THE LEVI PROBLEM IN STEIN SPACES

JOHN ERIK FORNÆSS

1. Introduction.

Let X denote a Stein space and let Ω be an open set in X. Assume that for every $p \in \partial \Omega$ there exists an open neighborhood $U(p)$ such that $\Omega \cap U(p)$ is Stein.

The Levi Problem. Is Ω necessarily Stein?

In case X is a complex manifold this was solved affirmatively by Docquier and Grauert [4], and in case X has at most isolated singularities it was solved affirmatively by Andreotti and Narasimhan [1].

The Union Problem. If $\Omega^\text{open} \subset X^{\text{Stein}}$ and $\Omega_1 \subset \Omega_2 \subset \ldots \subset \bigcup \Omega^\text{open}_n = \Omega$ with each Ω_n Stein, is Ω Stein?

This was proved to be true if $X = \mathbb{C}^4$ by Behnke and Stein [2]. The case when X is a Stein manifold follows from the work of Docquier and Grauert [4] via the embedding of X as a closed complex submanifold of some \mathbb{C}^l, Remmert [13], Bishop [3] and Narasimhan [9].

If one drops the assumption that X is Stein, the result is not true, Fornæss [6].

Suppose next that $\{\Omega_t\}_{t \in \mathbb{R}}$ is a family of Stein open subsets of X and that $\bigcup_{t < r} \Omega_t$ is a union of connected components of Ω_t and that Ω_t is a union of connected components of $\text{int} \cap_{t > s} \Omega_t$ for each $t \in \mathbb{R}$.

The Runge Problem. Is Ω_t Runge in Ω_s whenever $r < s$.

When X is complex manifold this was answered affirmatively by Docquier and Grauert [4].

In this short note we will solve affirmatively the above problems in the Stein space

$$X = Z \times \mathbb{C}, \quad Z = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 ; z_1z_2 = z_3z_4\}.$$

Received April 4, 1978.
The reason that we find the space Z interesting is the following observation by Grauert and Remmert [7]. The map $\Phi: \mathbb{C} \times (\mathbb{C}^2 - \{0\}) \to Z$ by

$$\Phi(t, w, \eta) = (w, tw, \eta, tw)$$

is biholomorphic onto the open set $\Omega = Z - \{z_1 = z_3 = 0\}$. For every $p \in \partial \Omega$, $p \neq 0$, there exists an open neighborhood $U(p)$ in Z such that $U(p)$ is Stein. However Ω is obviously not Stein. This can be compared to the following theorem by Grauert and Remmert [7].

THEOREM. If $\Omega^\text{open} \subset \mathbb{C}^n$ and for every $p \in \partial \Omega$, $p \neq 0$, there exists an open neighborhood $U(p)$ such that $U(p) \cap \Omega$ is Stein, then Ω is Stein, unless $\Omega \cup \{0\}$ is open (in which case $\Omega \cup \{0\}$ is Stein).

A function $f: X \to \mathbb{R} \cup \{-\infty\}$ where X is a (reduced) complex space will be said to be plurisubharmonic if for every $x \in X$ there is an open neighborhood $U(x)$ which can be realized as a closed complex subvariety $Y \subset V^\text{open} \subset \mathbb{C}^n$, $\Phi: U(x) \cong Y$ such that $f \circ \Phi^{-1}$ is the restriction to Y of a plurisubharmonic function on V. The function f is continuous (smooth) and plurisubharmonic if in addition $f \circ \Phi^{-1}$ can be chosen to be continuous (smooth). Also f is said to be (continuous/smooth) strongly plurisubharmonic if $f \circ \Phi^{-1} + \varepsilon \tau$ is (continuous/smooth) plurisubharmonic for all $\varepsilon \geq 0$ sufficiently small whenever $\tau \in C^\infty_0(V)$, $\tau: V \to \mathbb{R}$.

It is a theorem by Richberg [14] that strongly plurisubharmonic functions which are continuous are continuous strongly plurisubharmonic.

The results and proofs in this paper are equally valid in Stein spaces $X' = Z' \times M$ where M is any Stein manifold and

$$Z' = \{(z_1, \ldots, z_n, w_1, \ldots, w_n) \in \mathbb{C}^{2n} : z_iw_j = z_jw_i \text{ for all } i, j\}.$$

2. Preliminary remarks.

We would like here to briefly recall a few results which we will need.

THEOREM 1. (Narasimhan [10, 11]). Let X be a complex space. Then X is Stein if and only if there exists a continuous strongly plurisubharmonic function $\varphi: X \to \mathbb{R}$ such that $X_\alpha = \{x \in X : \varphi(x) < \alpha\}$ is relatively compact in X for all $\alpha \in \mathbb{R}$.

THEOREM 2. (Narasimhan [10, 11]). Let X be a Stein space and let $\varphi: X \to \mathbb{R}$ be a continuous plurisubharmonic function. Then $X_\alpha = \{x \in X : \varphi(x) < \alpha\}$ is Stein and Runge in X for all $\alpha \in \mathbb{R}$.
A particularly useful consequence of the two above theorems is the following well known result:

Corollary 3. If X is a Stein space and $K = \hat{K}$ is a compact set in X, then K has a neighborhood basis of Stein open sets which are Runge in X.

We also need the following theorem due to Richberg [14].

Theorem 4. If φ is a continuous strongly plurisubharmonic function on a countably compact complex manifold M and $\tau : M \to \mathbb{R}^+$ is a strictly positive continuous function, then there exists a smooth strongly plurisubharmonic function φ^* on M such that $\varphi < \varphi^* < \varphi + \tau$. If σ is a continuous nonnegative plurisubharmonic function on a countably compact complex space X, $\sigma \equiv 0$ in a neighborhood of the singular locus of X and there exists a bounded continuous strongly plurisubharmonic function on X, then for every $\varepsilon > 0$ there exists a smooth plurisubharmonic function σ^* on X with $\sigma < \sigma^* < \sigma + \varepsilon$.

Let us consider the Stein space $Z \times \mathbb{C}$ where $Z = \{z \in \mathbb{C}^4 : z_1z_2 = z_3z_4\}$. If $\Omega^{\text{open}} \subset Z \times \mathbb{C}$, we can define a distance function $\delta : \Omega \to \mathbb{R} \cup \{\infty\}$ as follows. For any $\varphi = (p, c) \in \Omega$, we let

$$\delta(\varphi) = \sup \{r : (p, c+z) \in \Omega \text{ for all } z \in \mathbb{C}, |z|<r\}.$$

Proposition 5. The function $-\log \delta : \Omega \to \mathbb{R} \cup \{-\infty\}$ is plurisubharmonic if Ω is Stein, except on those connected components of Ω where $-\log \delta \equiv -\infty$.

