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A CARLEMAN THEOREM FOR CURVES IN C"

H. ALEXANDER

Let I' be the image in C" of the real axis under a proper continuous
imbedding (a curve without self-intersections, “going to infinity in both
directions”). Can every continuous function on I be asymptotically
approximated by entire functions? That is, given a continuous complex valued
function fon I' and a positive continuous function ¢ on I', does there exist an
entire function F such that |f(x)— F(x)|<&(x) for each x in I'?

For n=1, Carleman [3] posed and answered this question affirmatively
when I is the real axis and, more generally, his proof applied if I' is merely
assumed to be locally rectifiable. Subsequently, Keldych and Lavrentieff [4]
characterized the plane continua E on which every continuous function can be
asymptotically approximated. They showed, in particular, that approximation
is always possible on the plane curves I' defined above.

For n>1, a new phenomenon intervenes. Clearly, if asymptotic approxi-
mation is to hold on I, then for each compact subarc y of I, every continuous
function on y must admit uniform approximation by polynomials. This
necessary condition will not always hold, for Wermer [8] has given an example
of an arcy in C* (and Rudin [6] in C?) on which polynomial approximation
fails. We conjecture that this necessary condition is also sufficient.

The Wermer—Rudin arcs are highly non-smooth. In fact, work of Wermer
[9], Bishop [2] and Stolzenberg [7] shows that polynomial approximation is
always possible on a smooth arc. This has led E. L. Stout to restrict the
question to the setting of smooth I'. He and, independently, B. Aupetit have
obtained special cases of our principal resuit.

THEOREM. For a smooth properly imbedded image I, in C", of the real axis,
asymptotic approximation is always possible; i.e., given a continuous function f on
I and a positive continuous function ¢ on I there exists an entire function F on C"
such that |f(x)— F(x)| <¢&(x) for each x in .

The proof of the Theorem depends heavily on the Wermer—Bishop-
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Stolzenberg theory of analytic structure in certain polynomially convex hulls.
The formulation of Stolzenberg [7], where the local aspect of the theory is
exposed, is most suitable for our purposes. For the reader’s convenience, we
shall recall the statement of Stolzenberg’s theorem below. In order to apply the
results of [7] we shall take “smooth” in the theorem to mean “piecewise €'”.
However we have not attempted to state the most general result. For example,
because the methods of [1] allow one to replace “¢*” in Stolzenberg’s theorem
by “rectifiable”, we could replace “smooth” in the present Theorem by “locally
rectifiable”. Similarly it is clear from the proof that I" could be allowed to have
certain self-intersections or that I" could be taken to be a countably infinite
locally finite family of disjoint smooth unbounded Jordan arcs.

Of course, one can also try to approximate functions on real submanifolds of
C" of higher dimension. Nunemacher [5] has shown that continuous functions
on a ¢' totally real submanifold M of C" can be asymptotically approximated
by functions holomorphic in a neighborhood of M. It appears to be difficult to
get approximation by global (i.e., entire) functions in this setting. However
Stout has obtained some results in this direction.

To fix some notation, let X be a compact subset of C". Then C(X) will
denote the Banach algebra of all continuous complex-valued functions on X
with the supremum norm; its subalgebras P(X) and R(X) are the closures of
the polynomials and the rational functions holomorphic on X, respectively.
The polynomially convex hull X of X is

{z€ C": |h(z)|<|hly for every polynomial h} .

The complement of a set B in a set 4 will be denoted by A\ B. The ball B(r) is
{ze C": |z| <r} where we are using the standard Euclidean norm. Without
further qualification, an “arc” will be a homeomorphic image of the closed unit
interval. We can now state Stolzenberg’s theorem [7].

THEOREM. Let X be polynomially convex and let K be a finite union of compact
smooth (€¢') curves in C".

