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SPECTRAL THEORY FOR FACIALLY
HOMOGENEOUS SYMMETRIC SELF-DUAL CONES

JEAN BELLISSARD and BRUNO IOCHUM

1. Introduction.

It is well known that measure theory is strongly connected with the order
structure in linear spaces. Such a connection has been pointed out by A.
Connes [9] in the non commutative integration theory defined by the data of
normal states in von Neumann algebras: it is possible to characterize any von
Neumann algebra MM by means of a cone in the Hilbert space in which I acts.
This cone is the analog of the cone of positive functions belonging to L2(£, u)
in the commutative case.

From a geometric point of view, these cones have remarkable properties:
they are self-dual, facially homogeneous and orientable. If H is a real Hilbert
space, a cone H* is self-dual if it coincides with

{EeH| <&ny20, VneH*).

Such a cone is automatically convex and weakly closed. It is orientable if the
quotient of the Lie algebra of its derivations by its center [9], is complex. H*
is facially homogeneous if for any face F, the operator Pr— Py is a derivation,
Pp (respectively Pp.) being the projector onto the closed linear subspace
generated by F (respectively F*: the orthogonal face of F).

This last property has recently been used by the authors and R. Lima [6]
and by M. Ajlani [1] to understand the connections with the notion of transitive
homogeneity if H is finite dimensional. In that case the two properties coincide
[6], and more generally if the cone is of finite type ([5] and [8]). Recall that a
cone is of finite type if it contains a trace vector, i.e. a vector ¢ such that the
orthogonal F} of the face F, that it generates is reduced to zero and which is
invariant by the unitary group of the cgne. In the previous work we prove a
theorem analogue to A. Connes’s:

H" is a self-dual cone which is facially homogeneous and of finite type if and
only if one can find a Jordan J.B.W. algebra M ([4] and [10]), with a trace
state @ such that H* is isomorphic to the completion of the cone M* of
positive elements of 9, with respect to the Hilbert structure defined by ¢.
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Roughly speaking, to suppress orientability condition means to replace von
Neumann algebra by Jordan-Banach algebra. ‘

In the proof of this theorem, one of the main tools was a spectral theory for
derivations ([5], [8]). The facial derivation 6yp=%(1+ Pr— Pp.), where F is a
face, plays the role of spectral projections in this theory.

The object of the present paper is to extend the spectral theory for
homogeneous self-dual cone without trace. It is in fact a crucial step in proving
that this class of cone is in a one-to-one correspondance with the category of
Jordan-Banach algebras which are Banach dual spaces [11]. In this work we will
need an additional property: the symmetry. A self-dual cone is symmetric if it
is invariant under the subspace generated by F and F*, F being a face. It has
been proven by the authors that any facially homogeneous self-dual cone is
symmetric [11]. The main result consists in giving a spectral decomposition of
any self-adjoint derivation in term of the facial derivations Jp. As a
consequence, the extremal points of the order interval [0,1] in the set of self-
adjoint derivations are precisely the facial derivations.

II. Main theorem.
In what follows H will be a real Hilbert space and H* a self-dual cone:

H* = {¢eH| &ny20,VneH"}.

Every ¢ in H has a unique decomposition (called the Jordan decomposition)
E=¢* — ¢ such that ¢* and ¢ are in H* and <£%,£7)=0. A face Fis a
subcone of H* such that if 0<n<¢ e F then n € F. There £ denotes the
partial order defined by H*. The set

F' = {¢eH"| (&n)=0,VneF}

is a closed face [9]. The group GL (H™*) of the cone is the group of bounded
operators A on H, with bounded inverse such that 4 and A~ ! leave H
invariant. A derivation & is a bounded operator on H such that ¢ e GL (H™)
¥t e R. The set of derivations 2(H *) is a weakly closed Lie algebra [9]. The
self-dual cone H* is facially homogeneous (for short homogeneous) if for any
face F,

O = 3(1+Pp—Pgy)

is a derivation. In any such cone, Pp=Pp.. and F**=PgH" ([5] and [8]).
This property allows us to restrict ourself to complete faces (i.e. F=F 114) as far
as derivations are concerned. Denote by % (H*) the set of complete faces of
H*. H* is symmetric if Up=2(Pp+ Pp:)—1 belongs to GL (H™). Note that
this operator is nothing but the symmetry with respect to the closed linear
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space generated by F and F'. In [11] it is proved that every facially
homogeneous self-dual cone is symmetric.

LEmMmA IL1. Let H* be a self-dual homogeneous cone. Then H* is symmetric if
and only if

(1) KZA=URE P < 4PpEn){Prié,n)
where F € F(H"), £ and n are in H*.

Proor. Suppose H* is symmetric. Since UpPp=Pg, UpPp.=Pp. and U}
=1, one gets V¢,ne HY,Vt e R and n=0,1,

0 < (e PF=PRIULEY = &, Pre) +e7(n, Ppaéd + (31— Up)é) .

