. If $1 \in A$ and if Sp(x) contains more than two points for some x in B_{sa} then B = A.

PROOF. Take a point λ_0 in Sp (x). By assumption there are at least two more points λ_1, λ_2 in Sp (x). Let f be a continuous function on Sp (x) with $f(\lambda_0) = \frac{1}{2}$, $f(\lambda_1) = 0$, $f(\lambda_2) = 1$ and $0 \le f \le 1$. Put g = f(1-f) and note that $g(\lambda_0) = 1/4$. Moreover, by Lemma 5 we have $g(x)A \subset B$, since $\{0,1\} \subset \operatorname{Sp}(f(x))$. Applying this argument to every point in Sp (x) together with a standard compactness argument produce a finite set $\{g_x\}$ of continuous functions on Sp (x) with $\sum g_x(\lambda) > 0$ for all λ in Sp (x) and such that $g_x(x)A \subset B$ for every κ . Then $y = \sum g_x(x)$ is an invertible element in B with $yA \subset B$, whence A = B.

THEOREM 5. If A is a C*-algebra with unit, B a Čebyšev C*-subalgebra of A then either B = A, B = C1 or else $A = M_2$ and B is isomorphic to the algebra of diagonal matrices.

PROOF. Assume that B is neither A nor C1. The latter condition shows that B_{sa} contains an element e with at least two points in its spectrum. Using spectral theory we may assume that $0 \le e \le 1$ and $\{0,1\} \subset \operatorname{Sp}(e)$. Since $B \ne A$ we see from Lemma 6 that $\{0,1\} = \operatorname{Sp}(e)$, i.e. e is a non-trivial projection. By Lemma 4, $eAe \subset B$. Moreover, each self-adjoint element y in eAe must be proportional to e, since otherwise we can find y such that $\operatorname{Sp}(y+1-e)$ contains more than two points, in contradiction with Lemma 6. Thus $eAe = \operatorname{Ce}$ and likewise $(1-e)A(1-e) = \operatorname{C}(1-e)$. This is only possible for $A = \operatorname{M}_2$ or $A = \operatorname{C}^2$. The latter possibility is ruled out since $B \ne A$, so we must have $A = \operatorname{M}_2$. Now $eAe + (1-e)A(1-e) \subset B$ and since B is a proper subalgebra of M_2 we must have equality above; i.e. B is the algebra $\operatorname{Ce} + \operatorname{C}(1-e)$ of diagonal matrices.

REFERENCES

- J. G. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547–556.
- 2. A. Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1918), 294-311.
- G. K. Pedersen, Atomic and diffuse functionals on a C*-algebra, Pacific J. Math. 37 (1971), 795
 800.
- G. K. Pedersen, C*-algebras and their automorphism groups, LMS Monographs 14, Academic Press, London/New York, 1979.
- A. G. Robertson, Best approximation in von Neumann algebras, Math. Proc. Cambridge Philos. Soc. 81 (1977), 233–236.
- A. G. Robertson and D. Yost, Chebyshev subspaces of operator algebras, J. London Math. Soc. (2) 19 (1979), 523-531.
- I. Singer, Best approximation in normed linear spaces by elements of linear subspaces. Grundlehren d. math. Wissenschaften. 171. Springer-Verlag. Berlin - Heidelberg - New York, 1970.
- 8. P. L. Tchebychef, Sur les questions de minima qui se rattachent a la representation approximative des fonctions, Mem. Acad. Imp. Sci. St.-Pétersbourg. (6) 7 (1859), 199-291.

MATEMATISK INSTITUT :
KØBENHAVNS UNIVERSITET
UNIVERSITETSPARKEN 5
2100 KØBENHAVN Ø
DENMARK