A (KUXYN(KUX)isa (possibly-empty) one-dimensional analytic subset of
C'\NKUX. »

B. If g € C(KU X) and the restriction g| X € P(X), then g € R(KU X).

C. If the map H' (KU X,Z) —» H'(X, Z) induced by X< K UX is injective,
then KU X is polynomially convex.

The hypothesis of part C involving Cech cohomology groups is equivalent to
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the following: If a continuous function on K U X is nowhere zero and has a
continuous logarithm on X, then it has a continuous logarithm on K U X. We
shall summarize the conclusion of part A by saying, for a point
pe (KUX) \ (KUX), that “(KU X) is analytic at p”. ‘

Without loss of generality, we may assume that I" contains the origin. Define
7(r) to be the subarc of I'N B(r) which contains 0; then dy(r) consists of two
points on dB(r). Let o(r) be the set

I'\ [the two unbounded components of I'\ B(r)];

7(r) and &(r) are bounded open arcs in C".
Define a sequence {r,}3° inductively as follows: Put ro=1. Given r,_, for k
>0, choose r,>r,_,+1 such that

)] o(re-1) € B(ry), and
(2) (B("k~1) u 5'("k~1))A N (@ry\ ) = & .

Note that (1) is possible because o(r) is bounded and (2) because G(r)\ y(r)
— 00 since y(r) — I' as r — 0o. Now write y, for y(r), o, for a(r,) and B, for
B(ry).

Next define two sets for each k=>2:

Xy = (Bk—zufk—l)A and Yo = X, U7,

The crux of our proof lies in the description of X, which is given in Lemma 1a.

LEmMA 1. (a) X, =(B,_,U6,_,) Uty where 7, is ,_,\ 0, _,.
(b) Y,=X, U, U B, where «, and B, are smooth disjoint arcs each intersecting
X, in a single point.

Proor. (a) Let T, be the set on the right hand side of the equality asserted in
(a). Clearly, we have T, < X, < T, (since X, = X,; the second inclusion is in fact
equality). Thus it suffices to show that T, is polynomially convex. Arguing by
contradiction, we suppose otherwise. By Stolzenberg’s theorem A4, T, \ T, is a
1-dimensional analytic subvariety of C"\ T,. Let V be a non-empty irreducible
analytic component of T, \ T,.

We claim that VN (B,_,Uf,_,) is an analytic subvariety of '
C"\ (B~ U, -y). From the definition of T,, it suffices to verify this locally at
a point x € ¥NQ where

Q0 = (B, Uak—z)ﬂ\ (B-2Udy—,) .

By Stolzenberg’s theorem A, both X, and Q are analytic near x, where “near x”
refers to germs of sets at x, here and below. Furthermore, near x, VgX o
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VS X\ Qand Q< X,. It follows that near x, ¥ is Jjust a union of some of the
local analytic components of X, at x; in fact, near x, V=VU{x}.
Put

W=V\ (Bk—Z Ui-1) -
Then W is an irreducible subvariety of C"\ (By-;U7,_,) and moreover,
WN\W < B,_,UG._,Ur,.

Thus W< (B,_,Ué,_, U 1) by the maximum -principle. Fix a point
p € V= W.Since p ¢ T,, we have p ¢ (By-,Ué,_,) and therefore there exists a
polynomial  such that h(p)=0 and Reh<0 on (By-,Ué,_,). By the open
mapping theorem, either h(W) is an open neighborhood of 0 or h=0 on W. In
the latter case, k=0 on W and so W\ W is disjoint from B,_,Ud,_,. This
implies that W1, a contradiction, because, being the disjoint union of two
smooth arcs, 7, is polynomially convex. Hence, the former case holds. As h(t,)
is nowhere dense in the plane, there is a small complex number « € h(W) such
that h+o on 1,. Now put g=h—a. If o is sufficiently small, we conclude that (i)
Reg<0on (B,_,Ud,_,), (i) g(q)=0 for some q € W and (iii) g0 on T,

Now (i) implies that the polynomial g has a continuous logarithm on
(By-,Uéd,_,) and so, by restriction, on B, _, U 6, _,. Continuing (by iii) this
logarithm from B, _, UG, _, along the two arcs which comprise t,, we conclude
that g has a continuous logarithm on B,_,UG,_, U7, But this last set
contains W\ W. Applying the argument principle to g on W gives a
contradiction to (ii). (Cf. the proof of part C of [7D