Therefore (1) holds.
Conversely if (1) holds then for any ¢ and # in H*

CUREn) = <Pp&n) +(Ppud,my +35(Up—1)¢,m)
2 ((Ppg,my* =(Pp:g,n)?)?
0.

1\

Since H™ is self-dual, Uy leaves H* invariant.

In the sequel M will be the space of self-adjoint derivations and
M ={5eM| 0<5<1}.

Note that M is a weakly compact convex set.

MAIN THEOREM. Let H be a real Hilbert space and H* be a self-dual, facially
homogeneous and symmetric cone in H.

Then for any 6 €M, there exists a unique increasing family of faces:
A € R — F(2) such that
i) F(A=F@A)** VA
i) F(a—e)=F(b+e)*=0 Ve&>O0 if upectrum (6)<[a,b].
i) N,,oF(A+e)=F(A).
iv) 6= j"zf Adép;  (Lebesgue-Stieltjes weak integral).

CoroLLARY. The set {6 | F e F(H")} is exactly the set of the extremal
points of M.

This last result was conjectured by A. Connes a long time ago.
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III. Towards the proof of the theorem: Construction of spectral faces.

Let o in 9. By the spectral theorem one can construct an increasing family
4 e R — m(4) of projectors in H which is right weakly semi-continuous and
satisfies:

mA) =0ifA<0 and mn(d) =111

1+
o = J ) Adn(4)  (in the sense of weak topology) .

0

Let
F() = {¢e H| n(l)e=¢}.

Prorposition II1.1. F(4) is a complete face and F(A)* ={{2=0 | n(A)E=0}.

The proof of this proposition requires the following steps.

LemMa II1.2. Let F be a face of H*, and o be a derivation of H* commuting
with Pg. Then ¢ commutes with Pp..

Proor. We remark that ePg. preserves H* if t € R. Moreover Pre'®Pp.:
=ePpPp.=0. Then ¢“Pp.H* < F* (cf. [5, Lemma 1.2]). Since H=H* -H"
this means Pp.e®Pp.=¢"Pg.. The same argument applied to ¢* shows that ¢
commutes with Ppi.

The next lemma will be left to the reader.

Lemma II1.3. Let p,v be finite Borel positive measures on R such that

J‘e“dy(it) < je“dv(l), YteR.

If v is concentrated on the (not necessarily_closed) interval I, then u is also
concentrated on 1.

ProOF oF THE ProposiTioN IIL.1. For £ in H™ let dv.(4) be the spectral
measure d{{,m(4)¢). Clearly ¢ e F(4) means that dv, is concentrated on
]1—00,A[, and n(4)¢=0 means that dv, is concentrated on ]4,00[. By
construction F(A)=n(A)HNH" is a closed convex cone in H*. Let n be such
that 0=n<¢ € F(4). Then:

0 < <enm) < (8.
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By the spectral theorem and Lemma II1.3, dv, is concentrated on ]—oc, [,
which means that 5 € F(4) and F(/) is a face.

Since F(2)=n(4)H, clearly Pp; <n(%); moreover Pg; = Pr ;. because H*
is facially homogeneous ([5, Lemma 2.2]). Therefore

F(/) PF‘,-')F(/'.)=PF(,-_,u(n(/".)HﬂH*) = n(/'.)[(PF‘,-_}uH)ﬂH*]

I

n(AF ) = F(yH

which proves that F(2) is a complete face.

The same argument works for G(2)={{=0 | n(2)€=0}. Clearly G(2)
cF(2)*; thus [Pgg;), P6;:]1=0 and Pg(;» commute with Pg(;. ([S, Lemma
2.5]). If we prove that K =F(4)* N G(4)* is reduced to zero, then F(2)* =G (%)
because F(4)! is itself homogeneous and self-dual. K is a self-dual cone in
PxH ([5, Lemma 24]) and Pk = Pg(;:Pg;» commutes with n(%). Indeed, by
definition, J leaves F(4) and G(4) invariant, and therefore commutes with Pg ;.
and Pg;: by Lemma II1.2. Let L be the subspace L= (1—n(2)PxH of PxH.
We get L* =n(4)PxH where L* is the subspace of PxH orthogonal to L. By
definition LN K = {0} =L* N K. But this is impossible except if K = {0} because
of the following result.

LemMA 111.4. Let H* be a self-dual cone in H and L a closed subspace of H.
Then either LNH* #{0} or LN H™* %{0}.

ProoF. One can assume L+ {0} and L*+{0}. If LN H* ={0}, by the Hahn-
Banach theorem there exists £ € H, £+0 and t € R such that (£ g)=1,
Vo e H" and (&,n)=t,Vn € L. Using the dilatation invariance of H* and L,t
will have to be zero. Therefore (£,#>=0,Vne L and £ H*.

The following corollary is an immediate consequence of the previous
proposition (cf. [5, Lemma 2.5]).