Proof. By the theorem of Siu [15] there exists a domain of holomorphy, $\hat{\Omega}$, in \mathbb{C}^4 such that $\hat{\Omega} \cap (Z \times \mathbb{C}) = \Omega$. If we define $\hat{\delta} : \hat{\Omega} \to \mathbb{R} \cup \{\infty\}$ in the same way as δ, we obtain a plurisubharmonic function $-\log \hat{\delta} : \hat{\Omega} \to \mathbb{R} \cup \{-\infty\}$ such that $-\log \hat{\delta} \mid \Omega = -\log \delta$.

3. **Z as a branched Riemann domain.**

In the paper of Andreotti and Narasimhan [1] they make fundamental use of the fact that a pure n-dimensional Stein space X may be realized as a branched Riemann domain over \mathbb{C}^n in many different ways. Although the singular points of X necessarily are branch points, one can always make the branch locus avoid any given regular point.

Let $Z = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 : z_1z_2 = z_3z_4\}$. We consider two holomorphic maps $\Phi_1, \Phi_2 : \mathbb{C}^3 \to Z$, by

$$\Phi_1(t, w, \eta) = (w, t\eta, \eta, tw) \quad \text{and} \quad \Phi_2(t, w, \eta) = (tw, \eta, t\eta, w).$$

The following lemma is easily verified.
Lemma 6. $\Phi_1(t, 0, 0) = \Phi_2(t, 0, 0) = 0$ and if

$$U = \{ (t, w, \eta) \in \mathbb{C}^3 ; \ (w, \eta) \neq (0, 0) \}$$

then $\Phi_i|_U$ is biholomorphic onto the open set $\Phi_i(U)$, $i = 1, 2$. Moreover $Z - (0) = \Phi_1(U) \cup \Phi_2(U)$.

We will now define four holomorphic maps $\pi_i : Z \to \mathbb{C}^3$, $i = 1, 2, 3, 4$. More precisely $\pi_1(z_1, z_2, z_3, z_4) = (z_1, z_2, z_3 + 2z_4)$, $\pi_2(z) = (z_1, z_2, 2z_3 + z_4)$, $\pi_3(z) = (z_1 + 2z_2, z_3, z_4)$ and $\pi_4(x) = (2z_1 + z_3, z_3, z_4)$. Also define the holomorphic functions $f_j : Z \to \mathbb{C}$ by $f_1(z) = z_3 - 2z_4$, $f_2(z) = 2z_3 - z_4$, $f_3(z) = z_1 - 2z_2$ and $f_4(z) = 2z_1 - z_2$.

Lemma 7. The holomorphic map $\pi_j : Z \to \mathbb{C}^3$ makes Z into a doubly sheeted branched covering of \mathbb{C}^3. The set of branch points is precisely $S_j = \{ f_j = 0 \}$. If $p \in S_j - \{ 0 \}$ one can find local holomorphic coordinates $w = (w_1, w_2, w_3, p = 0$ on Z and local holomorphic coordinates $\eta = (\eta_1, \eta_2, \eta_3)$. $\pi_j(p) = 0$ on \mathbb{C}^3 such that

$$\pi_j(w_1, w_2, w_3) = (w_1, w_2, w_3^2) = (\eta_1, \eta_2, \eta_3).$$

The proof of this is a straightforward computation and will be omitted. We should also point out that in the coordinates system of the lemma, f_j/w_3 is a nonzero holomorphic function.

Following the argument of Andreotti and Narasimhan [1] we obtain plurisubharmonic functions on open subsets Ω of $Z \times \mathbb{C}$ which are locally Stein away from $(0) \times \mathbb{C}$. First we define $\tilde{\pi}_j : Z \times \mathbb{C} \to \mathbb{C}^4 = \mathbb{C}^3 \times \mathbb{C}$ by $\tilde{\pi}_j(p, c) = (\pi_j(p), c)$. Clearly this defines $Z \times \mathbb{C}$ as a branched Riemann domain over \mathbb{C}^4 with branch locus $\tilde{S}_j = \{ \tilde{f}_j = 0 \}$ where $\tilde{f}_j(p, c) = f_j(p)$.

For any $j \in \{ 1, 2, 3, 4 \}$, $\tilde{\pi}_j : \Omega - \tilde{S}_j \to \mathbb{C}^4$ realizes this as an unbranched Riemann domain. From the classical theory on the Levi problem one now has that $-\log d_j : \Omega - \tilde{S}_j \to \mathbb{R}$ is continuous and plurisubharmonic. Here $d_j(q)$ is the radius of the largest ball centered at $\tilde{\pi}_j(q)$ onto which $\tilde{\pi}_j$ maps a neighborhood of q biholomorphically. Let us define $\varphi_j : \Omega \to \mathbb{R} \cup \{-\infty\}$ by

$$\hat{\varphi}_j = -\log d_j + 3 \log |\tilde{f}_j| \text{ on } \Omega - \tilde{S}_j, \quad \hat{\varphi}_j \equiv -\infty \text{ on } \Omega \cap \tilde{S}_j.$$

Proposition 8. The function $\varphi_j = \max \{ \hat{\varphi}_j, 0 \}$ is continuous and plurisubharmonic on Ω. Moreover, if $q \in \partial \Omega - \tilde{S}_j$, $\varphi_j(p) \to \infty$ when $p \in \Omega$ and $p \to q$.

Proof. It is clear that if $q \in \partial \Omega - \tilde{S}_j$, then $\varphi_j(p) \to \infty$ when $p \in \Omega$ and $p \to q$. In fact $\varphi_j(p)$ grows like $-\log \text{dist} (p, \partial \Omega)$ measured in any smooth Hermitian metric defined on $Z \times \mathbb{C}$ near q.

Near a point $q \in \Omega \cap \tilde{S}_j$, $q \neq 0$, $-\log d_j$ grows like $2 \log |\tilde{f}_j|$. Hence φ_j is
plurisubharmonic across \tilde{S}_j away from $(0) \times C$. To complete the proof it suffices to show that if \(q = (0, c) \in \Omega \), then $\varphi_j \equiv 0$ in a neighborhood of q, because then φ_j is locally on Ω the restriction to Ω of a plurisubharmonic function defined on an open set in C^4.

