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WHITNEY (b)-REGULARITY IS WEAKER
THAN KUO’S RATIO TEST FOR REAL
ALGEBRAIC STRATIFICATIONS

HANS BRODERSEN and DAVID TROTMAN!

We give examples of real algebraic hypersurfaces such that the full partition
by dimension gives a stratification which is Whitney (b)-regular, but which fails
to satisfy Kuo’s ratio test (r), and hence also fails to satisfy the (w)-regularity of
Verdier. Such a hypersurface can be a C* submanifold, so that the stratification
is C! trivial, showing that (r) and (w) are not invariant under C! changes of
coordinates, although they are C? invariant. We show that (w)-regularity is
characterised by the possibility of extending rugose vector fields defined on
some strata to rugose vector fields tangent to the remaining strata.

1. On regularity.

Let X be a C! submanifold of R", and a subanalytic set (defined in [2]). Let
Y be an analytic submanifold of R" such that 0 € Ye X\ X. Verdier [8]
defines X to be (w)-regular over Y at 0 if,

(w) There is a constant C>0 and a neighborhood U of 0 in R" such that if
xeUNX and y e UNY, then d(T,Y, T,X)=C|x—y|.

Here d(., .) is defined as follows.

DEerFINITION. Let A, B, be vector subspaces of R".
d(A,B) = sup la—mng(a)l ,

ac A

lal=1

where ng is orthogonal projection onto B.

This is not symmetric in A and B. Clearly d(4, B)=0 if and only if ASB.
It is clear from the definition of (w) that it is a C? invariant, or more precisely
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that it is invariant under a C' diffeomorphism with Lipschitz derivative. We
shall see below that it is not a C! invariant.

Kuo’s ratio test.

We suppose that Y is linear (apply a local analytic isomorphism at 0 to R").
Let my denote orthogonal projection onto Y. _

Reformulate (w) by the condition that d (T,Y, T, X)/|x —y| is bounded near 0.
Then in particular d(7T,Y, T, X)/|x — ny(x)| is bounded for x near 0 (recall Y is
linear). Then it is clear that if X is (w)-regular over Y at 0, then (X, Y), satisfies
the ratio test of Kuo [33:

(r) Given any vector v e T,Y,

o) Ixl
x>0 |x =7y (x)|
xeX

Here n, denotes orthogonal projection onto the normal space to X at x, so
that for unit vectors v, |n,(v)] =d({v), T, X). In [3] Kuo proved that (r) implies
Whitney (b)-regularity (defined in [9]) and that (b) implies (r) when Y is 1-
dimensional. In [6] a fairly complicated semialgebraic example was given with
Y 2-dimensional showing that (b) is weaker than (r). We give a simple algebraic
example below.

First observe that if (b) (respectively (w)) holds for a pair of strata (X, Y)at0
in R”, then (b) (respectively (w)) holds for (X x R, Y x R) along O xR in R" x R.
However (r) does not have this property.

ProposiTion 1. Let (X, Y) be a pair of strata in R™ not (w)-regular at O (but
possibly satisfying (r)) and let Y be linear. Then (X xR, Y x R) fails to satisfy (r)
at any point of 0 xR in R" xR.

PrOOF. Let X, Y have dimensions m, p respectively and identify the set of one
dimensional subspaces of T,Y with the Grassmannian Gh.
Define three subsets of R"x R" x G" x G¥ x R:

Vi = {xny(x), T,X) : xe X} x G xR
Vey = {3, T,{v),8) : |x—y|<ed({v), T)}
Vs = R"xR"x {(T,<0)) : d({v), T) = d(T,Y,T)} xR

I

Vy is subanalytic using Verdier [8, Lemma 1.6] (by restrlctmg to a compact
neighbourhood of 0 in R” if necessary), V, is semialgebraic, and V3 is algebraic,
Hence V=V, NV,NV, is a subanalytic set.
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We have that (w) fails for the pair (X, Y) at 0, which is equivalent to the
existence of T € G}, and v € T,Y with ||v| =1 such that

(0,0,7,<{v»,0) e ¥V < R"xR"x G" x G? xR .
By curve selection [2] we can find an analytic arc
a: [0,1] = R"xR"x Go x GY xR ,

such that a(0)= (0,0, 1,<{v),0) and such that «(t) € V if t+0. Write

() = (x, m,(x,), T, X, <0, &)
where v, € T,Y, |lv,| =1 and v, > v as t — 0. Then

vy, T, X)
X, — 7y (x,)]

is unbounded as t tends to 0. We assert that

d({v), T, X) 2 3d(v, T, X)

for ¢ sufficiently small. This is a consequence of the definition of V;, as follows:

Let v=uv,cos @, +u,sin ¢, where |ju,| =1, v, Lu, and ¢, is the positive angle
between v and v,, we can assume 0< ¢, <n/2. Let 7, denote the orthogonal
projection onto T, X. Then

d((0), T X) = [o=m,0) = |(v,~ 7,(0)) 08 @, + (14, — 7, (1)) sin @

2 |vo,—m,(v)| cos ¢, —|u, — m, ()| sin p,
(using the triangle inequality)

2 |v,—m(v)l(cos @, —sin @,)
(By definition of V3, |v,—x,(v)| = |u, — 7, (u,)])

= d({v,;, T, X)(cos ¢,—sin ¢,)

Since ¢, tends to O as ¢ tends to O, it follows that, for ¢ sufficiently small,
d({v), T, X) 2 3d({v), T, X) .