(b) We can write 7, \ y,_, as a disjoint union of two arcs o, and f,, each
joining 0B, _, to dB,. We claim that X, Na, is the one point set do, N B, _,
and likewise for B,. In fact,

4 N By & MN\V=1) N By S 6oy \ ey
and by part (a), we have
Xk = (Bk—z U 6&—-2)A U V-1 -

Intersecting and using (2) we conclude that X ,‘ﬂa;ﬂBk_l is empty. Hence
X, No, =B, _, and so

X Noy = y—y Noy = 0, N 0B, _, ,
as asserted.
LEMMA 2. Let X be a compact polynomially convex subset of C" and let a and B

be disjoint smooth arcs in C" such that « N X and BN X each contain a single
point.
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(@) Then X UaU B is polynomially convex. .

(b) Ifge C(XUaUPB)and g=0o0n X, then g € P(X Ua U B). That is, given ¢
>0, there exists a polynomial p such that |g—p|<eon X U a U B; moreover we
can choose p such that g=p at the two point set (00U dp)\ X.

Proor. (a) By the geometric hypotheses on X, a and B, every continuous
function on X UaU B which is nowhere zero and which has a continuous
logarithm on X also has a continuous logarithm on X Ua U f. This is exactly
the condition of Theorem C of Stolzenberg which asserts that X UaUB is
polynomially convex.

(b) By Theorem B of Stolzenberg, g € R(X Ua U f). By part (a) and the Oka-
Weil theorem, P(XUaUB)=R(XUaUf). Thus ge P(XUaUP). Now an
approximating polynomial for g can easily be adjusted so as to equal g at the
two required points.

We shall apply Lemma 2b to do polynomial approximation on the sets Y,
=X, Ua, UpB, which, by Lemma 1b, satisfy the hypotheses of Lemma 2. The
rest of the proof of the Theorem is standard and, in fact, essentially, follows the
lines of Carleman’s original argument.

Choose a sequence of positive real numbers {¢,}5 such that

3

& < min{e(z) : ze N B,}

Nn

[l ask:

for each nz1; ¢,=min {n,2""*Y : 1 <k <n} will do. Since C(7,)=P(#,), there
is a polynomial p, such that |f—p,|, <¢, and

) f=p1 =0 on dy,.
Now define g, on Y, by
' {0 X,
82 = -
S=py on Ny =aUB,.

By (4), g, is continuous on Y,. Applying Lemma 2 to g, on Y,, we get a
polynomial p, such that |g,—p,|y,<¢, and g,—p,=0 on (da, UdB,) NIB,.
Proceeding inductively, given polynomials p,,p,,...,p,-; and functions
82,83 - ., 8n~1 With g, € C(Y,) satisfying

@ g =0 on X,
k=1
(b) g = f— 2 p; on o, U By
Sk j=1
©) lgx—nl < & on Y,

d) g-p =0 on (0o, UdB,) N 0B,
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for 2<k<n—1, we define p, and g, satisfying (5), as follows. On Y, define

0 on X,

g" = n—1

f=Y p, ona,UB,.
ji=1

Then (5a), and (5b), hold and g, is continuous because of (5b),-, and (5d)
Now Lemma 2 yields a polynomial p, satisfying (5¢), and (5d),.

We claim that Y2 p, converges uniformly on compact subsets of C" to an
entire function F satisfying |f(x)— F (x)l<e(x) for each x in T.

To see the convergence we note that (5), implies |p,|<e, on X, which
contains B,_,. Thus, if K is compact in C", since KcB,_, for n sufficiently
large, we have |p,| <&, on K for such n. As 2.1’ &, <00, the uniform convergence
on K follows.

Finally, let x € I Choose n to be minimal such that x e Y. Then
X € 7,\ y,-, implies

n—1-

n—1

8a(x) = f(x)— ; Pi(x) .

We have

+3 Il

n+1

n—1
If(x)-F(x) < l(f (x)— ; Pk(X)>—p..(X)

= 18.(¥)=Pu(¥+ Y ()] .
n+1
As x € 7, it follows that x € X, for k2n+1 and so Ipx(x)| <¢g, for k=n+1.
Thus

SOI=FX) < &+ 3 & < 1, < &(x).

n+1
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