Let us consider $j = 1$. Then one computes that the image of the branch locus is

$$\{ \tau = (\tau_1, \tau_2, \tau_3, \tau_4) ; \quad \tau_1 \tau_2 = \tau_3^2/8 \} = S'_1.$$

Moreover $|\tilde{f}_1|^2(\tilde{q}) = |\tau_3^2 - 8\tau_1\tau_2|$ if $\tilde{\pi}_1(\tilde{q}) = \tau$. Hence already $-\log d_1 + 2 \log |\tilde{f}_1|$ approaches $-\infty$ when $\tilde{q} \to q$. The same argument applies to $j = 2, 3, 4$.

We remark that we could have defined $\varphi_j = \max \{-\log d_j + 2 \log |\tilde{f}_j|, 0\}$ without altering the conclusion of Proposition 8.

4. Another distance function.

We have in the preceding sections described two sorts of plurisubharmonic functions on a Stein open set Ω of $Z \times C$. One is the φ_j's which blow up at nonsingular boundary points and the other measures boundary distance in the C-direction. In this section we want to construct plurisubharmonic functions which blow up the Z-direction when we approach a point $(0, c) \in \partial \Omega$.

Let us first define a holomorphic map $\Gamma : C^4 \to Z$ by

$$\Gamma(w) = (w_1w_2, w_3w_4, w_1w_3, w_2w_4).$$

Lemma 9. The holomorphic map $\Gamma : C^4 \to Z$ is onto. Furthermore

$$\Gamma^{-1}(0) = \{w_1 = w_4 = 0\} \cup \{w_2 = w_3 = 0\}$$

while for every $w \in C^4 \setminus \Gamma^{-1}(0)$, we have

$$\Gamma^{-1}(\Gamma(w)) = \{(w_1\tau, w_2/\tau, w_3/\tau, w_4\tau) ; \quad \tau \in C \setminus \{0\}\}. $$

The proof is straightforward and may be omitted. Let us now consider the map $\tilde{\Gamma} : C^5 \to Z \times C$ by $\tilde{\Gamma}(p, c) = (\Gamma(p), c)$. For any open set $\Omega \subset Z \times C$ we can define the distance functions $A_1, A_2 : \tilde{\Omega} = \tilde{\Gamma}^{-1}(\Omega) \to R \cup \{\infty\}$ as follows:

Let

$$A_1(w, c) = \sup \{r ; \quad (w_1 + \tau_1, w_2, w_3, w_4 + \tau_2, c) \in \tilde{\Omega} \quad \text{for all } (\tau_1, \tau_2) \in C^2, |\tau_1|^2 + |\tau_2|^2 < r^2 \}$$

and let

$$A_2(w, c) = \sup \{r ; \quad (w_1, w_2 + \tau_1, w_3 + \tau_2, w_4, c) \in \tilde{\Omega} \quad \text{for all } (\tau_1, \tau_2) \in C^2, |\tau_1|^2 + |\tau_2|^2 < r^2 \}. $$
Lemma 10. $A_1 \cdot A_2$ is constant on each fibre of $\hat{\Gamma}$. Moreover, if $\hat{\Gamma}(q) = (p, c)$ and if $(0, c) \notin \Omega$, then $A_1 \cdot A_2(q) \leq 2\|p\|.$

Proof. We easily check that $A_1(w_1 \tau, w_2/\tau, w_3/\tau, w_4 \tau, c) = |\tau|A_1(w, c)$ and

$$A_2(w_1 \tau, w_2/\tau, w_3/\tau, w_4 \tau, c) = \frac{1}{|\tau|} A_2(w, c)$$

from which the first statement follows.

Next assume that $q = (w, c) \in \hat{\Omega}$ and that $(0, c) \notin \Omega$. Let $(z, c) = \hat{\Gamma}(w, c)$, and assume $|z_1| = \max_{j=1,\ldots,4} \{|z_j|\}$. The argument is similar for the other possibilities. By the first statement, we may suppose that we have chosen $w_1 = \sqrt{|z_1|}$. Thus $w_2 = \sqrt{|z_1|}, w_3 = z_3/\sqrt{|z_1|}$ and $w_4 = z_4/\sqrt{|z_1|}$ as one deduces from the definition of $\hat{\Gamma}$. In particular, this implies that $|w_3|, |w_4| \leq |w_1| = |w_2| = \sqrt{|z_1|}$. Since $\hat{\Gamma}^{-1}(0, c) \subset \mathbb{C}^3 - \hat{\Omega}$, one obtains that

$$A_1(w, c) \leq (|w_1|^2 + |w_4|^2)^{1/2} \leq \sqrt{2}\sqrt{|z_1|}$$

and similarly $A_2(w, c) \leq \sqrt{2}\sqrt{|z_1|}$. Hence $A_1 \cdot A_2(w, c) \leq 2|z_1| \leq 2\|z\|$ as desired.

Definition 11. Assume $\Omega \subset \mathbb{Z} \times \mathbb{C}$ is an open subset. Then $\Delta(q): \Omega \to \mathbb{R} \cup \{\infty\}$ is defined as $\Delta(q) = A_1(q) \cdot A_2(q)$ for any $q \in \hat{\Gamma}^{-1}(q)$.

Lemma 12. Assume $\Omega \subset \mathbb{Z} \times \mathbb{C}$ is Stein or an increasing union of Stein open sets or is locally Stein. Then $\Delta^* = \max \{-\log \Delta, 0\}: \Omega \to \mathbb{R}$ is plurisubharmonic. Moreover $\Delta^* \equiv 0$ in an open neighborhood of $(0, c)$ if $(0, c) \in \Omega$. Also if $(0, c) \notin \Omega$, $\Delta^*(p, c) \geq -\log \Delta \geq -\log \|p\| - \log 2$ whenever $(p, c) \in \Omega$.

