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IMBEDDING THEOREMS OF SOBOLEV TYPE
IN POTENTIAL THEORY

KURT HANSSON

0. Introduction.

In this paper we are going to study imbeddings of spaces of potentials of
functions and measures into Banach spaces of functions which are partially
ordered in the sense that f,g € B and |f| < |gl implies that || f|| < |g|| for a norm
[ I of B. We are considering two cases. In the first case we study potentials of
the form u(x)={G(x,y)du(y), where G is a positive definite kernel on some
space Q and p is a signed measure such that the energy integral [[ Gduxdyu is
finite. Secondly we treat potentials of the form

u(x) = IK(x, NfWdoly),

where K is a positive kernel on some measure space (€, w) and f e L?(w) for
1 <p<oo. In both cases we are able to identify the smallest partially ordered
Banach space which contains the potentials of the types above provided the
potentials of the kernels G and K satisfy a weak form of a maximum principle.
The spaces in the imbedding theorems are characterized in terms of the
capacities defined by the kernels, and our main results are that the spaces
consist of those quasicontinuous functions f which satisfy the following
boundedness conditions:

0.1 jw Cl{x : Ifx)I>t})tdt < oo
0
respectively
0.2 joc Co{x : |f)>e)ePtdt < oo .
4]

Here C denotes the classical capacity defined by the kernel G and C » 18 the LP-
capacity [13] defined by K.

As the main tool in proving these imbedding results we use strong type
capacitary estimates of the type proved in the case if Riesz and Bessel
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potentials by Adams [1], [2], Mazya [12] and Dahlberg [6]. Our proofs of
these estimates are however different and can be applied in more general
situations.

In the last section we show a relation between our imbedding results and the
well known imbedding theorems of Sobolev and others. Other applications are
given in [8].

This paper is an outgrowth of the first part of the authors thesis [8], and he
is indebted to professor K. O. Widman for his support and valuable criticism.

1. Hilbert space theory.

Let Q denote a locally compact metric space such that every open set in Q is
a countable union of compact sets, and let G be a symmetric and positive
definite kernel which satisfies a boundedness condition. By this we mean that G
is a positive and lower semicontinuous function on Qx Q taking values in
[0, 00] and satisfying the following four conditions.

1.1 G(x,)=G(y,x) for all x,y in Q.

12 I(w=[fGduxdu>0 for every signed measure u+0 on €.

1.3 Gis continuous in Q x Q\ {(x,y) : x=y}, and in case of a non compact Q
it is also required that the function G(.,y) tend to zero uniformly on
compact sets as y — 00.

1.4 There is a constant A such that the following boundedness principle holds
for the potentials Up(x)=[G(x,y)du(y) of positive measures u with
compact support Spu.

supUu < AsupUp .
Q Su

Let 41 be a signed measure on Q and let Uy be the potential of u with respect to
a symmetric and positive definite kernel G. We denote by H the space of
potentials Uy such that I(Ju|)< oo where |y| is the total variation of u. In view
of 1.2 there is a natural inner product on H defined as the mutual energy of the
potentials

(Up, Uv) = fJGduxdv.

In the following we are going to study Banach spaces B of realvalued functions
(or function classes) on  into which H can be continuously imbedded. By this
we mean that H < B holds in the sense of set inclusion, and if Il -1l is @ norm for
B we should have

sup [ f1I%/(f,f) < 0.
SeH
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We will restrict ourselves to imbeddings of H into Banach spaces which are
partially ordered, and we make the following definition.

DEFiNITION 1.1, A normed space B of (equivalence classes of) realvalued
functions on Q is partially ordered if there is a norm |- || for B such that f,g € B
and |f|<|g| implies that || /| <|g|.

The main purpose of this chapter is to characterize the smallest partially
ordered Banach space into which H can be imbedded. This minimal space can
be described in terms of the capacity which is defined by the kernel G. We first
state a few notational conventions and, without proof, a well known theorem
of potential theory.

The class of continuous functions f on Q will be denoted by C, and in the
case of a non compact Q we also require that f(x) — 0 as x — o0o. In the non
compact case we also use the notation C,, for the functions in C with compact
support.

In the proofs of the theorems that follow we suppose that Q is non compact.
In the compact case most proofs are simpler and the modifications are left to
the reader. Typical examples of kernels G on spaces Q that satisfies the
conditions 1.1 to 1.4 above are the Riesz and Bessel kernels on RY and the

Green function of a second order differential operator on a regular domain Q
of R4,

THEOREM 1.2 (Continuity principle) 1f G is a kernel with the properties 1.1 to
1.4 and if u is a positive measure with compact support Su such that the
restriction of Up to Sy is continuous then it follows that U necC.

For a proof of theorem 1.2 see [4, p. 34].
For any subset E of Q we define the capacity of E as follows.

C(E) = sup p(E)
uel (E)

where I'(E) denotes the set of positive measures with compact support Su such
that SucE and Uu<1 for all x € Su.
We also define the exterior capacity of E as

C*(E) = infC(V)

where the infimum is taken with respect to open sets V containing E.

THeorem 1.3. 1. C*(UE,) <Y C*(E,) where E,, n=1,2,... are arbitrary
subsets of Q.
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2. If E,cE,., for n=1,2,... we have if E=UE, that lim,, . C*(E,)
=C*(E).

3. For any compact set E we have C (E)<oo and for any Borel set E we have
C(E)=C*(E). '
- 4. For.any compact set E there is a unique positive measure p with Suc E such
that u(E)=C(E), Uu(x)<1 on Su and Uu(x)21 for all x in E outside a set of
capacity zero.

5. For any open set V with Z(V)< o there is a positive measure u concentrated
on V such that p(V)=C(V), Uu<1 on Spand Up(x)2 1 for all x € V outside a
set of capacity zero.

