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POSITIVE PROJECTIONS AND
JORDAN STRUCTURE IN OPERATOR ALGEBRAS

EDWARD G. EFFROS and ERLING STORMER

Introduction.

Suppose 4 is a unital C*-algebra and that P: A — A is a positive unital
projection, i.e. P20, P(1)=1, and P?=P. Simple matrix examples show that
the range P(A) need not be a C*-subalgebra of A. Nonetheless it was shown in
[3] that if P is completely positive then P(A4) becomes a C*-algebra when
provided with the given Banach space and *-operations, and the new product
(r,s) = P(rs). Letting 4, denote the self-adjoint elements in A, we have that 4,
is a Jordan algebra under the product

(1) acb = L(ab+ba) .

In this paper we will show that if P is only assumed to be positive, then P(4,) is
itself a Jordan algebra, and in fact a “JC-algebra” when provided with the given
Banach space operations and the new multiplication (r,s) — P(rcs). Since the
natural setting for this theorem is that of Jordan algebras we shall prove it
when A, is replaced by an arbitrary unital JC-algebra. A consequence of the
theorem is that if A is a von Neumann algebra (or a JW-algebra) and @ is a
normal unital positive map of A4 into itself then the set of a € A, such that ®(a)
=q has a natural multiplication making it into a JW-algebra. As a converse to
the theorem we prove that every simple JC-algebra and every JW-factor is of
the form P(A,) with 4 a C*-algebra and P as above.

This paper may be regarded as an attempt to place the recent monograph of
Arazy and Friedman [2] in a general setting. In a technical tour de force the
latter authors characterized the ranges of contractive projections in the algebra
of compact operators on a separable Hilbert space. A closer inspection of their
results seems to indicate that what they are doing is classifying certain Jordan
and Lie algebras of operators. Our approach might explain the unexpected
occurrence of Jordan algebras. The corresponding Lie algebra theory must
apparently await the development of non-positive forms of the Kadison-
Schwarz inequality [6].
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We recall that a JC-algebra is a norm closed real vector space of bounded
self-adjoint operators on a complex Hilbert space closed under the Jordan
product (1), [12]. We shall also employ the abuse of notation of calling a
normed Jordan algebra a JC-algebra if it has an isometric Jordan
representation as a JC-algebra. A JC-algebra 4 is called a JW-algebra if it is
closed in the weak topology. The center of A is the set Z=AN A’, where A’ is
the commutant of A. A is said to be JW-factor if Z consists of scalar operators.
If e is a projection in A its central carrier is the smallest projection in Z
majorizing e. e is said to be abelian if ede = Ze. 4 is said to be of type I, if there
exist n orthogonal abelian projections in A with central carriers the identity
and with sum 1. Finally, a Jordan ideal J in a Jordan algebra A is a linear
subspace such that a € 4, b € J imply a-b € J.

This paper was written while the second author visited University of
Pennsylvania. He is happy to express his gratitude to his colleagues there for
their warm hospitality during the visit. Both of us are also indebted to A.
Connes for pointing out Corollary 1.6.

1. Projective images of JC-algebras.

In this section we show that the image of a unital positive projection of a JC-
algebra into itself is a JC-algebra. Since the Kadison-Schwarz inequality P(a?)
2 P(a)?, [6], only depends on the self-adjoint part of the unital C*-algebra
generated by a and 1 it is clear that the inequality can be extended to JB-
algebras as defined in [1]. Furthermore, slight modifications of our proof show
that our theorem holds for JB-algebras as well. The proof is divided into some
lemmas. The completely positive analogue of the first was first proved in [3].
The argument that we use was suggested by the more recent proof of Hamana

[51.
LeEmMA 1.1. Suppose that A is a JC-algebra and that P: A — A is a unital
positive projection. Then for any a,b € A we have

P(P(a)°P(b) = P(a-P(b)).

Proor. It suffices to prove that if ¢ is a state on 4 and w=g-P then
w(P(a)-P(b)) = w(a-P(b)), a,beA.
o determines a real scalar product on A4 via (a,b)=w(a-b). We let
N, ={aeA: w(@)=0}

and H,, be the real Hilbert space completion of A/N,={[a] : a € A} where [a]
=a+ N, We define a map Q: A/N, — A/N, by Q([a])=[P(a)]. That this is
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well defined, and in fact a contraction is a consequence of the Kadison—

Schwarz inequality, since by the latter P(P(a)?)< P?(a®)= P(a®) hence
1Q[aDI* = ILP@]I* = w(P(@)?) = ¢(P(P(@)) < o(P(@®) = [[al]*.