Proof. The set $\hat{\Omega} = \hat{\Gamma}^{-1}(\Omega)$ is a domain of holomorphy. This implies that $-\log \Delta_1$ and $-\log \Delta_2$ are plurisubharmonic on $\hat{\Omega}$. Therefore $-\log \Delta_1 \Delta_2$ is also plurisubharmonic. Clearly $-\log \Delta_1 \Delta_2 \equiv -\infty$ on $\hat{\Gamma}^{-1}(0, c)$ if $(0, c) \in \Omega$. The Lemma now follows from Lemma 10 and the observation that for every $(z^0, c) \in (\mathbb{Z} - (0)) \times \mathbb{C}$ there exists a holomorphic map T defined in an open neighborhood of (z^0, c) in $\mathbb{Z} \times \mathbb{C}$ to \mathbb{C}^3 such that $\hat{\Gamma} \circ T = \text{Id}$. For example, if $z^0_4 \neq 0$, we can define

$$T(z, c) = (1, z_1, z_3, z_4/z_1, c).$$

Lemma 13. If $\Omega \subset \mathbb{Z} \times \mathbb{C}$ is locally Stein or an increasing union of Stein open sets and if $\partial \Omega$ is smooth away from $0 \times \mathbb{C}$, then Δ^* is continuous.
This is proved using the result by Kerzman [8] that smoothly bounded domains of holomorphy are taut. Let us just point out that if \((w^0, c) \in \mathbb{C}^5, \tilde{F}(w^0, c) = (z^0, c) \neq (0, c)\), and if say

\[A_1(w^0, c) = \sqrt{w_1^0 \bar{w}_1^0 + w_4^0 \bar{w}_4^0} = \delta, \]

then we can show that \(A_1\) is upper semicontinuous at \((w^0, c)\) by contradiction as follows. Assume for some \(\delta' > 0\) that there exists a sequence \(\{(w^n, c_n)\}_{n=1}^{\infty} \in \tilde{F}^{-1}(\Omega) = \tilde{\Omega}\) such that \((w^n, c_n) \to (w^0, c)\) and

\[\{(w_1, w_2^0, w_3^0, w_4, c_n) ; \sqrt{|w_1 - w_1^n|^2 + |w_4 - w_4^n|^2} < \delta + \delta'\} \]

is contained in \(\tilde{\Omega}\) for all \(n\). By tautness away from \(\tilde{F}^{-1}(0 \times \mathbb{C})\) it follows that \(\tilde{\Omega}\) contains

\[\{(w_1, w_2^0, w_3^0, w_4, c) ; \sqrt{|w_1 - w_1^0|^2 + |w_4 - w_4^0|^2} < \delta + \delta' \text{ and } (w_1, w_4) \neq (0, 0)\} \]

Since \(\tilde{\Omega}\) is a domain of holomorphy, \((0, w_2^0, w_3^0, 0, c) \in \tilde{\Omega}\) as well and hence \(A_1(w^0, c) \geq \delta + \delta'\) which gives a contradiction.

5. The Levi problem.

Assume \(\Omega\) is an open subset of \(X = Z \times \mathbb{C}\), \(Z = \{z \in \mathbb{C}^4 ; z_1 z_2 = z_3 z_4\}\).

Theorem 14. If \(\Omega\) is locally Stein, i.e., for every point \(p \in \partial \Omega\) there is an open neighborhood \(U(p)\) such that \(U(p) \cap \Omega\) is Stein, then \(\Omega\) is Stein.

Proof. The function \(\|z\|^2 + c\bar{z}, z \in Z, c \in \mathbb{C}\) is a continuous plurisubharmonic function on \(X\). Hence it follows from Theorem 2 that we may assume that \(\Omega \subset \subset Z \times \mathbb{C}\). The maps \(\pi_j : \Omega - \tilde{S}_j \to \mathbb{C}^4\) realize \(\Omega - \tilde{S}_j\) as a locally Stein unbranched Riemann domain over \(\mathbb{C}^4, j = 1, 2, 3, 4\). By Okà's [12] solution of the Levi Problem it follows that \(\Omega - \tilde{S}_j\) is Stein. Therefore the functions \(\varphi_j\) constructed in Proposition 8 are continuous plurisubharmonic functions on \(\Omega\) which are identically zero in a neighborhood of \(\Omega \cap \{0 \times \mathbb{C}\}\).

Hence by Theorem 4 there is a smooth plurisubharmonic function \(\varphi : \Omega \to \mathbb{R}\) such that \(|\varphi - \sup \varphi_j| < 1\) on \(\Omega\). In particular \(\varphi(p) \to \infty\) if \(p \in \Omega\) approaches any point \(q \in \partial \Omega - (0 \times \mathbb{C})\).

This implies, by Sard's theorem, that there exists arbitrarily large \(\alpha \in \mathbb{R}\) such that \(\Omega_\alpha = \{\varphi < \alpha\}\) has smooth boundary away from \((0) \times \mathbb{C}\).

By Theorem 2 it suffices to prove that any such \(\Omega_\alpha\) is Stein. So we fix an \(\Omega_\alpha\) with the above boundary property in the rest of the proof.

From Lemma 13, applied to \(\Omega_\alpha\), it follows that \(A^*\) is a continuous
nonnegative plurisubharmonic function on Ω_z which is identically zero in an open set containing $\Omega_z \cap (0 \times C)$. Hence using Theorem 4 again, we find a smooth plurisubharmonic function $\hat{A} : \Omega_z \to R$ such that $|A - A^*| < 1$ on Ω_z.

Let $\Omega^{(\beta)} = \{ q \in \Omega_z ; \hat{A}(q) < \beta \}$ for $\beta \in R$. From Sard's theorem it follows that $\partial \Omega^{(\beta)}$ is smooth away from $\partial \Omega_z$ and $\Omega_z \cap (0 \times C)$ for arbitrarily large β. We fix such an $\Omega^{(\beta)}$ in the rest of the proof and observe that by Theorem 2 it suffices to show that $\Omega^{(\beta)}$ is Stein.

We will construct a continuous strongly plurisubharmonic exhaustion function on $\Omega^{(\beta)}$. Since, if $\varphi_j : \Omega^{(\beta)} \to R$ is as in Proposition 8, max$_{j=1,2,3,4} \{ \varphi_j \} + \|z\|^2 + c\bar{c}$ is a nonnegative strongly plurisubharmonic function which blows up at every boundary point of $\Omega^{(\beta)}$, except along $(0) \times C$, it suffices to find a continuous nonnegative plurisubharmonic function on $\Omega^{(\beta)}$ which blows up at every boundary point of $\Omega^{(\beta)}$ on $(0) \times C$. In fact, we will prove that max $\{ -\log \delta, \gamma \} = \delta^*$ is such a function if δ is as in Proposition 5, and if γ is sufficiently large.

