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CEBYSEV SUBSPACES OF C*-ALGEBRAS

GERT KJEARGARD PEDERSEN

A subspace V of a Banach space 4 is called a Cebysev subspace if each vector
in A admits a unique closest point in V. The story of Ceby3ev subspaces is long
and the monograph [7] tells it in painful detail. The highlight, however, is the
theorem of Haar [2] characterizing an n-dimensional Ceby3ev subspace of
C(X), X compact, by the condition that no non-zero function in the subspace
has more than n—1 zeros.

In the first section of the paper we shall consider the extension of the Haar’s
theorem to non-commutative C*-algebras. The second section contains a
negative result about the existence of Cebysev C*-subalgebras —they are
almost all trivial.

The study of Cebysev subspaces in operator algebras was initiated by Guyan
Robertson in [5], later joined by Yost in [6]. Most of what we shall do is
directly inspired by their work. Thus the characterization of one-dimensional
Cebysev subspaces was conjectured in [6] and the necessity of the condition,
i.e. the implication (iii) = (i) in our Theorem 3 is Proposition 1.6 of [6].
Looking for Cebysev C*-subalgebras B of a C*-algebra A, Guyan Robertson
and Yost find the trivial examples B=A4 and B=Cl1; and in the case 4A=M,
they-also find B=C? (the diagonal matrices). They then ask whether these,
examples are the' only Cebysev C*-subalgebras and prove in [6, Theorem 1.5]
that such is the case if 4 is a von Neumann algebra of type I. As we shall see,
their result is actually true for general C*-algebras.

We use the notation from [4]. Thus A4 will denote a C*-algebra, A" its
enveloping von Neumann algebra. Moreover, regarding 4 as a subalgebra of
A" we let A=A+ Cl and denote by M (A) the C*-algebra of multipliers of 4 in
A”. When 1 € A we have, of course, 4 =A4=M(A).

1. Finite-dimensional CebySev subspaces.

Our first result is a straightforward adaptation of known procedures (cf. [7,
p. 29]) to the case of C*-algebras.
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Lemma 1. Let V be a finite-dimensional subspace of a C*-algebra A and
assume that V is not a CebySev subspace. There are then elements y in A, x, in
V\ {0}, and a state ¢ of A such that

i) eyH)=lyl=lel=1;
(i) @(x§xo)=eyxexgy*)=0;

(i) @(yV)=0.

ProoOF. By assumption there is an element y in A such that y* has at least
two nearest points in V. We may assume that zero is one and denote the other
by x,. Normalizing y we may take [|y|l=1. Thus |y*|=[y*—x,l=1 and
ly* —x|| =1 for all x in V. The functional y, on Cy* + V defined by o (1y* +x)
=) is bounded by 1 and extends by Hahn-Banach’s theorem to a functional y
on A with ||| =1. Regarding A4 as operators on its universal Hilbert space H
(cf. [4, 3.7]) there are then unit vectors &, 1 in H such that Y (a)= (al|#n) for alla
in A. Since (y*¢|n)=1 and |y|| =1 we conclude that y*¢=n and yn=¢£. Since
moreover ((y*—xo)¢|n)=1 and [|y* —x,||=1 we have x,¢=x§n=0. Finally,
(VE|n)=0. Put @(a)=(a|&), a € A. It is straightforward to verify that the
triple y, x,, ¢ satisfies the conditions (i), (ii) and (iii).

LeMMA 2. Let V be a finite dimensional subspace of a C*-algebra A and
assume that V is not a Cebysev subspace of A. There is then a unitary operator u
in A, a non-zero element x, in V and a non-empty, finite set {@,} of orthogonal
pure states of A (i.e. ||@;— @;ll =2) such that ¢;(x§x,) = @;(uxxgu*)=0 for all i.
If there is a finite upper bound for the possible cardinalities of sets {¢;} we can
further find a convex combination ¢ =3 A,p; such that ¢uV)=0.

Proor. Choose y, x, and ¢ as in Lemma 1, and let p denote the support of ¢,
i.e. p is the smallest projection in the enveloping von Neumann algebra 4” such
that ¢(p)=1. Since p is a closed projection, hence universally measurable, and
the atomic representation of A (extended to A4”) is isometric on the space of
universally measurable operators (cf. 4.3.13 and 4.3.15 of [4]) we may consider
p as a projection on the atomic Hilbert space H, of A. Take any finite subset
{¢&;} of an orthonormal basis for pH,, chosen such that each basis vector
belongs to only one irreducible space. It is immediate from Kadison’s
transitivity theorem [1, Corollary 7] (or [4, 2.7.5] which covers also the case
1 ¢ A) that if ¢,(a)= (a&;| &), a € A, then {g,} is a set of orthogonal pure states
of A.