Q thus has an extension to H,, which we also denote by Q. Since Q is then a
contractive map satisfying Q> =0, it follows that Q=0Q*, i..

(@x,y) = (x,Qy) for x,ye H, .
To see this, note that if Qx=x and Qy=0, then for all « € R,

12 = 1Q(x+ay)|* £ llx+ayl|*.
It follows that the function

f@) = Ix+ayl® = x> +2a(x,y)+o?[y|?

assumes a minimum value at «=0. Thus

0 =70 = 2(xy),

and the range and the kernel of Q are orthogonal. Q must therefore coincide
with the orthogonal projection onto Q(H,).
Finally we have

w(P(@)P(b) = ([P(@],[P®)]) = (QLa], Qb))
= ([a],Q7[b]) = ([al,Q[b])
= ([a], [P(®)]) = w(acP(})).

Given a JW-algebra M on a Hilbert space H and a normal (i.e. ultraweakly
continuous (unital positive projection P: M — M, we define the support
projection e of P to be the complement of the maximal projection f for which
P(f)=0. As in the case of normal states we have that P(a)=P(eae) for all
ae M,andifa e M, then P(a)=0 if and only if eae =0 (one way to verify this
is to use the corresponding facts for the states o P, ¢ a normal state on M). We
let [P(M)] denote the JW-algebra generated by P(M).

LemMa 1.2. Suppose M is a JW-algebra and that P: M — M is a normal
unital positive projection with support projection e. Then for alla € M, r € P(M),
x,y € [P(M)] we have

(1) P(roa)=P(ereceae),
(2) er=re,

(3) eP(x)e=exe,

@) P(xoy)=P(P(x)°P(y)).

Math. Scand. 45 — 9
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PRrooF. Since r=P(r) we have from Lemma 2.1

P(reca)

Il

P(reP(a)) = P(roP(eae)) = P(roeae)
= P(e(roeae)e) = P(ereceae) .
In particular it follows that
P(r?) = P(rer) = P((ere)’) = P(rer),
ie. P(r*—rer)=0, and since r*> —rer =0,
0 = e(rP—rer)e = ((1—e)re)*(1 —e)re) .

We conclude that (1 —e)re=0, hence re=ere, and taking adjoints, re=er.

Turning to (3) let 4, =P (M), and for each n>1 let 4,,,=A4,0A4, (=span
{aob : a,b € A,}). Then U 4, is the Jordan algebra generated by A,. (3) is
trivially satisfied by elements in A,. Suppose it is true for A4,. Then given x € 4,
we have from (2) that

P(e(P(x?)—xex)e) = P(x*—xex) = 0,
and from the Kadison-Schwarz inequality together with (3) for A4,,
e(P(x*)—xex)e = eP(x)*e —exexe = ex?e—exexe = 0,

hence we have e(P(x?)— xex)e=0, and eP(x?)e=ex?e. Using the identity 2xoy
= (x+y)*—x2—y?% (3) follows for all x,y € A,,,, and therefore by induction
for all x,y in the Jordan algebra generated by P(M). Using that P is normal
the general statement follows.

Finally, since (2) also holds for elements in [P(M)], (4) follows since

P(xcy) = P(execeye) = P(eP(x)eceP(y)e) = P(P(x)-P(y)) .

LeEMMA 1.3. Suppose that M is a JW-algebra and that P: M — M is a normal
unital positive projection. Then P(M) is a Jordan algebra under the given vector
operations and the product

rxs = P(res), r,se P(M).
Proor. We have that 1 xr=P(lor)=P(r)=r, and the Jordan identity for #
follows from that for - and (4) of Lemma 1.2:
(rxr)x(sxr) = P(P(ror)oP(scr))
P((rer)e(ser))
P(((rer)e5)or)

]
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P(P((ror)es)er)
P(P(P(ror)os)er)
((rxr)xs)xr) .

i

We are now in position to prove the main result of this section. The
completely positive version of the theorem can be found in [3] and [5].