For a proof of theorem 1.3 the reader is referred to [7, ch. . 2]. From
theorem 1.3.5 it follows that the exterior capacity of a set E can be written as
C*(E)=inf, I () where u is a measure such that the potential Uu is =1 C-a.e.
on E. In analogy with this we define a seminorm on the real valued functions
on Q which generalizes to functions the notion of capacity of a set. Cf. [2, def.
3.1].

DEeFINITION 1.4, p(f )=inf,|/1 () =inf, | Upl. where the infimum is taken
over positive measures x4 on € such that | fISUp C-ae. If I()= oo for every
such measure we define p(f)=oo0.

Since ||u| =]/ (u,u) is a norm on H it is clear that p(f) is a seminorm with the
property that | f| < |g| implies that p(f)<p(g). In a few special cases p(f) is easy
to compute.

PROPOSITION 1.5. For any set E the relation p(xg)*=C*(E) holds, and ifuz0
and I(p)<oo it follows that p(Up)?=|| Up|?=1(p).

Proor. The first statement is clear, and the second will follow if we prove the
estimate p(Up)? 2 1(u). Suppose thst U usUo C-ae. for some positive measure
o. It follows that

Iw = JUO'dﬂ SVIW)1e) = 1w £ I(0)

and from the definition of the seminorm p it follows that I(u)<p(Up)>

For an arbitrary function f we use the following strong capacitary estimate
for p(f), which in the Hilbert space situation generalizes a theorem of Adams
[1, Thm. 1].
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THEOREM 1.6. For any real valued function [ the following estimate for p(f)
holds

p(f)? =24 j C*({x = 1f(I>t})edt < 44%p(f)?
(4]
where A is the constant in property 1.4 of the kernel G.

ProoF. We first prove the left inequality. Let the function f be given such
that 3’ C*(|f|>t)tdt < oo, and let o be a real number >1. Choose for every
integer n an open set V, which contain the set {IfI>a"} and is such that

CV) < &,+C*(|f|>a"

where 3 a’",<1. By theorem 1.3.5 there are measures K, on ¥, such that
Ha(V,)=C(V,) and Up,=1 C-ae. on V,. Define the measure U, as

1.5 B = (@=1) ) a"u, .

The convergence of 1.5 follows from the estimates U(E)S AC(E) for every n
and every Borel set E, and

?"CH(f]>0") < 2 foo C*(f1>0tde .
0

Using this we find that

m(E) S A@=1) ¥ «'C(E)+@—1) ¥ a"C(V,)

ns0 n>0

A

S A(e—1) Y «"C(E)+ (a—1) Y o, +

=0 n>0
+@-1) Y a‘"2j C*(|f|>ptdt < o0
n>0 0

if C(E)<oo0.

Let the integer n(x) be defined by "™ <| f (x)| S«"®*!, For C-a.a. x we have
. the inequality
L6 Unlx) 2 (@=1) ¥ «Up(x) 2 (a=1) ¥ o = "1

n=<n(x) ns<n(x)

Lf ().

The energy of the measure , is estimated in the following way.

([\%

L7 I) = (@=1)2 Y Y am*m JUumdun S 2a—12 Yy antm JUumdun

msn

Math. Scand. 45 — 6
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S 24(@—12 Y a"'C(V,) ¥ o™ = 20d(a~1) Y a>"C(V,) .

m=sn

We also have that

zro C*(fI>ttdt = 2 ZI
0 n

2 (1—a"3) Y a*"C(V,)—(1-a"2) Y o,

T 0tdt 2 (1—a7) Y CH(f]> )

"

which together with the estimate 1.7 gives

3

20 ®
Ale— 2
zx+12A L C*(If 1>t dt +2aA 1);a e,

1.8 I(y,) =

From 1.6 and 1.8 and the definition of p(f) it follows that if we let a | 1 we get

p(f)? <24 r C*(IfI>0rdt .
0

To prove the right inequality we first suppose that 0=f e C,. Let V,={f>o"}
where as before « is a real number > 1. Let also u, be the equilibrium measure
for V,, and define y, as in 1.5. Since Sy,< V,={f=a"}, we have the estimate
a?"C(V,)=0*"{dpu,< | fo" dp, implies

(=1 ) e*"C(V,) < deua = JUGdM, = V(o) ) 1(n)

for every measure ¢ such that f<Uo C-a.e. Using 1.7 we get that

(x—1) ¥, o?"C(V,) £ 204l(0) = (x—1) Y a2'C(V,) £ C(V,) £ p(f)® =

n

2J C(f>nrdt < (2—1)Y oa?"C(V,) £ a(a+1)24p(f)* .
] n

From this the right inequality follows if we let « |1 and if 0<fe C,. The
inequality is then true also for an arbitrary function f such that p(f) < oo. For
there is then a positive measure o such that |f|<Ue C-ae. and p(Us)*=1(0)
<e&+p(f)*. The potential Us is lower semicontinuous, and therefore we have
Uo=lim,_, f, for some non decreasing sequence f, of non negative functions
in Cy. By theorem 1.3.2 we have that

C*(f1>0) = C(U,>1) = lim C(f,>1),

n—oo

and by monotone convergence we find that
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n—oc n—oc

r C*(If| > Otdt < lim J“ C(f, > nrdt < 24 lim p(f,)?
0 0

IIA

24p(Uc): < 24e+2Ap(f)

for every £>0, and the theorem is proved.

RemMaARrk. That the constants 24 and 442 are optimal at least if 4 =1 is seen
by the following examples. For the left inequality we need only take f= xE> and
for the right inequality we consider the classical Newton capacity on R" where
G(x,y)=alx—y* " and the constant a is determined so that I (w)
= {|grad Uy|*dx.