We deduce that d({v), T, X)/|x,— n,(x,)| is also unbounded as ¢ tends to 0. After
reparametrisation we can suppose that

(<), TX)

t™*  for some k=1
Ix, =7, (x)|

In R"x R consider the curve ¢(1)= (x,, t, +t). Using the canonical inclusion T, Y
& To.1h(Y X R), we can consider v as a unit vector of Ty (Y% R). Then
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d({v), Ty, (X x R))-|q(2) — (0, 1)|
la(t)—myxr(g(®)

_ 40, T, X) |(x,, 1)|
Ixt_ny(xt)'

L d@TX)

- Ixt_nY(xt)|

)

which does not tend to zero as t approaches zero since k> 1. Hence the ratio
test (r) fails for the pair (X x R, ¥ x R) at every point (0,t,) of 0 xR in R" xR,
completing the proof of Proposition 1.

ExampLE 1. Let V={y’=z>x>+x%} <R3, and let Y be the z-axis and X =
V-Y.

(z°x*+x%)' is a C" function of x and z, and so V, as the graph of a C! map,
is a C' submanifold of R*. Hence X is (b)-regular over Y. By Theorem 2 of [3]
we deduce that (X, Y) satisfies (r) at 0, since dim Y=1.

Consider the curve p(t)= (t3,i/§~t5, t) from the origin into X. The normal
~ direction to X at (x,y,z) is (3x%z%+5x*: —3(z2x* +x%)%3:2zx%). At p(¢) this
becomes

(8e2: —3-2%3:2¢%)

So
212
AT, TyyX) = =
(68t*+18]/2)
and

dTY,TwX) 2 1
p@-my(p@) £ ¢’

which is unbounded as ¢ approaches zero, so that (w) fails for (X, Y) at 0.
Now let

V= VxR = {y)’=22x3+x°}  R* = {(x,y,2,u)} .

Let
Y= ¥YxR = {y=x=0} cR* and X =V-Y'.

By Proposition 1, (X', Y’) fails to satisfy (r) at any point of 0x R (for example
consider the curve q(f)=(p(t),t) from O into X’). But since V' is a C!
submanifold, (X', Y’) is (b)-regular. :
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Example 1 describes the first example of a pair (X,Y) satisfying (b) but not
(r) where X is the regular part of an algebraic variety and Y the singular locus.
Contrast this with the complex hypersurface case where (b)-regularity, the
ratio test, and (w)-regularity are equivalent. This is a consequence of the
equivalence of (b)-regularity with Teissier’s (c)-cosecance [5] (references for the
implications giving this equivalence may be found in [1]); (c)-cosecance
trivially implies (w)-regularity, and hence also the ratio test. It remains to be
seen whether (b), (r) and (w) are distinct when V is a complex analytic variety
of codimension greater than 1.

ExampLE 2 (from [7]). V={y*=z*x+x3} <R3 Y={z-axis}, X =V \ Y. Here
y is not a C! function of x and z, but V is still a C! submanifold of R3, so that
4
(b) holds for (X,Y). (w) fails along the curve p(t)=(t4,[ﬁ~t3, t2). As with
Example 1 we can apply Proposition 1 to show that (X xR, Y x R) fails to
satisfy (r) on O0x R in R*, but (b) clearly holds.

ExampLE 3 (due to Kuo [4]). V={y*=22x>+x"} <R3, Y the z-axis, X =
V—Y. V is no longer a C' submanifold-for each z, y*=2z2x>+x’ defines a
plane curve of “cusp type” near 0. However (b) does hold and (w) fails. We can
apply Proposition 1 as before.

Examples 1 and 2, and indeed the second discordant horn of [6], show that
(r) and (w) are not invariant under C! diffeomorphisms. So (b) is more natural
in differential topology; it is a C! invariant.

Looking closely at the proofs in [3] we see why it is not surprising that (r) is
strictly stronger than (b) when dim Y=2. It is proved in [3] that (b) is
equivalent to the conjunction of (a) and (r') defined as follows.