THEOREM 1.4. Suppose A is a unital JC-algebra and that P: A — A is a unital
positive projection. Let N={n € A: P(n*)=0}. Then we have

(1) P(A) is a JC-algebra under the given vector operation and the product r s
=P(ros).

(2) P(A)+ N is a JC-subalgebra of A.

(3) P restricts to a Jordan homomorphism of P(A)+ N onto P(A) with kernel N.

(4) P(A)+N consists of all a € A for which P(a*)= P(P(a)?).

Proor. Letting B be the C*-algebra generated by A in some faithful
representation, we may identify the second dual A** with the ultraweak
(=weak*) closure of 4 in the von Neumann algebra B**. 4** will thus be a
JW-algebra with dense subalgebra A (see [4]). The second adjoint of P
provides a unique extension of P to a normal unital positive projection
P: A** — A** The fact that P(A4)is a Jordan algebra is thus a consequence of
Lemma 1.3. To show P(A4) is a JC-algebra we must first show (2)-(4).

To show (4) we note that if r € P(4) and n € N then 0 P(n)> £ P(n?) =0,
so by Lemma 1.1 P(ron)=P(P(r)oP(n)=0. Thus we have P((r+n)?)=
P(P(r+n)?). Conversely, if x € A and P(x?)=P(P(x)?), then let n=x— P(x).
We have by Lemma 1.1

P(n?) = P(x?)—2P(x<P(x))+P(P(x)?) = 2P(P(x)?)—2P(P(x)?) = 0,

hence x=P(x)+n € P(A)+ N, and (4) follows.
To show (2) let r € P(A). Then r?—P(r*) € N, since Lemma 1.2 (4) applied
to x=y=r? yields

P((r*=P(r%)?)

i

P(r*—2r2-P(r})+ P(r%)?)
= P(P(r})?—=2P(r*)-P(r*)+ P(r*?)
=0.

Thus we have that r> € P(4)+N.
If n € N, then P(n?)=0, so that en?e =0, where e is the support of P, i.e., ne
=0. If r € P(A) then er=re by Lemma 1, 2, so e(ron)=0, and e(ron)’e=0.
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Thus ron € N. Since (n?)* < ||n|*n? we conclude that n? € N, and therefore
(r+n? = r*+2ron+n* e P(A)+N .

This implies that P(4)+ N is a Jordan subalgebra of A. From (4) it follows that
P(A)+ N is norm closed and thus is a JC-algebra.

From (4) we have that P(a%)=P(a)+P(a) for a € P(A)+ N, i.e. P is a Jordan
homomorphism of P(4)+ N onto P(A). Since P(r+n)=r for r € P(A),n € N,
N is the kernel of this Jordan homomorphism. Thus (3) follows. The induced
map

P(A)+N /N — P(4)
by a+ N — P(a) is an isometry, since if a=r+n, r € P(A4), n € N, then
[r+nll 2 IPr+n)l = lIr] 2 r+NJ .
It follows from [4] that P(A) is a JC-algebra.

The weakly closed analogue of Theorem 1.4 is the following.

COROLLARY 1.5. Suppose that M is a JW-algebra and P: M — M is a normal
unital positive projection with support projection e. Let N={a € M : P(a*)=0}.
Then we have

(1) P(M) is a JW-algebra under the given vector operations and the product r *s
=P(ros).

(2) P(M)+ N=eP(M)e+(1—e)M(1—e).

(3) P(M)+ N is a JW-subalgebra of M.

(4) P restricts to a normal Jordan homomorphism of P(M)+ N onto P(M) with
kernel N.

Proor. Let f=1—e and R=eP(M)e+fMf. Since clearly N=fMf, fe N, so
e, fe P(M)+N. Thus we have the inclusion R<=P(M)+ N. Conversely it is
clear that NcR. Let a € P(M), then by Lemma 1.2

a = ae+af = eae+faf € eP(M)e+fMf = R,

so that P(M)+ N <R, and (2) follows. Since P(M) is weakly closed, since P is
ultraweakly continuous, R is weakly closed, hence by Theorem 1.4, P(M)+ N is
a JW-subalgebra of M. Similarly (1) and (4) follow from Theorem 1.4.

The above corollary can be extended to positive linear maps of JW-algebras.
This was pointed out to us by A. Connes.