The capacity of the ball {|x|<R} is w,_,(n—2)R""2, and if we define the
measure u on R" as

W(E) = (n-2)? L x| ™2 dx

it follows that u(E)<C(E) for every Borel set E. This can be seen in the
following way. Let E* denote the ball with center in O which has the same
measure as E. An easy calculation shows that p(E)Su(E*)=C(E*). The
inequality C(E*)< C(E) follows from the formula

C(E) = inf{Jlgrad UPPdx : U=1 C-ae. on E}

and the isoperimetric inequality for functions in W? proved in [10, Thm. 2].
Now suppose the estimate j?f C(f1>ttdt <kp(f)* holds for some constant k
independent of f. If f'is a function in W? we find that

o0

Jlflzdﬂ =2 Jm u(f|>nde < 2J C(fI > nedt = 2kp(f)*,

0 o

and since we also have

p(f)* = inf {Jlgrad UPdx : U2f C-a.e.}

it follows that

jlf [Pdp < 2k Jlgrad fPdx .

If we take f=min (1,|x|*) for a> (n—2)/2 we get

2
[lemaspac = [ ippmras = () [ e
Ixlz1 n— Ixlz1
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from which it follows that 2k(x/(n—2))>>1, and letting a | (n—2)/2 we find
that k>2.

From theorem 1.6 we get a convergence result analogous to a well known
theorem for Lebesgue classes.

THEOREM L.7. If (f,)2%, is a sequence of real valued functions on Q2 such that

Y p(f) < 00

then the series 3, f,(x) converges absolutely for all x outside a set of exterior
capacity zero. If f(x) is defined as the sum ¥, f,(x) it also follows that

N
lim p<f- Y f,,> =0
N-o00 n=1
Proor. Define g=3,|f,. From theorem 1.3.2 it follows that

N
C*g > 9 = lim C*(Z |fn|>t)

and from theorem 1.6 and monotone convergence we get

00 00 N
j C*(g > t)tdt = lim j c*(Z 11l > t>tdt
0 ' 1] n=1

/N
< 24 lim .p( Y |f,,|>2 < ZA[Z P(fn)]2 < o00.
N-oo n=1 n

This implies that C*(g=00)=0 and by theorem 1.6 again and the estimate
above we have that

p(f) < plg) < 24 Y p(f) < 0.

The same argument also gives that

(f—Zf..>~P(Z f..)= Y p(f)

n>N n>N

which proves the theorem.

From theorem 1.7 it follows that the quotient space defined by

§={f: p(f)<c}/{Sf: p(f)=0}

is complete. Since we intend to construct a Banach space into which H can be
imbedded, and this space should be as small as possible, we must impose some
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regularity. on the functions as well. From the next lemma we see that it is
natural to consider the closure of C, in the space § defined above.

LeMMA 1.8. If p is a positive measure on Q such that Up € H then there is a
sequence (f,);-, of functions in C, such that
lim p(Up~f,) =0

n—-oo

Proor. We first prove that Up can be approximated by potentials in C of
measures of compact support. Since Q=1im, E, where (E,)%, is a monotone
sequence of compact sets we have, if p, is the restriction of u to E,, by
proposition 1.5 that '

p(Up—Uu,)* = I(u—p,) = H Gduxdu— 0

(@\E,) x (\E,)
and we may therefore suppose that Sy is compact. If now G, € C,(2 x Q) and
G, 1 G in every point of Q x Q it follows that U, T Up where U, =[G, (-, y)du(y),
and by Egoroff’s theorem there are open sets V; such that u(V,) — 0as k — oo
and the convergence U, — Uy is uniform on the set Q\ V,. If y,= plg. v, and
Uk (X) =] G,(x,y) dp, () it follows that v, , — Up, as n — 0o uniformly on Sy,
and from theorem 1.2 we conclude that Uy, € C, and from proposition 1.5
again it follows that

p(Upu—Up) = jf .Gduxdu—- 0 as k— o00.
VixV,

Now we finally suppose that Su is compact and Up € C. For n= 1,2,... we
have

{x: Up(x)>1/n} cc Q

and if we choose functions g, € C, such that 0< g, <1 and g,=1if Upu>1/nwe
get from theorem 1.6 that

p(Uu—f) <24 r] C(1—g)Uu > t)tdt

CUp > t)tdt -0 as n— oo

IIA

)

PN
C—y
< =
x

with f,=g,Uu € C,,.

Motivated by remarks above we make the following definition.
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DeriniTioN 1.9. If G is a kernel with properties 1.1-1.4, the Banach space
B(G) is the closure of C, in the Banach space of function classes on £ defined

by {f: p(f)<oo}/{f: p(f)=0}.

It is clear that B(G) is a separable Banach space and from lemma 1.8 it
follows that every function in H generates a function class in B(G). To describe
the regularity of the functions in B(G) we make the following standard
definition analogous to the Luzin property of measurable functions.

DEerFINITION 1.10. A real valued function f on Q is quasi continuous with
respect to a capacity C defined on the subsets of Q if to every &> 0 there is an
open set V= Q such that C(V)<e and f restricted to Q\ V is continuous.

We can now give the following characterization of the functions in B(G).

THeorem 1.11. If G is a kernel on Q satisfying 1.1-1.4 then a real valued
Jfunction f belongs to B(G) if and only if it is quasi-continuous with respect to the ‘
capacity C defined by the kernel G and satisfies the boundedness condition

J.oo C*({x‘: If(X)|>t})tdt < o0

Proor. First suppose that f € B(G). If ¢>0 is given and if ¢, is a sequence of
positive numbers such that 3 &, <¢/2 we can find functions f, € C, such that

GaC*(f=fl>e) S 24p(f—f)* < &
and open sets V, containing {|f~—f,|>e¢,} with
CV) < &+ C*(f—fl>en) .