CoroLLARY IIL5. (Pg(;));ier and (1—Pg;p);cr are two spectral families of
projectors with supports in [0,1] which mutually commute and

) Pryy S m(7) S 1=Ppyp VieR.

1V. Reconstruction of spectral projectors.
The aim of this section is to prove the following reconstruction resuit.
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ProrpositioN IV.1. The family (Q(a, B))a, gycrz Where Q(&, B)= Pp(y(1 — Pg )
defines a spectral measure on R x R with support in [0,1] x [0, 1] and such that

3 n(z) = j dQ(a, p) .
2+ <24

The equation (3) means that if
A() = {(,B) e R? | a+p<2i}

and y,; is the characteristic function of A(4), then the Lebesgue-Stieltjes
integral (g2 x40;(2, B)dPp (1 — Pgpy:) is equal to m(4). The first part of this
proposition is standard [7]. To prove (3), one needs some elementary steps.

LemMma IV.2. If H* is a self-dual, homogeneous and symmetric cone, then
4) Ppiy(1—Ppge) = n(3(a+ p)
(5) Pr(1—Pp) £ 1-n(3(a+p) .

ProoF. If a<f then Pry < Ppg<1— Ppey. Since a<y(ax+ ) then Ppy <
n(e) <n(3(x+ ). This case is trivial.

Assume now that a>p. Then Prg<n(3(a+f)) and Pry, is orthogonal to
Ppoy(1 = Prp— Pppe). If we can prove that this last projector is less than
n(3(a+ B)), we have equation (4) because

Proy(1=Pry) = Ppyy+ Proy(1= Pryy— Prgye) S n(3(a+p) .

Let £ be in F(x). Then & € H* and n(a)é=¢. We define 5 by

N = Pre(1=Prp—Prpr)C
then n=mn(a)y.
Since H* is homogeneous and symmetric, we can apply Lemma IL1:
VteR* and Ve>0

x

I (1=nl(a+p)+el’ < j e ATHE D (i)
Fa+p+e

e~ HETh(y 0y = e HETA(] —PF(/”_PF(IY)‘)PF(«)'); oS
2 Ppipl, PN P gy P, €0 7PN
2)¢)?

using the spectral theorem. Hence if t — 0o and ¢ — 0, n=n(3(a+ f))1.

0

lIA

A IA

A



124 JEAN BELLISSARD AND BRUNO IOCHUM

The equation (4) is proved since H=H*—H™*. The other equation is
similarly obtained.

PrOOF OF ProposiTION IV.1: For (a, B) € [0,1] x [0, 1] define the set C(a, ]
by

C(a, B) = [0,a] x [0,a] if a<p
C.p) = [0,a] x[0,a]—[B, 11 x{B,1] if B<a.

By usual properties on a spectral measure ([7, page 12]), we have

J dQ(o,B) = Ppiy(1—Prepy) .
Cla,p)

Let U be an open subset of [0,1] x [0, 1] containing A4(4); then there exists a ¢
>0 such that A(4+¢)< U, and it is possible to choose a finite number of points
(% Bikei,...,n} such that

N
A() = A(A+3e) © U C(@,B) = A(A+e).
k=1
By Lemma 1V.2, (4), we have
0(4(4) = \k/ 0, By) < n(d+e).

Using (5) we obtain by a symmetric argument:
n(4) £ n(A+3e) \k/ QB = Q(A(A+e) £ Q).

The regularity of the spectral measure Q shows that

Q4@ = A Q) £ n(d).

U> A(4)

On the other hand

n(d) = A QW) = Q(A(A)

UsA(4)

and the proof is achieved.

V. Proof of theorem and its corollary.
Using a property of integration for an image measure, we have

R x

1* 1t 1+ 1+
I L_ %dPp) fo— d(1~Prgy) + %fo_ Bd(1—Ppg) Lﬁ P .
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In particular

52
I

1*
%J‘O_ /{d(PF(A)‘I"l"“PF(A)J.)

1+
[ Jddg -
.-

Since A — ;) is an increasing family of derivations, the theorem is proved for
5 e M. If 6 € M there exists (a,b) € R* xR such that ad+b € M, and the
proof is complete because the uniqueness of this spectral resolution follows
from the uniqueness of the usual spectral resolution.

Now we come to the proof of the Corollary. Suppose that F is a complete
face and 6y admits a convex decomposition in M; :

Since Ppi.dp=0 we have Pp.d, =0=0,Pp. because 0, is positive. This implies
that F* F,(0) and by the theorem: , £1—0p )<1—8p.= 0. Therefore §,
=6,=0r.

Conversely suppose that § is an extremal point in ;. The theorem gives the
following convex decomposition in M :

1* 1t

5 = ‘i‘ j‘ /’{2 d(sF(A)-‘_%J‘ (2/1“'12)(16;‘“) .
0~ [

Hence 6 =[5 42 dop; or equivalently [5° A(1 — 4)ddr;=0. It follows that 1=0

or A=1, almost everywhere with respect to ddp ;). Therefore there exists F such

that 0= 6}7.
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