COROLLARY 1.6. Let M be a JW-algebra and &: M — M a normal unital
positive map. Then the set of a € M for which ®(a)=a has a natural structure as
a JW-algebra.
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Proor. For each positive integer n let ¢,=n"1(®+®*+ ...+ P"). Since M
is weakly closed there is a unital positive map P of M into itself such that a
subnet (®,) of (®,) converges to P in the point-ultraweak topology [7]. Note
that if a € M, if the limits are taken in the ultraweak topology, we have

(P"(lim n;t i tP"(a))

¢"(P(a)

limn; 1Y " (a)
a 1

lim n;‘(i (D"(a)—}": ¢k(a)+i ‘PH""(G))
1 1 1

a

i

limn, 1<"Z cb"(a))
1

= P(a).

In particular, @,0P =P, and we have P?(a)= P(P(a))=lim, @, (P(a))=P(a), so
that P is a projection. Clearly ®(a)=a implies P(a)=a. Conversely, if P(a)=a
then by the above, a= P(a)= ®(P(a))=®(a), so that if My={a e M : ®(a)=a}
then M4=P(M). By Theorem 1.4 if A=P(M) with the Jordan product a*b
=P(a-b) then A is a JC-algebra. Since @ is ultraweakly continuous being
normal, M, is weakly closed. Thus A4 is a JW-algebra. To show that this
Jordan structure on My is in a natural sense unique we consider another point-
ultraweak limit point P’ of the sequence (®,), and we let B denote the JW-
algebra obtained by giving M, the Jordan product defined by P'. By Theorem
1.4 (3) the identity map 1 of M onto itself defines an order-isomorphism of 4
onto B. But then by the Kadison-Schwarz inequality applied to : and its
inverse, 1 is a Jordan isomorphism, see [6], and A can be identified with B.

2. Existence of projections.

A JC-algebra is said to be simple if it has no norm closed proper nonzero
Jordan ideals. In this section we shall prove the following two results.

THEOREM 2.1. Let B be a simple unital JC-algebra. Let M denote the C*-
algebra generated by B, and let A be the self-adjoint part of M. Then there exists
a unital positive projection P: M — M such that P(A)=B.

THEOREM 2.2. Let B be a YW-factor. Let M denote the von Neumann algebra
generated by B, and let A be the self-adjoint part of M. Then there exists a unital
positive projection P: M — M such that P(A)=B.
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The bulk of the proofs consists in verifying the theorems when B is a spin
factor, or equivalently, a JW-factor of type I, [10]. For the reader’s
convenience we recall the construction of these factors [1, 10, 11, 12, 13]. We
begin with a spin system 2, ie. a collection of nontrivial symmetries, i..
operators s for which s2=1, s=s* s# +1, on a Hilbert space H, which
anticommute: sot =0 for s,t € 2, s+t. Each element of the linear span (£) of
2 must again be a multiple of a symmetry:

3 ws)? = <Z oz,-z>1+2 Y oasios; = () af)l .

i i<j

The weak closure (#)” also consists of such multiples. To see this note that
(#)~ coincides with the strong closure of (£), since (#) is convex. If b,=f,s, €
(#) with B, e R, s, a symmetry, and b, — b strongly, then p21=5b2 — b2
weakly, and £%= (lim8?)1. Fixing s, € # we have s,=e,—f, for nonzero
projections ey, f, with ey + f, =1. We then fix unit vectors & € e,H, 1 € foH, and
we define a normal state w on B(H) by w(b)=%((b¢&, &)+ (bn,n)). We claim that
w(s)=0 for all s € 2. This is evident if s=s5,. If s+5,, then since sys5,= —s,

w(s) = —w(sySSp)
= —3((s50&, 508) + (5501, 501)
= —H6E O+ (s(=m(=m))
= —w(s).

It follows that w|(#)~ =0.