With V=U V, we have C(V)s3 C(V,)<eand on Q\ V we have |f—f,| e, for
all n, which proves the continuity of f|q. .

Now suppose that [§* C*(|f|>t)tdt <oo for a real valued quasicontinuous
function f. If for any positive integer n we define f,(x)=/(x) if | f(x)|<n and
Jax)=nor —nif f(x)is >nor < —n respectively we get a sequence (/)% , of
bounded quasicontinuous functions and by the extension theorem of Tietze we
can, for each n, find a continuous function g, such that |g,|<n and C*( faEg,)
<1/4n*. From theorem 1.6 we get the estimates

2 2n

C*(fu—ga>tdt < 24 J tdt/dn* = A/n?

0

p(fi—gn)* < 24 J

0
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p(f=f)? = ZAJ C*(f1 > t+ntdt < 2AJ C*(Ifl > edt
0 n
and it follows that p(f—g,) — 0 as n — oo.

We finally show that any bounded and continuous function g with p(g) < oo
belongs to B(G).

Let Q=lim, E, where (E,);_, is an increasing sequence of compact sets and
choose f, € C, such that 0<£,<1 and f,=1 on E,. We can also find a positive
measure u such that |g|<Up C-ae. and I(y)<oo.

We have that f,g € C,, and for any h € C, the inequality

lg=figl = A=f)(Up—h)+ (1 ~f)h

holds C-a.e. Since the last term is equal to zero if n is large enough this implies
that

lim p(g—/,8) < p(Uu—h)

n—+oc

for all h € C, and since by lemma 1.8 p(Uu—h) can be made as small as we
please the theorem follows.

To be able to use the Hahn-Banach theorem efficiently we also prove the
following characterization of the dual space of B(G).

THEOREM 1.12. Every continuous linear functional A on B(G) can be uniquely
represented by a signed measure u on Q in the following way

fe L'(lul) and A(f) = jfdy for-all fe B(G).

The norm of A is equal to |/1(|ul), where |u| denotes the total variation of the
measure that represents A.

PRrOOF. Suppose first that u is a measure with I(Ju|)<oo. If f € C, and o, are
positive measures such that | f| < Ug, C-a.e. and I(s,) — p(f)* as n — 00, then
clearly we have

Nl = Wdf) £ WUe,) £ VI@) Y I(u) — p(NHV (1)

and it follows that f — u(f) can be extended to a unique linear functional on
B(G) with norm <}/I(|u)).

Now suppose that 4 € B*(G). If E is a compact set and g € C, with 0<g<1
and g=1 on E we have for every fin C, with support in E that |f|<g| f| .,
and it follows that p(f)<p(g)|l f || This proves that the restriction of 4 to C,
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is continuous and by the Riesz representation theorem there is a measure 1 on
€2 such that u(f)=A(f) for all f € C,. Since C, is dense in B(G) it follows that
two different functionals must be represented by different measures, and it
remains to prove that the energy of |yl is finite and <|A4||%. We have

lul(f) = sup {lu@@)l : g€ C, and |g|<f} .

This implies that |u|(f) < ||4]|p(f) for non negative functions f in C,, and by
approximation of Us from below with such functions we get the estimate

lu(Uo) = a(Uy) = 141)/1(o)

for all positive measures ¢ with I(s)<oo. It also follows that |ul(E)
S ||A]| )/ C(E) for every Borel set E.
Define o=y 'En{Ul ,<t}» Where E is a compact set and t>0. We have that

I(0) £ o(U},) = tlul(E) < 00.
It then follows that

Io) = o(Uy,) = 141V 1) = I(0) < |4]7,

and it remains to prove that I(¢)11(ju|) as t 1 0o and E 1 Q. This will follow if
we prove that |u|(U,, >t) - Oast1oo. Let E be a compact subset of {U,, >t}
with equilibrium measure v. We have that

tC(E) = tjdv S v(Up) = 141V 106) = 4]}/ C(E)

= ?C(E) £ ||4]?,
and it follows that t*C(U,, > 1)< | 4||%. This implies that
WU, > 0 £ 4]

and the theorem is proved.

In the next theorem we prove an imbedding result for the inner product space
H. We also prove that p is the largest monotone functional on H that can be
majorized by the norm of H.

Tueorem 1.13. If H is the completion of H then H can be identified with a
subset of B(G) and p(f)=|fll=)/(f, f) for all f€ H.

If q is a functional on H such that q(f)< || f|| for all fe H and f,g € H and ||
<l|g| C-ae. implies that q(f)<q(g) then q(f)<p(f) for all f in H.
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For the proof we use the following lemma which generalizes the notion of
equilibrium measure.

LeMMA 1.14. To every non negative function f inB (G) there is a unique positive
measure p concentrated on the set {x: f(x)>0} and such that f<Uyu C-ae. and

w()=p(f)*=I().

Proor. Define the convex set K<B(G)* as K={u: u(f)=p(f)*}. Clearly
we have

L) 2 w(Np(NF = p(fY

for every p in K, and by the Hahn-Banach theorem there is a measure u in K
such that I({u)=p(f)*=u(f). If v=lis>0) then v € K and we have that

I(v) 2 p(f)* = I(u) = I(v))

which implies that v=y, and that p is concentrated on {f>0}. We also have
that u* (/)2 u(f)=p(f)* and therefore tu* € K for some ¢ with 0<t<1. As
before we get

CIp*) z p(f)> = I(u) 2 I(u*) =t =1

= u*(f) =p(f)? = u(f) = p20.

If v is another positive measure such that I(v)=p(f)>=v(f) then (v+p)/2 € K
and

I(v+p) = 4p(f) = 2 V) +2U(p) = I+ +I1(v—p).

It follows that I(v—u)=0 = v=yu and the uniqueness is proved.