Since @(yy*)=|lyll =1 we have p=yy*, whence yy*&,=¢; for all i. It follows
that {y*¢;} is an orthogonal set of unit vectors, so by the transitivity theorem
quoted above there is a unitary u in A such that u*;=y*¢,. As @(x§xo)=0
implies x§x, <1 —p we get @;(x3x,)=0 for all i. Likewise
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0 = @;(yxox5y*) = @i(uxoxgu*)
for all i.

The number of ¢;’s is arbitrary unless p has finite dimension. In that case ¢ is
an atomic functional and can be regarded as a functional on the matrix algebra
pA”’p. We can therefore express ¢ as a convex combination ¢ =3 4,¢; of
orthogonal pure states {¢;} (see [3, Proposition 4]).

For every x in V we have

@ (ux) = Z Auxg; | &) = z Lxé 1) = elyx) = 0,

as desired.

LeMMA 3. Let V be a subspace of a C*-algebra A and assume that there are
elements y in A, x, in V\ {0}, and a state ¢ of A satisfying the three conditions in
Lemma 1. Let y=>bv be a factorization with b in A, v in M(A) and ¢ (b)=b|
=1. Then neither vV nor Vv are Cebysev subspaces of A.

ProOF. Put x, =vx, and note that ¢(xfx,)=¢(x,x¥)=0 by condition (ii).
Further, set
a = x¥x;+ (1 =x¥x,)}b(1 —xfx,)t.

Then ¢(a)=|la| =1, and since x}x, <a there is by [4, 1.4.5] an element x, in 4
such that x, =x,a'3. In fact, x, is the norm limit of elements of the form
x;(n~ ' 4+a)” 3. It follows from this that @(x¥x,)=@(x,x3)=0.

Put x,=h+ik with h,k in A, and define

z = (Ihl] =1kl + k] —kDa'" .

Since x¥x,+x,x¥=2(h*+k?) we have ¢(|h|+|k|)=0. Therefore
lz—vx|l = lpz—vx)| = [lh]+ k]
for every x in V, as @(vV)=¢(bvV)=0. On the other hand, if |A[<1,
lz—dx, | = (A —1hl+ k] = kDa'"® = ix,a' |

< Ukl =1kl = 2h| + LIkl — 1kl —izk] = A+ KD
since for every complex homomorphism w of C*(h) we have
Ikl — ()= 20®)] < k] —o(h)+io®@)] = (]

Since x, € vV this set is not a Ceby3ev subspace of A.
The result for Vv follows by considering the state ¥ =¢(v-v*), which
vanishes on Vv, and reason on the element xqv as above.
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THEOREM 1. Let V be an n-dimensional subspace of a C *-algebra A and assume
that there is a unitary u in M(A) and a non-zero element Xo in V such that
@i(xFx0) = @;(uxoxgu*)=0 for at ledst n orthogonal pure states @1, .., 0, 0f A
Then V is not a Cebysev subspace of A.

Proor. Since uV has the Cebysev property if and only if ¥ has it, we may
assume that u=1 replacing otherwise x, and V by ux, and uV.

Let x;,...,x, be a basis for V and consider the matrix with elements o
=@i(x)). If xo=3"4;x; we have 3" a;;4;=0 for all i. Thus the determinant of (a; J)
is zero. Consequently there is a non-trivial solution y,,. . .,u, to the system of
equations ¥ o;;u;=0, 1<j<n. Normalizing such that Ylml=1 we put ¢
=2 lulo;

Realizing A as operators on its atomic Hilbert space (cf. [4, 4.3.7]) there are
orthogonal unit vectors ¢&,,...,&, such that ¢,(a)= (a¢;|1 ). By Kadison’s
transitivity theorem ([1, 7] or [4, 2.7.5]) there is an element b in A, with ||b]
=1 such that b;=¢, for all i and also a unitary v in A with vfi=plp) TYE I
+0, vé;=¢; otherwise. Put y=bv and note that @(b)=1 and @(v-v*)=0.

For each x; we have

(P()'xj) = ‘P(ij) = Z I‘i‘Pi(xj) =0,
whence ¢(yV)=0. Furthermore,

@(xFxg) = 0 = @(xoxF) = @(xexFV*) = Q(yxXxEy*)

so that the triple y, x, and ¢ satisfies the three conditions in Lemma 1. It
follows from Lemma 3 that vV is not a Ceby3ev subspace and since v is unitary,
neither is V.