The local Stein-ness of $\Omega^{(\beta)}$ follows from Theorem 2 and implies via Proposition 5 that δ^* is plurisubharmonic if γ is sufficiently large. It remains to prove that δ is continuous and that $\delta \to 0$ when we approach $\partial \Omega^{(\beta)} \cap (0 \times C)$.

Let $U = \Omega^{(\beta)} \cap (0 \times C)$ and consider a point $(0, c) \notin U$. First of all, we observe that $(0, c) \notin \Omega_z$ since we may assume $\beta >> 1$. If $(p, c) \in \Omega^{(\beta)}$, then $\hat{A} (p, c) < \beta$ and hence $A^*(p, c) < \beta + 1$. From Lemma 12 it now follows that $-\log \|p\| - \log 2 < \beta + 1$, and so $\|p\| > e^{-\beta - 2}$. Therefore, if $(p, c) \in \Omega^{(\beta)}$ and $\|p\| < e^{-\beta - 2}$, we must necessarily have $(0, c) \in U$. This implies that $\delta \to 0$ when we approach $\partial \Omega^{(\beta)} \cap (0 \times C)$. Also, this implies that δ is continuous at every point in U.

Fix a point $(p, c) \in \Omega^{(\beta)}$, $p \neq 0$. We will show that δ is continuous at this point. Since $\Omega^{(\beta)}$ is open, δ is lower semicontinuous. Assume δ is not upper semicontinuous. Let (p, c') be a point on $\partial \Omega^{(\beta)}$ with $|c' - c| = \delta(p, c)$. There exists an $\varepsilon > 0$ and a sequence $\{p^n\}_{n=1}^\infty$ such that $p^n \to p$ and

$$A^n = \{ (p^n, c'') ; |c'' - c| < \delta(p^n, c) + \varepsilon \} \subset \Omega^{(\beta)}$$

for all n. Let $A = \{ (p, c') ; |c' - c| < \delta(p, c) + \varepsilon \}$, and observe that since $A^n \subset \Omega_z$ and Ω_z is taut at smooth boundary points, Kerzman [8], it follows that $A \subset \Omega_z$. This implies that $(p, c') \in \partial \Omega^{(\beta)} \cap \Omega_z$, which contradicts the same result of Kerzman since $\partial \Omega^{(\beta)}$ is smooth away from $\partial \Omega_z$ and $(0) \times C$. Hence δ is upper semicontinuous at (p, c) as well.

6. The union problem.

Let $\{\Omega_z\}$ be a sequence of Stein open subsets of

$$X = Z \times C, \quad Z = \{ z \in C^4 ; z_1 z_2 = z_3 z_4 \}.$$
THEOREM 15. If $\Omega_1 \subset \Omega_2 \subset \ldots$ and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$, then Ω is Stein.

We will first prove a standard Lemma which reduces the proof to an estimate of the hulls of compact subsets of Ω.

LEMMA 16. If for every compact set $K \subset \Omega$ there exists a compact set $F \subset \Omega$ such that $\hat{K}_{\Omega_n} \subset F$ for all $\Omega_n \ni K$, then Ω is Stein.

PROOF OF THE LEMMA. Choose compact sets $\{K_n\}_{n=1}^{\infty}$ such that $K_n \subset \text{int} K_{n+1}$ for all n and $\Omega = \bigcup K_n$. Let $\{F_n\}_{n=1}^{\infty}$ be the corresponding compact sets given by the hypothesis of the Lemma. We may assume that $F_n \subset F_{n+1}$ for all n. To show that Ω is Stein, it suffices to prove that for every sequence $\{p_n\} \subset \Omega$ without cluster point in Ω there exists a holomorphic function $f: \Omega \to \mathbb{C}$ such that $\sup_n |f(p_n)| = \infty$.

Taking suitable subsequences, we may assume that $p_n \in K_{n+1} \subset F_{n+1} \subset \Omega_n$ and that $p_n \notin F_n$. Choose inductively a sequence $\{f_n\}$ of holomorphic functions, $f_n: \Omega_n \to \mathbb{C}$ with the property that

(i) $|f_{n+1} - f_n| < 1/2^n$ on K_{n+1}
(ii) $f_n(p_k) = k$, $k = 1, \ldots, n$.

This clearly is possible. If $f = \lim_{n \to \infty} f_n$, then f has the desired properties.

PROOF OF THE THEOREM. Let us fix a compact set $K \subset \Omega$ and show that there exists a compact set $F \subset \Omega$ such that $\hat{K}_n := \hat{K}_{\Omega_n} \subset F$ for all n. By Lemma 16 this will complete the proof.

Let $\varphi = \max_{j=1,2,3,4} \varphi_j$ be the function constructed in Proposition 8. Since the Union Problem has been solved on unbranched Riemann domains, the function φ is plurisubharmonic on Ω.

By Theorem 2 we may assume that Ω is bounded. Using Theorem 4, we find a smooth plurisubharmonic function φ^* on Ω such that $|\varphi - \varphi^*| < 1$.

If $m = \max_K \varphi^*$, it follows that $\hat{K}_n \subset \{q \in \Omega \ ; \ \varphi^*(q) < m + 1\} = \Omega^{m+1}$ for all n such that $\Omega_n \ni K$. This is clear because $\{\varphi^* < \alpha\} \cap \Omega_n$ is Runge in Ω_n for all α by Theorem 2.

We fix an $\alpha > m + 1$ such that $\partial \Omega^\alpha$ is smooth away from $(0) \times \mathbb{C}$. Next we consider the function $\Delta^* : \Omega^\alpha \to \mathbb{R}$ constructed in Lemma 12. By Lemma 13, Δ^* is continuous and plurisubharmonic on Ω^α.

Let m' be the maximum value of Δ^* on K. We fix a $\beta > m'$. Let us denote by Ω_n^β the set $\Omega^\alpha \cap \Omega_n$ and by Ω_n, β the set $\{q \in \Omega_n^\beta : \Delta^* < \beta\}$. Then $\Omega_n, \beta \ni K$ and is Runge in Ω_n. Therefore $\hat{K}_{\Omega_n} = \hat{K}_{\Omega_n, \beta} \subset \Omega_n, \beta$. In particular

$$\hat{K}_n \subset \{q \in \Omega^\alpha : \Delta^* < \beta\} = \Omega^\beta_{\beta} \quad \text{for all large } n.$$
The sets $U = \Omega \cap (0 \times \mathbb{C})$ and $\Omega^x \cap (0 \times \mathbb{C})$ and $\Omega^x_\beta \cap (0 \times \mathbb{C})$ are all equal since φ and A^* are 0 in an open set containing U.