It remains to prove that f< Uu C-a.e. Suppose 0<¢ € B(G)* and o (f)>0.
Define v=[p(f)*/a(f)]oc. We have ve K and so tu+ (1—t)v € K. It follows
that for 0<t<1 we have

p()* S Iltu+(L=ov] = Pp(f)?+ (1 =0)’1()+2t(1—t)v(Up)
= (1+0p(f)* < 2v(UW+ (1 =0I().
Letting t 11 we get
p(fy = v(Up = o(f) < a(Up)
which proves that f<SUpu C-ae.

PRrOOF OF THEOREM 1.13. We first prove that p(f)<| f| for every function f
in H. Since |f| € B(G) there is by lemma 1.14 a positive measure u such that
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p(f)?=n(f)=I(u). Let v denote a signed measure with the properties v(f)
=u(lf]) and |v|=pu. By the Schwarz inequality we then get that

PUY = v(f) = (LU S IFIIUYL S IA1VIW = 15 1p(f) -

From the inequality p(f)< || f]| it follows that every Cauchy sequence (f,)>,
in H has a limit f in B(G). The mapping (f)sZ; — fcan be thought of as a
mapping from H to B(G). If we prove that this mapping is injective it follows
that H can be identified with a subset of B(G). Let f,=Up, be a Cauchy
sequence in H and suppose that p(f,) — 0 as n — o0o. Since U, € B(G)* we
have that
lim Ifll* = im (fofu) = lim p,(f,) =0

since f, — 0 in B(G). This proves that the mapping from H to B(G) is injective.

We finally suppose that g is a monotone functional on H with q( =S 1t
u is the equilibrium measure for |f| then the estimate |fI< Up implies that

a(f) = q(Uw < |Up| = VIw = p(f)

and the theorem is proved.

Let H* denote the space of potentials of positive measures with finite energy.
The interesting fact that H* is a closed subset of H, although H in general is
not, was proved by Cartan when G is a Newton kernel [5]. The next theorem
shows that the completeness of H* is a consequence of the imbedding theory
of H.

THEOREM 1.15. Let P denote the cone of functions in H which are non-negative
C-a.e. It then follows that H* =P* =the dual cone of Pin H.

Proor. That we have H* < P* follows from the formula (SLUw=][fdu
which holds for fin H and Uy in H. Now suppose that f belongs to H and let ¢
be the equilibrium measure of | f|. We have that — Ug <f=Ug C-ae.and if u is
a function in P* it follows that — (u, Uo)< (u, /)= (u, Uo). From this we get
that

Nl S @ Us) £ [ul)/Tie) = Julp(f).

Since H is a dense subset of B (G) it follows from theorem 1.12 that there is a
unique measure x4 which represents the functional f= (fie (u )= fdu
for all fin H and I(jul) < |lu||%. It follows that y= Upu C-a.e. and it remains to
prove that u20. Since uxU,,| C-ae. we get that
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lul* = @ Up) < UWI2 = I(u) < fu)?

and it follows that

Hu=lu) = lu=Uyl* = Jul>+ U, 12 -2, U,,) = 0
which implies that u=|y|.

2. LP-theory.

Let Q denote a metric space as in the preceding chapter. An important
example of a positive definite kernel on Q is given by the formula

2.1 G(x,y) = JK(x,z)K(y,z)da)(z).

Here K is a positive symmetric and lower semicontinuous function on Q x Q
and w is a fixed positive measure on Q. If y is a measure on Q then its energy
with respect to the kernel G given by 2.1 can be written as

22 I(p) = j IKp(2)* do(z) = |Kulfz,

where the symbol Ky is used to denote the function | K(.,x)du(x). If K has the
property that Ku=0 w-a.e. implies that u=0, then the kernel G is clearly
positive definite. From 2.2 it is seen that in this situation it is natural to study
imbeddings of the space of potentials Kf (x)={ K (x, y)f (y) dw(y) with the norm
defined as |[Kf | = | f |l 2, We shall in fact consider the more general situation
of imbeddings of the space H” for 1<p<oo consisting of potentials Kf of
functions fin LP(w). The norm on H? is defined as || Kf | »= Il f | L»()- The spaces
H? defined in this way are easily seen to be complete, and for a kernel G given
by 2.1 the relation between H? and the inner product space H of the preceding
section is H2=H.

The properties of the kernel K we will need in order to construct an
imbedding theory for H” analogous to the Hilbert space theory of the
preceding chapter is stated in the following definition.

DeFiNiTION 2.1, 1. K is a positive and lower semicontinuous function on
x Q and K(x,y)=K(y, x).

2. There is a positive measure w on Q such that w(V)> 0 for every nonempty
open set V in Q.

3. The functions K(x, .) belong to L{.(w) for all x in 2 and the mapping
x — K(x,.) from Q to L (w) is continuous. In case of a noncompact Q it
is also required that [ K(x,y)dw(y) — 0 as x — oo for every compact set E
in Q.
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4. If pis a measure on Q and Ku=0 w-a.e. then u=0.

5. There is a constant A such that the following boundedness principle holds
for the nonlinear potentials u=Kf where the function f can be written as
f=(Ku?"! for some positive measure y with compact support Su and a real
number q in the interval 1 <g<o0; supou=<A supg,, u.

From 2.1.3 it follows that Kf e C for every function fin C,. An important
example of a kernel that satisfies the boundedness principle 2.1.5 is given by
K(x,y)=k(lx—y|) on R" where k is a non negative and decreasing function on
(0, 00). In [3, Theorem 2.3] Adams and Meyers prove that with a kernel of this
type there is a constant A for which 2.1.5 holds, and 4 depends only on the
number g and the dimension n.