THEOREM 2. Let V be an n-dimensional subspace of a C*-algebra A. The
following conditions are equivalent:

(i) V is not a Cebysev subspace;

(ii) There is unitary operator u in A, a non-zero element Xo in V and an atomic
state @, which is a convex combination of m orthogonal pure states, such that

@ (xgx0) = @(uxoxu*) =

If m<n we further have @uV)=0.

Proor. (ii) = (i) follows from Theorem 1 and (if m <n) from Lemma 3 by
taking y=bu, where b € A, with @(b)=|b| =1. The existence of such a b is
assured by Kadison’s transitivity theorem.

(i) = (ii): If we cannot find n orthogonal pure states {¢;} such that ¢,(x* xO)
= @;(uxox§u*)=0 for some unitary u in 4 and some non-zero x, in V then the
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result follows from Lemma 2. If we can find n such pure states the assumptions
in Theorem 1 are satisfied, and the proof of the theorem shows the existence

of a state @ =Y |i;|@; and a unitary v in 4 such that ¢(v-v*)=¢ and (p(b(uV))
=0. Moreover,

@(x§xo) = 0 = @(uxoxgu*) = @(vuxoxgu*v*),

so that (ii) is satisfied with vu in place of u.

ReMARK 1. In the commutative case there is a converse to Theorem 1, viz.
Haar’s theorem, [2] or [7, p. 215]. This theorem is easily obtained from
Theorem 2 by linear algebra plus the (commutative) fact that |¢(x)|= ¢ (|x|) for
any pure state. In the non-commutative case this is not so, and Theorem 2
seems to be the best we can do.

A specific counterexample to the converse of Theorem 1 is obtained by
taking A=M, and V=Ce,, +Ce,, + Ce,3, i.e. V is the 3-dimensional space of
diagonal 3 x 3-matrices. Since V is a C*-subalgebra of A it follows from
Theorem 5 that V is not a Cebysev subspace of A. This can also be verified by
direct computation, since the distance from e, to an element x=ae;, + fe,,
+7yes; in V does not depend on y if [y|<1. However, if ¢, ¢,,¢; are three
orthogonal pure states of 4 then ¢, + ¢, + ¢, =Tr. Therefore we cannot have
@, (x*x+wxx*w*)=0 for all i if x is a non-zero element of V.

The one-dimensional case can, however, be expressed in the classical form.

THEOREM 3. Let x, be a non-zero element in a C*-algebra A. The following
conditions are equivalent:

(i) Cx, is a Cebysev subspace of A;

(ii) x&xo+uxoxXu* is strictly positive in A for every unitary u in M(A);

(iii) In no irreducible representation (n,H) of A do the operators n(x,) and
n(xX) both have zero as an eigenvalue.

ProoOF. (i) < (ii) is a special case of Theorem 2. Since the unitary operators
in M(A) act transitively on the set of unit vectors in any irreducible
representation it is straightforward to show that (ii) <> (iii).

REMARK 2. Note that when 1 € A4, condition (ii) says that x*x+uxx*u* is
invertible for every unitary u in A.

PROPOSITION 1. Let x, be an element in a C*-algebra A with unit and assume
that x, is not proportional to 1. The following conditions are equivalent

(i) The 2-dimensional space V=C1+Cx, is a Cebysev subspace of A,



152 GERT KJARGARD PEDERSEN

(i) For a given complex number /. there is at most one irreducible
representation (n,H) of A (up to equivalence) in which Xxo and x& have the
eigenvalues 7 and 7, respectively. Moreover, none of the multiplicities of /. and 7.
in H exceed 1 and the corresponding eigenvectors are not orthogonal.

Proor. (i) = (ii): Suppose that (n,,H,) and (n, H,) are inequivalent
irreducible representations such that

mi(xg—2)E; = ”i(xo":mi =0

for some unit vectors &7, in H, i=1,2. Choose by Kadison’s transitivity
theorem a unitary u in A4 such that mi(un; =&, i=1,2, and define two
orthogonal pure states ¢, and ¢, by ¢,(y)= (m;(»)&;1 €), ¥ € A. Then

(pi((xo—).)*(xo—/".)+u(x0—/',)(x0—).)*u*)
= i|7ti(xo”;~)5i||2+i|ni(x3_;~)nii|2 =0

for i=1,2, which by Theorem 1 implies that V is not a Cebysev subspace of A.