We obtain from Lemma 12 that if $(p, c) \in \Omega^x_\beta$ and $(0, c) \notin U$, then $\|p\| > e^{-\beta - 1}$. Now the sets $\Omega^x_{\beta, n} = \Omega^x_\beta \cap \Omega_n$ are Stein and

$$\Omega^x_{\beta, 1} \subset \Omega^x_{\beta, 2} \subset \ldots \subset \bigcup_{n=1}^{\infty} \Omega^x_{\beta, n} = \Omega^x_\beta.$$

Let n_0 be some index such that $K \subset \Omega^x_{\beta, n_0}$. If $n \geq n_0$ and f is a holomorphic function on $\Omega^x_{\beta, n}$, then $\partial f/\partial c'$ is also holomorphic on $\Omega^x_{\beta, n}$. Moreover, choose a positive number $\varepsilon > 0$ such that $(p, c) \in K$ and $c' \in \mathbb{C}$, $|c'| < \varepsilon$ implies that $(p, c + c') \in \Omega^x_{\beta, n_0}$. It follows that if $(p, c) \in \hat{K}_{\Omega^x_\beta, n}$, $n \geq n_0$ then $(p, c + c') \in \Omega^x_{\beta, n}$ for all $c' \in \mathbb{C}$, $|c'| < \varepsilon$. In particular, if $\|p\| \leq e^{-\beta - 1}$, then $(0, c) \in U$ and $(0, c + c') \in U$ for all $c' \in \mathbb{C}$, $|c'| < \varepsilon$.

In conclusion, we have shown that if K is a compact subset of Ω, then there exists a compact subset F of Ω such that $\hat{K}_{\Omega^x_\beta} \subset F$ whenever $K \subset \Omega_n$. This completes the proof of the Theorem.

As always, let $X = \mathbb{C} \times \mathbb{C}$ with $Z = \{z \in \mathbb{C}^4 : z_1z_2 = z_3z_4\}$. Let $\{\Omega_t\}_{t \in \mathbb{R}}$ be a family of Stein open subsets of X such that Ω_t is a union of connected components of the interior of $\cap_{t > t} \Omega_t$ and such that $\cup_{t < t} \Omega_t$ is a union of connected components of Ω_t for each $t \in \mathbb{R}$.

Theorem 17. If $t_1 < t_2$ are real numbers, then Ω_{t_1} is Runge in Ω_{t_2}.

Proof. We fix a $t \in \mathbb{R}$ and a compact set $K \subset \Omega_t$. To arrive at a contradiction, let us assume that for some $t > t$ the set $\hat{K}_t = \hat{K}_{\Omega_t}$ is not contained in Ω_t. From Corollary 3 it follows that \hat{K}_t is contained in the union $\cup_{\lambda < t} \Omega_{\lambda}$. Hence there exists a number t', $t \leq t' < t$ such that $\hat{K}_t \subset \Omega_{\lambda}$ when $\lambda > t'$ and $\hat{K}_t \subset \Omega_{\lambda}$ when $\lambda < t'$. Let us assume that $\hat{K}_t \cap \partial \Omega_{t'} = \emptyset$. It would then follow from Corollary 3 that $\hat{K}_t \subset \Omega_{t'}$. This implies that $t' > t$ since $\hat{K}_t \subset \Omega_{t'}$. Therefore $\hat{K}_t \subset \cup_{\lambda < t'} \Omega_{\lambda}$, again by Corollary 3. Hence $\hat{K}_t \subset \Omega_{t'}$ for some $\lambda < t'$ contradicting the choice of t'.

We may assume therefore that $\hat{K}_t \cap \partial \Omega_{t'} \neq \emptyset$, and hence we may also assume that $t = t'$.

Summarizing, we assume that $t < t$ and that K is a compact subset of Ω_t such that $\hat{K}_t \cap \partial \Omega_{t'} \neq \emptyset$ while $\hat{K}_t \subset \Omega_{\lambda}$ for all $\lambda > t$. We denote $\hat{K}_t \cap \partial \Omega_{t'}$ by F. Let us first prove that $F \subset (0) \times \mathbb{C}$.

Pick a point $(p, c) \in F$ with $p \neq 0$. There exists a $j \in \{1, 2, 3, 4\}$ such that $(p, c) \notin \hat{S}_j$. Hence the map $\hat{n}_j : \mathbb{C} \times \mathbb{C} \to \mathbb{C}^4$ is regular at (p, c). Let d^*_j be the
distance function on $\Omega_\lambda - \overline{S}_J$ obtained from viewing this set as an unbranched Riemann domain over C^4.

If $\lambda > t$, the functions $\varphi_j^\lambda = \max \{ -\log d_j^\lambda + 3 \log |f_j|, 0 \}$ are continuous and plurisubharmonic on Ω_λ as was established in Proposition 8. Moreover they are uniformly bounded on K. By Corollary 3, $\tilde{K}_\lambda = \tilde{K}_r$ for all $\lambda \in (t, \tau)$. Therefore, by Theorem 2, the functions φ_j^λ are uniformly bounded at (p, c), $\lambda \in (t, \tau)$. Hence (p, c) is an interior point of $\bigcap_{\lambda > t} \Omega_\lambda$. This contradicts that $(p, c) \in \partial \Omega_t$ and that Ω_t consists of connected components of the interior of $\bigcap_{\lambda > t} \Omega_\lambda$. This shows that we must have $F \subset (0) \times C$.

Let now $U = \Omega_t \cap ((0) \times C)$ and let $\epsilon > 0$ be a number such that $(p, c + c') \in \Omega_t$ whenever $(p, c) \in K$ and $|c'| < 4\epsilon$.

We will show that there exists a positive number $\delta > 0$ such that if $(p, c) \in \Omega_t$ and $p \neq 0$ and $\|p\| < \delta$ and moreover $(0, c) \notin U$ or has distance from ∂U, U thought of as an open set in C, less than ϵ, then $(p, c) \notin \tilde{K}_r$.