In the following p and g will denote real numbers in (1,00) which are
conjugate i.e. such that pg=p+q. For a kernel K which satisfies the properties
of definition 2.1 and p conjugate to the g of 2.1.5 we define the capacity C »(E)
of a subset E of Q as follows [13, def. 6]

2.3 C,(E) = inf{| ffre) : f20 and 1<Kfon E} .
In the next theorem we state a few properties of the capacity C » analogous to

those in theorem 1.3. For the proof of theorem 2.2 the reader is refered to [13].

TueoREM 2.2. 1. For arbitrary subsets E, of 2 C,(UE,)<Y. C,(E,).
2.IfE,<E,,, and E=UE, it follows that C,(E)=lim,_ C,(E,).
3. If E is compact then C,(E)<oo, and for any set E

C,(E) = inf{C,(V): EcV, V open}
and for any Borel set E
C,(E) = sup{C,(F) : FcE, F compact} .

4. To any set E with C,(E)<o00 there is a unique non negative function f in
Lp(w) such that C,(E)=| f 1frw) and Kf21 C,-a.e. on E. If E is a Borel set
there is a unique positive measure y on E such that u(E)=C o(E), f=(Kp)y~! and
Kf<1 on Spu.

The largest monotone norm p(.) on H” such that p(f)< || f|| pfor all fin H?
can now be defined in the following way (cf. [2]).

DeriniTion 2.3. p(f)=inf{|gll,: |fISg C,-ae. and g e H}.

The next theorem shows that in this case there are relations between the
norm p and the capacity C » analogous to those of the preceding chapter.
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THEOREM 2.4. 1. For any set E the equality p(xe)=C,(E)'"? holds.

2. p(N)EIfI, for any function f in HP.

3p(fr=4fy C,(f1>1t)dt? < Bp(f)® for some constant B which only depends
on the number p and the constant A in property 2.1.5 of the kernel K.

PRrOOF. 1 and 2 are immediate and the left inequality of 3 follows from the
inequality

24 p(sup f,.) W IR

which is analogous to (and proved in the same way as) the first statement of
theorem 2.2. Following Adams [2] we note that if a>1 and fec S f1>0de?

<oo we have that f=sup,f, C,ae. where Jo=ftiw<ifisw+1y and n is an
integer. By 2.4.1 we also have

PUN = o PPt g )P S aPPC, (1 f]> a7,

and we get by 2.4 that

PP < o Y a™Chllf|>a") < [0/ (a?—1)] Jm C(fI>0)de?.
n 0

Since min, ., [«*?/(a? —1)] =4 the inequality follows.

The right inequality will follow by a standard approximation argument if we
show that it holds for functions of the form Kf where fis a continuous function
of compact support. This is proved by a construction analogous to the one in
theorem 1.6. Let again o be a real number >1. We have that C(Kf>a") <00
for any integer n, and by theorem 2.2.4 there are measures u, on {Kf=a"} such
that

C(Kf>a") = |l = Kyl
and K(Kp,)" '<1 on Sp,. With =3, a"?~ Yy we have that

2.5 Y aC (Kf>a") = Y o Jdu,, <) JKfa""’_”du,, = Jdeu

= ffKﬂdw = I Nereeo | Kl L5y

It remains to estimate the L%norm of Ku. We note that the boundedness
principle implies that K(Kpu,)? ™! < 4 for all n. We also define v,=a"?~ Yy, and
Kp=%,Kv,=%,8,

Let N denote the integral part of . Since (q— 1)/N <1 we have the following
estimates
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Holders inequality gives

1/N 1/N
Jgf.",'”’"’ L. gUTNg do < (ng,“gmdw) .-‘(fgﬂ;‘gmdw>

and since we have that

fgz.‘ 'gndw

JK(ggk‘l)dvm = o™P—1D@—1)ymp—1) J‘K(K”nk)q_ld”m

A

ammP 1) 4 Jdu,,, = Aa"oq™?~VC (Kf > ™).

It follows that
Il § AZ am(p—l)cp(Kf > am) Z a""*"'*”")’N

n...nNSnm
msm

Aa(@N—1)"N Y amPC (Kf > o™).

A

The second integral I, is estimated in a similar way.

(@- 1IN
12 = jZ( z gnl"'gnN) gmdw
m \nm...nNSm .

m<n,
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N+1—gq N

Writing g, =g gn " and using Holder’s inequality with respect to the
measure g% Vdw we get that

(@-1)/N
I, é[ Z( > g,.,~--gnN>gi’;”dw] :

m LANSEm
m<n,

[J*Z N N (N+1-g)/N
‘ 8m8m dw]
(@—1)/N (N+1-g)N
[ Y & - g,,Ng:’,,'Ndw] [Z Jg;’"dw] )
m, n,

lIA

c.nNZSny m

Hdlder’s inequality again, now with respect to the measure gn,dw then gives

that
1/q=1) 1q—1)
(J‘g‘,’,;‘g,l| dw) (J.g‘j,,;‘g,,l dw) .
@-Nyg-1)
: U g '8, dw)

< Agmr-bC (Kf> anl)a(nﬁ.A.+nN)/(q—1)a»t(q—N)/(q—l).
= p

IIA

Jg.., Y Al (1)

Since we also have that
f 4dw = qmP~1 J(Kym)"dw = oa"C,(Kf > o™,

it follows from the estimate for I, above that

I, £ BY «"C,(Kf > a")

for some constant B which depends on a, p and A. This together with the
estimate for I, above implies that

> &

q

IKulfsa =

< B)Y oC,(Kf > o), B=B(x,p,A).
LY(w) n

From 2.5 it then follows that
Y aC,(Kf > o) < B4l f 1 3rey »
and finally that

j Co(Kf > t)dtP = (« —1)B”|| f || §r(yy -
0
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In the argument above we have supposed that q+N=+1. The somewhat
exceptional cases =N and N =1 are technically simpler when treated with the
same methods as above, and are left to the reader.