If (n,H) is an irreducible representation of A in which xo and x& have
eigenvalues / and / we must exclude the cases where the eigenspaces of / or 7
have dimension higher than 1 and where the eigenvectors corresponding to /
and 7 are orthogonal. Assume that

m(xo—A)¢ = n(xF -2 = 0

for some unit vectors &5 in H. If m(xo— )¢’ =0 for some unit vector & not
proportional to ¢ then we can find a linear combination & of ¢ and & such
that (&"|n)=0. Similarly if n(xd —2)n'=0 we find #” such that (&1n")=0. We
may therefore concentrate on the last case and assume that (&|n)=0.

Choose a unitary u in 4 such that n(un=¢ and define ¢ (y)= (n(y)¢| &),
y € A. Then as before

(p((xo—-/Z)*(xo~/l)+u(x0—/”.)(x(,—i.)*u*)
= lImxo = AEI2 + Im(xd = Al = 0
Moredver
el) = (rwé[&) =0,
@lux) = (n(uxo)¢|&) = i(m@)|€) = 0,

so that ¢(u-) annihilates the subspace V. It follows from Theorem 2 that V is
not a Cebysev subspace of A.

(it) = (i): If Vis not a Cebysev subspace of 4 then by Theorem 2 there is
either a pure state ¢ of 4, a complex number % and a unitary u in 4 such that
@uV)=0 and ’
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@((xg—2)*(xo— 2) + u(xo— 2)(Xo — 2)*u*) = 0;

or else there are two orthogonal pure states ¢, and ¢, of 4, a complex number
/. and a unitary u in A4 such that

0i((xg—A)*(xg— 2)+u(xog— 2)(xg — 2)*u*) = 0
for i=1,2.

It is straightforward to check that the first case corresponds to x, and x¥
having eigenvalues / and 7, respectively, with orthogonal eigenvectors (since
¢@(ul)=0); whereas the second case corresponds either to x, and x& having
eigenvalues 4 and 4 in two (classes of) irreducible representations (if ¢, and ¢,
are inequaivalent) or to x, and x& having eigenvalues 2 and 7% in one irreducible

representation, both with multiplicity 2 (if ¢, and ¢, are equivalent). But these
are precisely the situations prohibited by (ii).

REMARK 3. Let A=M; and consider the matrix x,=e,,+2e;5. The
eigenvalues of x, have multiplicity 1, and x,=x& Thus x, satisfies the
conditions in (ii) so that C1 +Cx, is a 2-dimensional Cebysev subspace of A.
However, the 3-dimensional subspace C1+Cx,+Cx3 is equal to the set of
diagonal elements in M, and therefore not a Cebysev subspace, cf. Remark 1.

Given Theorem 2 it should in principle be possible to find necessary and
sufficient conditions on an element x, in a C*-algebra under which each
subspace of polynomials in x, with a given degree is a Cebysev subspace.
Proposition 1 may serve as an example of the difficulties one must expect in
order to generalize Cebysev’s original theorem [8].

2. Cebysev subalgebras.

Throughout this section B will denote a non-zero C*-subalgebra of A4 which
at the same time is a Cebysev subspace. For each x in A we shall denote by a(x)
the unique best approximant to x in B. Note that a(x +b)=a(x)+b for every b
in B.

As proved in [6, Theorem 1.3], if A has a unit 1 then 1 € B; and if B has a
unit this is also a unit for A.

LeEmMA 4. For each selfadjoint x in B with O in Sp (x) we have xAx<B.

ProoFr. Assume first that 1 € A (whence 1€ B). Given ¢£>0 there are
continuous functions f, g and h on Sp(x) such that f g vanish in an
neighbourhood of 0, h(0)=1; and such that fg=/, gh=0and | f (t) —t| < for all
t in Sp (x). Applying these functions to x we obtain elements y,e and z in B
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such that ye=y, ez=0and |y —x||<¢. Since 0 € Sp (x) we have z+0 and may
assume therefore that |le|| <|z||=1. If yAydB take a in yAy\ B and let b
=a(a). Then

la—ebe| = |e(a—ble| < [la—b] ,
whence ebe=> since b is unique. But for each / in C we have
la=(b+22)|l = lle(a=be—iz| = fla—b|| v ||2z]| ,

so that b+ /z=a(a) for all / with |2/ < |la—b|, a contradiction. Consequently
yAy<B. With e=n"" we find a sequence {y,} in B such that y, — x and y,Ay,
< B for all n. Since B is closed it follows that xAxc B.

If 1 ¢ A there are two cases: either 0 is an isolated point in Sp (x) or not. If
not, we can use essentially the same argument as above; taking now h(0)=0 (in
order that z=h(x) € B), but h(z)=1 for some 4 in Sp (x) N[ —¢/2,5/2].

