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A REMARK ON
SINGULAR SUPPORTS OF CONVOLUTIONS

LARS HORMANDER

For distributions f,g € &' (R") it was proved in [2] that

(1 chsingsupp (¢f) * (Yg) < chsingsupp f*g

when ¢ and  are polynomials. Here ch denotes convex hull. The question of
the validity of (1) for all ¢, € C* was also raised in [2], and in [1] an
extension to entire analytic functions ¢,y of exponential type was stated. (Dr.
Dostal has informed the author that the published proof is not correct.) The
purpose of this note is to show that the methods of [3] give fairly complete
information concerning the validity of (1):

THEOREM 1. Let f,g € &'(R") and assume that @,y € C®(R") are real analytic
near singsupp f and sing supp g respectively. Then it follows that (1) is valid.

THEOREM 2. In any Denjoy-Carleman class of C® functions which is strictly
larger than the analytic class it is possible to find a function @ such that for some

/.8 € &', with sing supp f=sing supp g = {0}
singsupp f*g = J, chsingsupp (¢f)*g = {0} .

In the proof we shall use the notations of [3]. In particular, we write

v,(z,8) = (log|f (¢+zlog|E))loglé] .

Recall that every sequence {; — oo in R" has a subsequence for which v,(z,¢;)
converges to a plurisubharmonic function (possibly — co) having a supporting
function H in the sense of [3, section 3]. The set of such supporting functions is

denoted by A (f). We write 5 (f, g) for the set of pairs of supporting functions
corresponding to simultaneous limits of v, and v,.

THEOREM 3. Let. fe & and assume that ¢ € C® is real analytic near
singsupp f. Then (hy,h) € #(¢f, f) implies h, <h.
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PROOF THAT THEOREM 3 IMPLIES THEOREM 1. By Theorem 5.1 and Lemma
5.2 in [3] the supporting function of the left hand side of (1) is the supremum of
all sums h, +h, with (hy, h,) € #(of, Yg). By Lemma 5.1 in [3] one can find
hs,hy so that (hy,hy, hs,h,) € H(of,¥g, f.8), thus (hy, hy)e # (¢f.f) and
(hy, hy) € # (Yg,g). Hence Theorem 3 gives hy<h; and h,<h, so h;+h,<
hs+h, € #(f*g), by Theorem 5.1 in [3], so Lemma 5.2 in [3] proves The-
orem 1.

PrOOF OF THEOREM 3. Let ¢ ; be a sequence such that vr(2,¢;) and v, ,(z, & P
converge to plurisubharmonic functions with supporting functions h and h,
respectively. Choose C so that the limit of vp(z,¢;) is £C—1+h(Imz). For
every R>0 it follows than that for j> J(R)

vy(z,¢) £ C+h(Imz), |z|<R,

that is,

®) Ifz+E)l < 1€)CMM™a, |z < Rlogle)) .
In addition

3) If@I £ Ci(1+]z)C2SMme, 2 e,

for some positive constants C 1» €5, C5. It is no restriction to assume that Qis
analytic in a neighborhood of supp f, for f may be replaced by xf where y € CY
is equal to 1 near sing supp fand ¢ is analytic near supp y. We can then use [4,
Proposition 2.4] to choose a sequence of functions ¢, € C3 equal to' ¢ near
suppf so that for every k

4) 10 = C, 16O < C M (k/(k+E)),  EeR™.
If F=¢f then
F@g+2) = 2m Ji(é,-+z—0)¢k(0)de,

and we shall estimate this when |z| <yR log|¢ ;| where y € (0,1/2) will be chosen
later on. By (2) the integral over the set where 10| < (R/2)1og |&;l can be
estimated by

(5) |éj|C+ 1eh(lm )

and the remaining part of the integral can be estimated by
. C,,Cyllmz| (1416))2|9, (6)| d6 .
Ci(L+1¢)1+12)2e I19|>R/2log|£,| k

If a=Ce where C is the constant in (4), we have for large k

j (1410)%|$,(0)|d8 < C'C¥ak)C2*m"a~% < C"e *kCatn
16]> ka
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We choose k equal to the integral part of (R/2a)log|é ;| and obtain
ek < eléjI—Rlza .