Let $\varphi_j^\lambda : \Omega_\lambda \to \mathbb{R}$ be the continuous plurisubharmonic function constructed in Proposition 8, $\lambda \in (t, \tau)$. From the inclusions we have the obvious estimate that $\varphi_j^\lambda \leq \varphi_j^\lambda$ on Ω_t.

Using Theorem 4 we find smooth plurisubharmonic functions $\varphi^\lambda : \Omega_\lambda \to \mathbb{R}$ such that

$$\left| \varphi^\lambda - \max_{j=1, \ldots, 4} \{ \varphi_j^\lambda \} \right| < 1 \quad \text{on} \quad \Omega_\lambda.$$

Here we use again the observation that by Theorem 2 we may assume that the sets $\Omega_\lambda \subset \subset X$ for all λ.

We choose a number m such that $\Omega'_\lambda = \{ q \in \Omega_t : \varphi^\lambda(q) < m \}$ has smooth boundary away from $0 \times C$ and such that if $(p, c) \in K$ and $|c'| < 3\epsilon$, then $(p, c + c') \in \Omega'_\lambda$. Next we define Ω'_λ for $\lambda \in (t, \tau)$ as $\{ q \in \Omega_\lambda : \varphi^\lambda(q) < m_\lambda \}$ where $m_\lambda \in (m + 2, m + 3)$ is chosen such that Ω'_λ has smooth boundary away from $\{0\} \times C$. Then each Ω'_λ is Stein and we have the estimates

(i) if $(p, c) \in K$ and $|c'| < 3\epsilon$, then $(p, c + c') \in \Omega'_\lambda$;

(ii) $\tilde{K}_\lambda \subset \subset \Omega'_\lambda$ and

(iii) For any positive number $\eta > 0$ there exists a $\lambda(\eta) > t$ such that if $\lambda \in (t, \lambda(\eta))$ and $(p, c) \in \partial \Omega_t$, $\|p\| > \eta$, then $(p, c) \notin \Omega'_\lambda$.

In fact (i) follows since $\Omega'_\lambda \supset \Omega'_\tau$, (ii) follows from Corollary 3 and (iii) follows since $(p, c) \in \partial \Omega_t$ cannot be interior points of $\bigcap_{\lambda > t} \Omega_\lambda$.

Now let $A^\lambda : \Omega'_\lambda \to \mathbb{R}$ be the functions constructed in Lemma 12. From Lemma 13 it follows that A^λ is continuous and plurisubharmonic. We have the obvious estimate $A^\lambda \geq A^\lambda$ on Ω'_λ for all $\lambda \in (t, \tau)$.
We choose a $k \in \mathbb{R}$ such that if $(p, c) \in K$ and $|c'|<2\varepsilon$, then $(p, c + c') \in \Omega'_t$ and $A^*_x(p, c) < k$. If we let

$$\Omega'_{\lambda} = \{ q \in \Omega'_x ; \ A^*_x < k \}, \quad \lambda \in [t, \tau),$$

then if $(p, c) \in K$ and $|c'|<2\varepsilon$, then $(p, c + c') \in \Omega'_{\lambda}$. Furthermore, by Corollary 3, $\hat{K}_r \subset \Omega'_{\lambda}$ for all $\lambda \in (t, \tau)$. We let $\delta = \frac{\lambda}{4}e^{-k}$ and choose a point $(p, c) \in \Omega_t$ with $p \neq 0$ and $\|p\|<\delta$. To arrive at a contradiction, let us assume that $(p, c) \in \hat{K}_r$ and that $(0, c) \notin U$ or has distance from ∂U less than ε. Since each Ω'_x is Stein it follows that if $|c'|<2\varepsilon$, then $(p, c + c') \in \Omega'_{\lambda}$, $\lambda \in (t, \tau)$. Hence we may find a possibly different point $(p, c) \in \Omega_t$ with $p \neq 0$ and $\|p\|<\delta$ such that $(0, c) \notin U$ and $(p, c) \in \Omega'_{\lambda}$ for all $\lambda \in (t, \tau)$. We consider a point $(w^0, c) \in \mathbb{C}^\delta$ such that $\hat{\Gamma}(w^0, c) = (p, c)$ in the notation of section 4. Let Σ_1 be the two dimensional complex plane

$$\Sigma_1 = \{ (w, c) ; \ w_1 = w^0_1, w_4 = w^0_4 \}$$

and similarly let

$$\Sigma_2 = \{ (w, c) ; \ w_2 = w^0_2, w_3 = w^0_3 \}.$$

It is possible to choose w^0 so that $\max|w^0_i|<\sqrt{\delta}$, as is seen from the definition of $\hat{\Gamma}$. Let B_δ be the open ball in Σ_1 centered at (w^0, c) with radius $\sqrt{\frac{\delta}{2}}\sqrt{\delta}$. Then the point $q = (w^0_0, 0, 0, w^0_1, c) \in B_\delta$. We let $\tilde{\Omega}_t$ be the pull back to \mathbb{C}^δ of Ω_t. Since $(0, c) \notin \Omega_t$, it follows that $q \notin \tilde{\Omega}_t$. Since $\tilde{\Omega}_t$ is a domain of holomorphy, it follows that $\tilde{\Omega}_t \cap \Sigma_1$ is also a domain of holomorphy in $\Sigma_1 \cong \mathbb{C}^2$. This implies that there must exist a point $q' = q$ in B_δ such that $q' \in \partial\tilde{\Omega}_t$, and hence $q' = \hat{\Gamma}(q') \in \partial\Omega_t$. Therefore, (iii) gives that $q' \notin \Omega'_x$ for all sufficiently small $\lambda > t$. In particular we get that $q' \notin \hat{\Gamma}^{-1}(\Omega'_x)$ for all such λ. Let A^{*x}_x, A^*_x be the distance functions on $\hat{\Gamma}^{-1}(\Omega'_x)$ used in Lemma 10. We have now the estimate

$$A^*_x(w^0, c) < \sqrt{\frac{2}{\delta}}\sqrt{\delta},$$

and by the same argument applied to Σ_2, $A^*_x(w^0, c) < \sqrt{\frac{2}{\delta}}\sqrt{\delta}$ also. Since