The spin factor B defined by £ is the linear space R1+ (). It is a simple
matter to verify that R1+(£)” is a JW-factor of type I,. The restriction 1
=w| B is a trace, i.e. for all symmetries s € B, t(sbs)=1(b). T determines a real
pre-Hilbert space norm on B by ||b|,=1(b*)*. If b=p1+0s, s=e—fe ()7,
we have

Ibll = 11 +os|l = [(B+o)e+ (B—o)f| = max|B+a| = |Bl+|o],

Ibll, = t((B*+0*)1+2Bas)* = (B*+0%)},

hence the uniform norm and the Hilbert space norm are equivalent. In
particular, B is complete in the ||,-norm. On the other hand, if b, — b
strongly in B, then

Iby=bl3 = lI(b,—b)I*+1I(b,~b)|*> — 0,

and we conclude that the uniform and strong topologies coincide on B. In
particular B may also be described as the smallest unital JC-algebra containing
the spin system 2.
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LemMMA 2.3. Let B be a spin factor acting on the complex Hilbert space H.
Then there exists a unital positive projection P of B(H) into itself such that
P(B(H),)=B.

Proor. The proof is divided into three steps.

(1). Assume H is finite dimensional. Let Tr be the normalized trace on B(H).
Then 7 is the restriction of Tr to B. Since B is identified with the real Hilbert
space defined by 7, B equals its own dual under this identification. Thus if
x € B(H),, there is an element P(x) € B such that

Tr (xa) = (P(x),a) (=1(P(x)oaq))

for all a € B. P so defined is clearly linear, unital and idempotent. Let x=0.
Then

(P(x),a) 2 0 forall ae B*.

If P(x) were not positive, by spectral theory there would exist real numbers o,
with f>0 and nonzero projections e, f€ B with e+f=1 such that P(x)=
oe — ff. But then

0= (P(x)f)=-BLf) <0,

a contradiction. Thus P(x)=0, and P is a positive projection.

(2). Assume H is infinite dimensional but B finite dimensional. Then there
exists a finite spin system 2= {s,. . .,s,} in B such that B=R1+ (#). Thus the
identity representation of B considered as a real Hilbert space, into B(H), is a

‘representation of the canonical anticommutation relations. Hence the C*-
algebra generated by B is finite dimensional [8]. In particular there exists a
finite dimensional projection e with central carrier 1 in the commutant of B. By
case (1) there exists a unital positive projection P, of B(H), into itself such that
P,((B(H),),)=Be. If M is the von Neumann algebra generated by B we denote
by a the isomorphism a: Me —» M by ae — a, and we define P on B(H) by
P(x)=a(P,(exe)). Then clearly P is unital and positive. If a € B then eae
=ae € eB, so P,(eae)=ae. Thus P(a)=a, and P is the desired projection of
B(H), onto B.

(3). Assume the dimensions of B and H are arbitrary. Let 2 be a spin system
so that B=R1+ (2)". Since each finite subset of 2 is also a spin system on H
the linear span of the symmetries {1,s : s € J} forms a finite dimensional spin
factor B, for each finite subset J of 2. By part (2) there is a unital positive
projection P, of B(H), onto B;. Order the finite subsets of 2 by inclusion. Then
the P, form a net, which by [7] has a subnet (P, ) which converges in the point-
ultraweak topology to a unital positive map P of B(H) into itself. If x
=x* € B(H) then P;(x)— P(x) ultraweakly. Since P, (x) € B, and B is
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ultraweakly closed, P(x) € B. In order to show P is idempotent let a € B. Since
{1} U 2 is an orthonormal base for B considered as a real Hilbert space

a = t(a)l + Z (a,s)s .
seP

Let b € B, ||b]| =1. Let ¢>0. Then there is a finite subset K of £ such that if

ag = t(a)1+ Y (as)s,
seK

then |la—ak| <e. Since |P| £1,
[P(a)—Plag)ll < .

Since (P,) is a subnet of (P,);. g, for arbitrary large finite J there exists J,
containing J, hence there is J,o K such that

[(P(ak)—P; (ak), b)| < &.

But then we have
|(P(a)—a,b)l < |(P(a)— P(ak),b)|+|(P(ax)— Py (ak), b)|+|(ak —a,b)|
< et+e+e = 3¢.

Since ¢ is arbitrary, (P(a)—a,b)=0, and since b is arbitrary in B, P(a)=a.