Without restriction we may assume that h>0. If y<1/2aC; and C,>max
(C+1,C;,+1) we then obtain for large j

) IF(&;+2) < 1€)|%eMma, |z <yRlog|¢)) .
This implies that h; £h which completes the proof of Theorem 3.

Before passing to the proof of Theorem 2 we recall the basic definitions
involved. By a Denjoy-Carleman class CM where M =(My,M,,...) is an
increasing logarithmically convex sequence with My=M,=1 we mean the

space of C™ functions ¢ such that for every compact set K there is a constant
Ck such that for all multiindices a

|DJ(P(X)| é C}%I+1M|a|, xeK.

We assume M, 2 k! so that CM contains the real analytic class. Set
M() = ) /M,
0
which is then convergent. It is obvious that for all «

ID*p| = 2m)~"M, JI(@(&)IM(IéDdi

so CM contains the Banach space B of all ¢ € &' with ¢ € L! and the norm

lellp = Qm)~" JI@(C)IM(Iél)dC

finite. It is well known that CM is the analytic class if and only if
e < CM(®)

for some ¢>0 and C. If this is not the case we therefore have

lim M(t)e™" = 0

t—= 00

for every positive integer j. Hence we can choose a sequence a; — 00,
increasing as rapidly as we please, so that

(6) iM(a)) < exp(a;j) .

Choose a sequence ¢; € R” with

log|¢;| = a;fj .



A REMARK ON SINGULAR SUPPORTS OF CONVOLUTIONS 53
If a; increases sufficiently rapidly then the .balls
{EeR"; [E-¢)<ay
are disjoint and a;/|¢;] — 0. Set
E={&; 1€-¢lzay2 for all j} .
Then we have
I€=¢l 2 ay/2 = (j/2)loglé), €K,

so it follows from [3, Theorem 5.2] that we can find fe & with singsupp f
={0} so that

vp(z; &) > —oo when E3 & - o0

but v,(z; £;) does not converge to —oo. Choose n; € E with [n;—¢|=a;

PrOPOSITION 4. If M is not the analytic class and f is chosen as just described
then v,,(z,n;) does not converge to —oo for all ¢ € B.

Proor. If v, ,(z,n;) converges to — oo then
sup In N (ef) ()
is finite for every N, and if this is true for every ¢ € B, then
sup InNl(ef) ()l < Cyllols

by the closed graph theorem. Thus

Iml”

J é)(é)f‘(n,-é)df’ < Cy jlcﬁ(é)lM(lél)dé

which means that
(M N Sl;plf(nj—é)l/M(Iél) s Cy.
Now there is a subsequence ¢; such that

vy (Z, éjk)

converges to a plurisubharmonic function which is not — oo identically and
therefore constant since the supporting function is 0. (See [3, Lemma 3.6].)
Hence

vy(z.8) = €
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in Lj,.(C") and also in LL (R"). It follows that we can find 6; € R" so that for
large k

Igj."'ljJ < a;, If(gj,,)l > Ifj,‘lc—l .
With {=n;, -6, and j=j, in (7) we obtain

IV = CyMay)

"

Choose N so that N+ C>2. Then we obtain
exp (a,/ji) = CyM(a;)

which contradicts (6), so the proof is complete.

PROOF OF THEOREM 2. Assuming that M is not the analytic class we use
Proposition 4 to choose ¢ € By so that v, (z,n ;) does not tend to —oo. Let ¢ i
be a subsequence for which there is a finite limit. With

E, ={¢; [&E~n,l2a;/2 for all k}

we choose according to [3, Theorem 5.2] a distribution g € &’ with sing supp g
={0} so that v,(z,1;) does not tend to — 0o but v(z,&) > — o0 when ¢ - oo
in E,. Then f*g € C* by [3, Lemma 5.2 and Theorem 5.1], for every sequence
— 00 in R" contains a subsequence in E or one in E,, sofor (h.,h,) € 5#(f,g)
we always have h, = — 0o or hy= —00. On the other hand, for a subsequence of
n;, we know that both Vor(z,m;) and u,(z, ;) have finite limits, so
(0,0) € o (¢f, ). Hence (¢f) =« g is not in C* so the singular support is {0}.

It is clear that by a slight modification of the preceding construction one can
modify the statement of Theorem 2 so that sing supp f*g and sing supp (¢f ) x g
are two arbitrary convex compact sets.
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