$$A^*_x(p, c) = \max \{ -\log A^*_{x}A'^*_{x}(w^0, c), 0 \}$$

we get

$$A^*_x(p, c) > -\log 2 - \log \delta = \log 2 + k > k.$$

This contradicts that $(p, c) \in \Omega'_x$ because $\Omega'_x = \{ q \in \Omega'_x ; \ A^*_x < k \}$. Let us fix a number $\delta > 0$ such that if $(p, c) \in \Omega_t$, $p \neq 0$ and $\|p\|<\delta$ and moreover $(0, c) \notin U$ or has distance from ∂U less than ε, then $(p, c) \notin \hat{K}_r$. Denote by F_0 the set $\hat{K}_r \cap \partial U$. We know now that if F_0 is empty, then $\hat{K}_r \subset U$ by Corollary 3. So we assume that there exists at least one point $(0, c') \in \hat{K}_r \cap \partial U$. Let H be those points in $U \cap \hat{K}_r$ with distance from ∂U in $[\varepsilon/3, \varepsilon/2]$. Then H is a compact set, and we consider this as a subset of $\mathbb{C} \cong \{0\} \times \mathbb{C}$. Hence c' is in a connected component V of $\mathbb{C} \setminus H$.

Let us first show that $V \supset \Omega_{\lambda}$ if $\lambda > t$ is small enough. The set $\partial V \subset H \subset \Omega_t$, and so there exists a $v > 0$ such that if $(q, c) \in \mathbb{Z}$, $\|q\| \leq v$ and $c \in \partial V$, then $(q, c) \in \Omega_t$. If $V \in \Omega_{\lambda}$, it therefore follows that

$$\{(q, c) ; \|q\| \leq v \text{ and } c \in V\} \subset \Omega_{\lambda}.$$

If this holds for all $\lambda > t$, $(0, c')$ must be an interior point of $\cap_{\lambda > t} \Omega_{\lambda}$ which contradicts that $(p, 0) \in \partial \Omega_t$. Hence there exists a point $(0, c'') \notin \Omega_{\lambda}$ whenever $\lambda > t$ is small enough, $c'' \in V$.

By the well known Runge theorem in one complex variable there exists a rational function $P(c) : \mathbb{C} \to \mathbb{C}$ with poles at c'' only such that $|P(c')| > 1 > \max_{\Omega_t} |P|$. Since $\Omega_\lambda \cap (0 \times \mathbb{C})$ is a closed subvariety of a Stein space, we may find a holomorphic extension $\bar{P} : \Omega_\lambda \to \mathbb{C}$. Since F_0 is compact, we may find a $\lambda_0 > t$ and a finite collection of holomorphic function $\bar{P}_1, \ldots, \bar{P}_l : \Omega_{\lambda_0} \to \mathbb{C}$ such that

$$\max_{j=1, \ldots, l} |\bar{P}_j|(0, c) > 1 \quad \text{for all } c \in F_0$$

and each $|\bar{P}_j| < 1$ on H.

Let W be a Stein open set in Ω_{λ_0} containing \hat{K}_t which is Runge in Ω_{λ_0}. We can by Corollary 3 assume that W is contained in any given neighborhood of \hat{K}_t. In what follows we will assume W is sufficiently small.

Let $\chi : \mathbb{R} \to \mathbb{R}$ be a continuous convex function such that $\chi(x) > 0$ when $x > 0$, $\chi(x) \equiv 0$ when $x \leq 0$. We define a continuous plurisubharmonic function, ϱ, on W by

(i) $\varrho \equiv 0$ for those points in W which lie near points in $\hat{K}_t \cap \Omega_t$ except near those in $(0) \times U$ whose distance to ∂U is less than $\varepsilon/2$.

(ii) $\varrho = \chi \cdot \max_j |\bar{P}_j|$ otherwise.

Then by Theorem 2 the set F_0 must be empty since W is Runge in Ω_{λ_0} and $\varrho | F_0 > 0$ while $\varrho | K \equiv 0$.

8. Some remarks.

We will list a few other problems than the ones mentioned in the introduction, but which are suggested by the preceding proofs.

Problem 1. Assume $\varrho : X \to \mathbb{R}$ is a continuous function on a complex space X such that $\varrho \circ \psi : \Delta \to \mathbb{R}$ is subharmonic whenever $\psi : \Delta \to X$ is a holomorphic map of the open unit disc into X. Is ϱ necessarily plurisubharmonic?

This problem was posed in Narasimhan [10]. Clearly there are other similar problems with other regularity conditions on the functions.
Problem 2. If \(\{ \varphi_n \}_{n=1}^{\infty} : X \to \mathbb{R} \) is a sequence of continuous plurisubharmonic functions on \(X \) converging uniformly to \(\varphi : X \to \mathbb{R} \) on compact subsets of the complex space \(X \). Is \(\varphi \) plurisubharmonic?

This problem was posed in Richberg [14]. Again similar problems arise with other regularity conditions on the functions. Theorem 4 of Richberg suggests the following type of problem:

Problem 3. If \(\varphi : X \to \mathbb{R} \) is a plurisubharmonic function on a complex space \(X \), does there exist a sequence of smooth plurisubharmonic functions \(\{ \varphi_n \} : X \to \mathbb{R} \) such that \(\varphi_n \searrow \varphi \) when \(n \to \infty \).

This is of course true if \(X \) is a Stein manifold.

Problem 4. Assume \(\varphi : X \to \mathbb{R} \) is a strongly plurisubharmonic function on a complex space \(X \) such that \(\{ \varphi < \alpha \} \subset \subset X \) for all \(\alpha \in \mathbb{R} \). Is \(X \) Stein?

If we assume in addition that \(\varphi \) is continuous, this is Theorem 2 by Narasimhan [10]. Problem 4 is still open if \(X \) is a complex manifold. If \(\varphi : X \to \mathbb{R} \) is a plurisubharmonic exhaustion function and there exists a continuous strongly plurisubharmonic function \(\psi : X \to \mathbb{R} \), then \(X \) is Stein if it is a complex manifold, Richberg [14], Suzuki [16] and Elenewaig [5].

Problem 5. Assume \(\varphi : X \to \mathbb{R} \) is a plurisubharmonic function on a Stein space \(X \). Is \(X_\alpha = \{ \varphi < \alpha \} \) Runge in \(X \) and/or Stein for any \(\alpha \in \mathbb{R} \)?

This is true if \(X \) is a Stein manifold. Also if \(\varphi \) is continuous it reduces via Richberg's theorem to Theorem 2 by Narasimhan [10].

References

8. N. Kerzman, Personal communication.