If 0 is isolated in Sp (x) there is by spectral theory a projection e in B with
ex=x. Since 1 ¢ A, e is not a unit for B, so there is a non-zero element z in
(1—-€)B(1—e). If now xAx ¢ B take a in xAx\ B and put b=a(a). As we saw
above this implies that b= ebe, and again we reach a contradiction by showing
that b+ 2z=a(a) for all small ;.

THEOREM 4. If A is a C*-algebra without unit and B a Cebyser C*-subalgebra
then B=A.

PRrooF. Since 1 ¢ 4,0 € Sp (x) for every x in B,,, whence xAx< B by Lemma
4. It follows from the polarization identity that xAyc B for all x,y in B.

We claim that xa € B for all x in Band a in A. Indeed, take y in B, and put u
=exp (ity)in 4. Then 1 —ue B so a(xa)u € B. Since u is unitary it follows that
a(xau)=a(xa)u, so the distance of xa and xau to B is the same. On the other
hand, xa(1 —u) € B from what we proved above. Since B is a Ceby3ev subspace
this implies that a(xau)=oa(xa)—xa(1 —u).

Combining these equations gives a(xa)u=a(xa)—xa(1 —u) or

0 = (xa—a(xa)(l —u) = (xa—a(xa))(l—exp (ity)).

Differentiating at t =0 we conclude that (xa—a(xa))y =0 for every y in B,. Put
z=Xxa—a(xa) and note that a(z)=0. However, z is orthogonal to B, so ||z—b|
= ||z|| v ||b]l for every b in B. Since B+ 0 this leads to a contradiction unless z
=0, whence xa=oa(xa) € B.

Now take a in 4 and x in By, and put v=exp (itx) in 4. Then 1—v e B
whence (1 —v)a € B from the argument above. Consequently

va(a) = a(va) = a(a—(l-—v)a) = o[(a)-—(l—-v)a ,
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or, equivalently,
0 = (I-v)(a—af(a) = (1—exp (itx))(a—a(a)) .

Differentiating a t =0 gives x(a —a(a))=0 for every x in Bg, so that a—a(a) is
orthogonal to B. As above this forces a—a(a)=0, and therefore 4=B.

LemMma 5. If 1 € A and x € B with 0Sx<1, such that {0,1} =Sp (x) then
x(1—=x)A<B.

Proor. Applying Lemma 4 to x and 1 —x we obtain xAx+ (1 —x)A(1 —x)
< B, whence

x(1-x)A = x(1 —x)Ax+x(1—-x)A(l—x) = B.

LEMMA 6. If 1 € A and if Sp (x) contains more than two points for some x in
B, then B=A.

Proor. Take a point 7, in Sp (x). By assumption there are at least two more
points %,, %, in Sp (x). Let f be a continuous function on Sp (x) with f (%) =3,
f(2)=0, f(~)=1 and 0=f<1. Put g=f(1—f) and note that g(zo)=1/4.
Moreover, by Lemma 5 we have g(x)4 < B, since {0,1} =Sp (f(x)). Applying
this argument to every point in Sp (x) together with a standard compactness
argument produce a finite set {g,} of continuous functions on Sp (x) with
3 g,(#2)>0 for all / in Sp(x) and such that g,(x)4<B for every . Then y
=3"g,(x) is an invertible element in B with y4 < B, whence A=B.

THEOREM 5. If A is a C*-algebra with unit, B a Cebysev C*-subalgebra of A
then either B=A, B=C1 or else A=M, and B is isomorphic to the algebra of
diagonal matrices.

ProoF. Assume that B is neither 4 nor C1. The latter condition shows that
B, contains an element e with at least two points in its spectrum. Using
spectral theory we may assume that 0<e <1 and {0, 1} =Sp (e). Since B+ A we
see from Lemma 6 that {0,1}=Sp (e), i.e. e is a non-trivial projection. By
Lemma 4, edec B. Moreover, each self-adjoint element y in ede must be
proportional to e, since otherwise we can find y such that Sp (y+1—e¢) contains
more than two points, in contradiction with Lemma 6. Thus ede=Ce and
likewise (1 —e)4(1 —e)=C(1 —e). This is only possible for 4=M, or 4=C>.
The latter possibility is ruled out since B+ A, so we must have 4 =M,. Now
eAe+ (1—e)A(1 —e)c B and since B is a proper subalgebra of M, we must have
equality above; i.e. B is the algebra Ce+C(1—e) of diagonal matrices.
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