LeEmMMA 24. Let B be a JW-algebra of type 1,, n<oo. Let m be a Jordan
representation of B. Then the weak closure n(B)~ of n(B) is of type I,

Proor. If ey,...,e, are orthogonal abelian projections in B with central
carriers 1 and sum 1, then so are the projections n(e,),. . .,n(e,) in n(B)~. Thus
n(B)~ is of type I,

Recall that a JC-algebra B is said to be reversible if products of the form
[T’ a;+I1}~ma; € B whenever a, € B. If R(B) denotes the norm closed
algebra over the reals generated by products of the form []™, a;, a; € B, then
R(B) is a real Banach *-algebra, and B is reversible if and only if B= R(B),, see
[91.

LEMMA 2.5. Let B be a JC-algebra such that n(B)~ is reversible for all *-
representations m of the C*-algebra generated by B. Then B is reversible.

Proor. Let C=R(B),, and M be the C*-algebra generated by B. Then C is a
reversible JC-subalgebra of M,, and Bc C < M, If B+ C there exist two states
¢ and w on M such that ¢|C#w|C while g|B=w|B. Let n be the GNS
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representation of M defined by the state 3(¢ + ), and let § and @ be normal
states on n(M)~ such that gon=p and wor=w on M. Since ¢ and @ are
ultraweakly continuous they coincide on =n(B)~. However, n(B)~ being
reversible, contains n(R(B),)=mn(C). Thus ¢|n(C)=w|n(C), or ¢|C=w|C, a
contradiction. Therefore B=C, and B is reversible.

LEMMA 2.6. Let B be a simple unital JC-algebra which is not reversible. Then B
is a spin factor.

Proor. By Lemma 2.5 there exists a *-representation = of the C*-algebra M
generated by B such that n(B)~ is not reversible. By [10,Theorems 6.4 and 6.6]
there is a central projection e in 7(B)~ such that en(B)~ is of type I, and not
reversible. Considering en instead of # we may thus assume n(B)~ is of type I,.
Let g be a pure state of n(B)~ and ¢ a pure state extension of ¢ to the C*-
algebra generated by n(B)~. Let n, denote the GNS-representation defined by
¢. Then n,(n(B)") is irreducible with weak closure of type I, by Lemma 2.4.
Since it contains m,(n(B)) which is not reversible,.it is a nonreversible spin
factor by [10, Theorem 7.1]. Since B is simple 7 (n(B)) is isomorphic to B,
hence n,(n(B)) is a simple JC-subalgebra of the spin factor n,(z(B)”)". Since
the strong and the norm topologies coincide in a spin factor n,(n(B)) is itself a
spin factor, being simple. But then B has the structure of a spin factor. If we
choose the trace on B to arise from a normal state on B(H), then since the
topology defined by the trace is the same as the norm topology, B is seen to be
strongly hence weakly closed. Thus B is a spin factor.

Proor oF THEOREM 2.1. Let B be a simple unital JC-algebra. If B is not
reversible, B is a spin factor by Lemma 2.6, hence the theorem follows from
Lemma 2.3 in this case. If B is reversible let

J = R(B)NiR(B), where iR(B) = {ib:be R(B)} .

Then a straightforward computation shows that J, is a norm closed Jordan
ideal in B. Since B is simple, either J,(0) or J, = B. In the latter case B is already
the self-adjoint part of the C*-algebra M it generates [9], so the theorem is
trivial in this case. If J,=(0), R(B)+iR(B)=M [11, Theorem 2.1]. Then let
a(x+iy)=x*+iy* when x,y € R(B). The map « is a *-antiautomorphism of
order 2 of M, and the map P=1(+«), where i is the identity automorphism
of M, is the desired positive projection of M, onto B.

ProofF oF THEOREM 2.2. If B is a JW-factor then by [10, Theorems 6.4, 6.6,
7.1] B is either a spin factor, the self-adjoint part of the von Neumann algebra
M it generates, or B is reversible with
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R(B)” NiR(B)™ = (0).

In the latter case M =R(B)™ +iR(B)~ by [10, Theorem 2.4]. Thus the same
proof as in the simple case applies.

REMARK 2.7. While the conclusion of Theorem 2.1 does not seem to extend to
general JC-algebras, we expect Theorem 2.2 to extend to arbitrary JW-
algebras. By [10, Theorem 6.4] a trivial extension of the above proof proves it
for reversible JW-algebras. By [10, Theorem 6.6] we have thus reduced the
problem to the case when the JW-algebra is of type I,. In this case it seems
apparent that global techniques should finish the proof.
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