If we define the Banach space B” as the closure of C, in the space
{f:p(f)<oo}/{f: p(f)=0} we can with essentially the same methods as in
chapter 1 prove the following imbedding result for H”.

THEOREM 2.5. 1. H”CB” in the sense of set inclusion, and p(f) < /1, for allf
in HP.

2. A function f defines an element of B” if and only if f is quasicontinuous with
respect to the capacity C, and B

L C,(fl > pdt* < oo .
3.If q(.) is a monotone norm on HP such that q(f)< I £1l, for all f in HP, then
q(f)=p(f) for all f in H”.
4. The dual space B** of B? consists of all signed measures u such that
K(lul) € L*(w) and the norm of p as a functional on BP is equal to | K (|l 1s(

Proor. The first statement follows if we prove that Kf when fis in L?(w) can
be approximated in B? by functions in C,. This can be done in exactly the same
way as in the proof of lemma 1.8 if we note that it is enough to consider the
case when 0<f e C,, and that in this case we have by property 3 in definition
2.1 that Kf e C.

The second statement is proved in the same way as theorem 1.11, and the
third statement is an immediate consequence of the definition of the norm p(.).

To prove the fourth statement we note that if the measure u represents an
element of B?* on C,, ie. if |u(f)|< Ap(f) for all fin C,, then it follows that
lul(f)= Ap(f) for all fin C,. By approximation from below we then get that

lWl(Kf) = Ap(Kf) = Al f |l 7(w) »

and since |y|(Kf)=jK(|y|)fdw the inequality [|K(Ju|)|l s <A follows from
the converse of Holder’s inequality. The inequality |lull=A<|K(lul)llLs) is
however a direct consequence of Holder’s inequality, and the theorem is
proved.

3. Some examples and applications.

In this section we show how some classical imbedding theorems which go
back to Sobolev [15] relate to the imbedding theory developed in the
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preceding chapters. We will consider the case when Q is either R” or a ball
{x : |x| £R}. The measure w is the Lebesgue measure, and the kernel K(x,y)is
supposed to be of the form k(|x — y|) where k(r) is a positive and non increasing
function on 0<r<oo which satisfy the conditions in definition 2.1. We also
suppose that k satisfies the following growth condition

3.1 J k(o)e" 'do < ak(ryr
0

for some constant a which does not depend on r. In the case when Q=R" the
further restriction is imposed

32 J k(@)'e""'de < oo for all r>0 and some g>1.
In the case of a Riesz kernel, k(r)=r*"", 3.1 is satisfied when O0<a<n and for
3.2 to hold we must have ap <n where P +q=pq. The motivation for 3.2 is that
we want the capacity of every ball with positive radius to be positive.

By replacing k with the equivalent kernel k(ry=r="fo k()" 'do if
necessary, it is clear from 3.1 that we can assume that

33 k(sr) < s7"k(r) for 0<r and 0<s<1 .

The spaces which will be our main interest in this section consist of Lebesgue
measurable functions. They are supposed to be partially ordered and complete
in the sense that if | f| < g a.e. and g belong to the space, then so does f. Another
property which we assume is the so called Fatou property; If || - || is a norm for
the space, and if (f,){° is a monotone sequence of non negative functions in the
space such that | f,| is bounded, then Sf=lim f, belong to the space and | f||
=lim || f,||. Spaces of the above type have many properties in common with the
usual LP-spaces [17, Ch. 15]. In particular they are Banach spaces and if the
sequence (f,)i° converges to f in the space, then a subsequence of )T
converges to f a.e. When we in the following speak of a partially ordered
Banach space of Lebesgue measurable functions we always mean a space with
the properties described above. '

DEFINITION 3.1. A partially ordered Banach space B of Lebesgue measurable
functions on @ is rearrangement invariant if f € B implies that g € B whenever
S and g have the same distribution function. Le. whenever

m({x: |[f(X)>t}) = m({x: |g(x)|>t}) forall t>0.

For the theory of rearrangement invariant spaces see [11]. Our aim will be
to construct the smallest rearrangement invariant space which contains H?,

Math. Scand. 45 — 7
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and to compare it with the usual spaces into which H” is imbeddable when k(r)
is the Riesz kernel.

As our notation for different rearrangements of a function f we will use the
following: The nonincreasing rearrangement on 0<t < oo will be denoted by
Sf* and the nonincreasing spherical symmetrization by f.

The following relation between f* and f then holds with to=m({x : |x|<1}.).

34 J) = f*tlxI" -

The construction of the rearrangement invariant target space for H? is based
on the following isoperimetric estimate for the capacity C,.

LemMA 3.2. If E is a subset of Q and if E denotes the ball with center at the
origin which has the same measure, then the inequality

C,(E) < bC,(E)
holds for all E in 2 with a constant b which only depends on the dimension n and

the constant a of 3.1.

Proor. We use the following symmetrization inequality which in the one
dimensional case are due to F. Riesz. The n-dimensional case was proved by
Sobolev [15].

35 ﬂk(lx =S (x)g0)dxdy = H k(lx =y f (x)g(y) dx dy

Suppose that C,(E)<co and 0 <m(E)<o0. Let f be a nonnegative function in
LP(Q) such that | f||f- <&+ C,(E) for some £>0, and Kf (y)=[k(jx—y|)f (x) dx
21 for yin E. Choose a set F c E with 2"m(F)=m(E) and define g=m(F)™*yp.
By 3.5 we have the inequality

36 1= Uk(lx—yl)f (x)g(y)dxdy = j Uk(lx-—yl)é(y)dy]f (x)dx .