(r') If p(t), t € [0,1] is an analytic arc in R" with p(0)=0 and p(t) € X for t =0,
then

OO _
0 |p(t) =7y (p())|

where v is the tangent at 0 to the arc nyop([0,1]) on Y, and =, is projection
onto the normal space to X at p(r).

L}

It is obvious that (r) implies (a)+ (r') and that (a)+ (r') implies (r) when Y has
dimension one. Being able to choose a vector v in T,Y and a curve whose
tangent at 0 is orthogonal to v suggested the counterexample in [6], and gives
rise to the examples here too.
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Rugose vector fields.

Given a (b)-regular stratification, one might hope to be able to find rugose
vector fields tangent to the strata. Verdier shows that these exist on (w)-regular
stratifications [8] and derives rugose trivialisations. However it can be
impossible to extend a constant vector field on a base stratum Y to a rugose
vector field on an attaching stratum X when (X,Y) is (b)-regular. This is a
consequence of our next proposition and the existence of (b)-regular examples
which do not satisfy (w).

We refer to [8] for the definition of rugose vector field. (Note the misprint in
the definition of rugose function on page 307 of [8], as described below).

ProposITION 2. Let X be a C? submanifold of R" and let Y=R™x0cR",
Suppose that each of the constant vector fields {3/dy;}, i=1,...,m, on Y extends
to a rugose vector field on X UY. Then X is (w)-regular over Y.

Proor. Let §; denote the extension of §/dy,. For each i there exists a constant
C and a neighbourhood U of 0 such that

< Clx—yl

0
"o

forallx e UNX,y e UNY. We can assume that C and U are the same for all i.

Let x € U. Then
0 0
_ < |——7.
d(&y,.’T"X> < lay,- D;(x)| ,

0
*) d(@’T"X> S Clx—-yl forall xe XNU, yeYNU.

hence

Take v € T,Y with |v|=1.
- " s o
v = i;l ai(?‘—)z,-’ with i; al =1
Let N X denote the orthogonal complement of T, X in R" and 7,: R" — N, X

the orthogonal projection.
& 0
an|—]| .
i=21 (QW)'

dv, T,X) = |n (v)| =
=Z <6y.>|

d<.‘1, Txx) .
1 dy;

s mClx—y| by (¥).

II/\

|
IOk

L[}
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Hence

d(T,Y, T, X) = ,S,|u=p1 dv,T.X) £ mC|lx—y| forall xe XNU,yeYNU,
veT,Y

ie. X is (w)-regular over Y at 0. Repeating the above argument for each y € Y,
we obtain that X is (w)-regular over Y, completing the proof of Proposition 2.

CoRrOLLARY. Let A=XUB be a closed subset of R", BNX=0, X a C?
submanifold, B a closed subset, and let (B, X) be a (w)-regular stratification, with
each stratum a C* submanifold. Then the stratification X' of A given by adding X
to X is (w)-regular if and only if every rugose vector field on B tangent to X can
be extended to a rugose vector field on A tangent to X'.

Proor. “Only if” is proved by Verdier [8]. “If” follows from Proposition 2
above by making the stratum containing a given point y, affine near y, by a C?
change of local coordinates.

WaRNING. The definition of rugosity in [8] should read “for all x € §,, there
is a constant C and a neighbourhood V of x such that for all X' € ¥ N S, and all
yeVNA,

(**) fC)=fO) = Clx'—y”
and nor
(***) ‘ ) =fWI £ Clx—yl”.

To see that these are effectively distinct notions in the case of vector fields we
can use Example 2. (w) fails, so by Proposition 2 no lift of J/éz satisfies (**).
However the canonical lift of d/0z (namely the vector field v(x,y,z) on V
defined by projecting 0/Cz onto the tangent space to X at each point of X)
satisfies (***) as follows.

Let f(x,y,z)= —y*+z*x+x3. Then

CUndnf) S

veeyz) = Q00" adf| grad i

Hence
A
lgrad f1

We must check that |v(x,y,z)— (0,0, 1)|/|(x, y, z)| is bounded as (x,y, z) tends to
0 on X.

lv(x,y,2)—(0,0,1)| =

Math. Scand. 45 — 3
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l(x,y,2)— (0,0, 1) _ BA
1(x 3, 2)l lgrad f1-(x,y,2)|

_ |42 x|
(2% +3x%, —4(z*x + x°)¥*, 423x)| | (x, (z*x + x°)'/4, 2)|

Cask 1. |x/z%| < 1. Dividing through by z°, gives

[4x/2*|
1(1+Gx/2%, ., N 1(x/z, ., D)

which is at most 4.

Cask 2. |z%/x| £ 1. Dividing through by x?z, gives

|42° /x|
1*/x*+3,.,42/x)|-|(x/z, ., 1)|

which is at most 4/3.
We have shown that (***) is satisfied.
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