If we use the symbol f£ fdx to denote the mean value [g fdx/[gdx, and if r
is the radius of E, it follows by the argument below that

37 Jk(IX-Y‘)é(y)dy = f k(lx—y)dy = nad"k(|x|+r) .

Iylsv/2

If |x|<r we have that

][ k(lx—y)dy = ][ k(lyl)dy
Iyl=r/2 Iylsr/2

nak(r/2) £ nad"k(2r) £ nad"k(|x|+r)

A

by 3.1 and 3.3.
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In the case when |x|>r we have that
][ k(lx—yhdy = k(lx|—r/2)
ly|=r/2

< k(x1/2) £ 4"k 2Ix)) < 4k (x| +r) < nadk (x| +r)

and 3.7 follows.
Combining 3.6 and 3.7 we get that

1< Jk(|x|+r)na4"7(x)dx < Jk(lx-—yl)na4"f(x)dx

for all y such that |y|<r. This implies that
Co(E) < (nad"P|[f 1} = (nad™P| S5 < (nad™)’[e+ C,(E)]
for all €>0, and the statement of the lemma follows with b= (nad") at least in
the case when 0<m(E)<oo. The general case then follows by a standard
argument using for example theorem 2.2.
If we define the function ¢(r) for 0<t <00 by
o) = C,({x : |x|"St/ty}) = the capacity of a ball of measure ¢ ,

then the following imbedding theorem can be proved.

THEOREM 3.3. Every function f in BP has the property that

38 JOC SV de() < 0o,
V]

and if B is a rearrangement invariant space such that H? = B then every function f
satisfying 3.8 belongs to B.

ProOOF. By lemma 3.2 we have the inequality e(m{lf1>s))=C,({f>s})
SbC,({|f1>s}) for s>0, and if f € BP the first statement follows from theorem
2.5 and the formula

39 J fr@rPde(r) = r\ @(m({f1>s})ds” .
0 0

To prove the second statement we first observe that if C »(E)=0, then by lemma
3.2 C,(E)=0, which implies (by property 3.2 of k) that E={0} and so that m(E)
=0. This implies by a standard argument that if H?<B then the natural
inclusion mapping from H” to B is closed, and by the closed graph theorem
there is a constant 4 such that IfII= Al fl, holds for every fin H? if ||- lisa
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norm for B. By theorem 2.5.3 and the fact that B is a partially ordered space it
then follows that || f|| < Ap(f) holds for f in H?, and by an approximation
argument using the Fatou property the last inequality can be extended to any
measurable function f. Now suppose that j8° S*(t)Pde(t)<oo. From 3.9 again
and theorem 2.4.3 we have that

J: Sr@Pdo() = rg @(m({f>s}))ds”

0
B J " C,(>9ds” 2 By = B A TP,
0

and it follows that f € B which since B is rearrangement invariant implies that
feB.

By theorem 3.3 it is seen that a minimal rearrangement invariant space
containing H? should be defined in the following way.

DEFINITION 3.4. The space L(@, p) consists.of all measurable functions fon Q
such that f* exist and [ f*(t)? do(t) < oo.

The space L(g, p) is analogous to the Lorentz L(p, g)-spaces which are used
in real interpolation theory. A norm for L(g, p) can in the case when 1 < p<o0
be defined as (cf. [16, ch. V 3])

00 1/p t
310 1/l = Uo f**(t)"dfp(t)] ,  frr) = t”’f f*(s)ds .
0

The triangle inequality follows from the fact that (f+g)** < f*¥*+g** and
that 3.10 defines a norm on L(¢,p) is a consequence of the inequality

[+3] 1/p - 00 1
in Uo f *(t)"dfp(t)] = i n S qUo f *(t)"dfp(t)]

The left inequality is immediate since f* <f**. To prove the right inequality
we observe that 3.3 implies that s ()< ¢(st) for 0<t and 0<s<1. Since we
have f**(t)=[§ f*(st)ds= [} f*(t)ds, it follows from Minkowski’s inequality
for integrals that
1
J frds
V]

Since f* ()" is non increasing it follows that [ f* () da(t) < [& f*(2) dB(t) for
every pair of non decreasing functions o and B such that a(t) < f(¢). If we insert
a(t)=s¢(t) and B(t)=¢(st) it follows that

/p

312 "f"L(q),p) =

1
=< f If | L7 ds .
0

L?(dg)
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v 00 1/p 00 1/
L ¥l e = s“I/PU f;‘(t)"da(t)] < s‘”"[j f;“(t)"dﬁ(t):l ’
0 0

= s—llp"f*”l.’(d(p) ’

which in combination with 3.12 proves the right inequality.
In the case of a Riesz kernel k(r)=r*"" it follows by homogeneity that

C({IxIsr}) = C,({IxIS1})r* ™"  when ap < n.

This implies that ¢(t)~t! ~P" where the ~-sign means that the quotient of the
members are bounded from above and below by positive numbers which does
not depend on r. By the definition of L (p, q)-spaces [16, ch. V 3] it then follows
that L(@, p)=L(p*, p) where p* =np/ (n—ap). This is an imbedding theorem of
O’Neil [14], and it follows that his result is optimal in our sense.

In the case when ap=n we take Q={|x|<R}, and for 0<r<R we have

Co({IxI=r})~[log 2R/r] 7,
which gives
@(t) ~ [log 2"T/]' 7 for O<t<T=m(Q).

It follows that L(e,p) in this case consist of those functions f for which

T e Ja
31 — | —
3 JO [log (2":r/t):l r =
It is easy to see that 3.13 implies that

3.14 j exp[f(x)¥]dx < oo,
Ix|=R

which is a result of Trudinger, Strichartz and Hedberg (see [9]). The example
f*(@) = [log (2"T/]'[loglog (2"T/1] "%, p+q = pq

shows however that the integral 3.14 may be finite in cases when 3.13 is not.
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