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HARMONIC MAPS FROM SURFACES
TO CERTAIN KAEHLER MANIFOLDS

DOMINGO TOLEDO*

Introduction.

In this paper we study some relations between harmonic maps of negatively
curved manifolds and bounds on the homology invariants of such maps. The
classical example we have in mind is Kneser’s beautiful inequality on the
degree of a map between surfaces of genus greater than one [8]. This inequality
has recently been generalized by M. Gromov to maps between compact
manifolds of constant negative curvature.

Since the volume-decreasing properties of holomorphic maps between
hyperbolic complex manifolds give similar inequalities for holomorphic maps,
cf. [9], it is natural to ask whether harmonic maps between negatively curved
manifolds enjoy similar volume-decreasing properties. If this were true one
would obtain very easily many inequalites of Kneser type, since in the presence
of negative curvature every smooth map can be deformed to a harmonic one
[4].

Sufficient conditions for a harmonic mapping to be volume-decreasing have
been given by Chern and Goldberg in [2], but there is no discussion of their
necessity. In section 3 we construct examples of harmonic maps between closed
surfaces of constant negative curvature, and hence of the Poincaré disk, which
are not area-decreasing. Thus there is no general area-decreasing (or volume-
decreasing) Schwarz lemma, and Kneser inequalities cannot be derived in the
same fashion as for holomorphic maps.

But in [5] Eells and Wood showed that Kneser’s classical inequality can still
be derived from special properties of harmonic maps. In a similar spirit we
derive in section 4 an inequality for the degree of a map from a Riemann
surface to a compact Kaehler manifold of constant negative holomorphic
sectional curvature. By degree we mean essentially the intersection number
with a hyperplane section, i.e., the integral of the Kaehler class. This inequality
gives a lower bound on the genus of a surface representing a homology class of
given degree, and it is interesting to compare it with a conjecture of Thom in
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the dual positively curved situation. Thom asks if the minimal genus of a
smoothly embedded surface of a given degree in the complex projective plane is
that of a non-singular algebraic curve of the same degree.

We remark that this inequality on the degree can be derived from
inequalities on the first Chern class of flat bundles with structure group being
the group of biholomorphic maps of the unit ball in C", and that the
inequalities on flat bundles follow from the methods of [3] and [13}; cf.
Lusztig’s remarks on Kneser’s inequality quoted in [5]. The essential use of
harmonic mappings is not in the derivation of the inequality, but rather in
deciding when equality can hold in Theorem (4.14). We prove that a map has
maximal degree if and only if it can be deformed to a holomorphic totally
geodesic immersion. The proof of this fact is a generalization of the proof that a
harmonic degree-one map of a negatively curved surface is a diffecomorphism
[11], [12]. The point here is that if an inequality is proved by deforming the
map to a good canonical map, then if equality holds the structure of this map
must be particularly simple. It is interesting to note that Kneser’s proof [8] was
in this spirit, including his discussion of equality.

Our results rely on formulas for the Laplacian of the (1,0) and (0, 1) energy
which are stated in section 1 and proved in section 2. A more general formula
of this type was first proved by Lichnerowicz [6]. For maps between surfaces
there is a proof in [12], and a different proof of the formula used here appears
in [14], where applications are given to the dual situation of maps to projective
space. Since notational conventions in this subject vary so widely, we have
found it preferable to include our own derivation.

I am very grateful to R. Schoen and S. Yau for making a preprint of [12]
available to me. The discussion of equality in (4.3) is based totally on their
work. I also thank J. Eells for his comments on the manuscript, and the
Universities of Warwick and Copenhagen for their hospitality while most of
this work was in progress.

1. The basic formulas.

Let S be a Riemann surface with Hermitian metric g and Kaehler form wg,
and let X be an n-dimensional Kaehler manifold with Hermitian metric h and
Kaehler form wy. In local coordinates

g = gdzdz, h = hgdw dw’ ,
i

wg = %gdz AdZ, wy = 2hapdw’ A dwP .

Note that wg=dA, the area form of g.
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Let f: S — X be a C* map. We write df for the real differential of f and
ovof: THOS — THOX,  @%lf: TLOS o TO1X |

for the corresponding components of the complexification of df. In local
coordinates 9':°f, 9°'f correspond to w? w? respectively.
Recall [4] that f'is called harmonic if it is an extremal of the energy functional

E(f) = L e(f)dA

where the energy density e(f) is defined by
e(f) = 3lldf |* = Stedf(df).
In local coordinates

e(f) = %(huBWUz'Wg'*‘haﬁW;Wzﬂ) = ¢(f)+e ()

where €' (f)=0"°f|1%, e'(f)=10%'f||>. Thus f is holomorphic (anti-
holomorphic) if and only if ¢’(f)=0 (¢'(f)=0). Observe that

d(f)—e'(f) = %hap(w:wg—w;wf)

which can be written as

(L.1) €()—e'(Nws = f*ox .

The differential equation [4, p. 109] for an extremal can be written in the
Kaehler context as

1.2) wh+ 05 wiwt = 0

where 0 = 6%,dw” is the connection form of the Hermitian connection on T"°X.
Recall that

(1.3) 0 = @N)N™'  where N2 = hy.
Also if
(14) Kb = (05).

then Q5=K?% sdw” A dW’ is the curvature form of the Hermitian connection.
In the following theorem we use the notation

B(f) = V0" B'(f) = V,0*'f,

where V,,V, denotes the covariant derivatives on (T{%)*® f*T"°X,
(TYO)*® f*T% 1 X respectively. We also write
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1
q() = ?Kapys(wzw;‘— wiwd)wiwé
(1.5)

’r 1 - - -
q'(f) = E;Kapya(wzwg—wgwg)w;wg .

In terms of the curvature form Q we could equivalently write, at each x € S,
d (fos = {f*Q0"°f (v)), 0" °f (v))
9" (flos = {f*Q0%'f (), 0™ 'f (v))

where v is a unit vector in T}'°S and (-, - ) is the Hermitian inner product f *h.

THEOREM 1.6. If f: S — X is harmonic, then
e () = 1B NP+ (N)+3Kse' (f)
€' (f) = I1B"(OHI>—q"(f) +3Kse" (f)
where A is the Laplace operator of f and K is the Gaussian curvature of S.

CoroLLARY 1.7. If f: S — X is harmonic, then at every point of S where €' +0
(respectively e +0),

1
idloge (f) = ot'(f)+e—,mq'(f)+%Ks

1
idloge’(f) = d”(f)—;qf—)q”(fH%Ks,

where o' (f), o' (f)20.

CoRrOLLARY 1.8. If X is a Riemann surface and f: S — X is harmonic, then
1€ (f) = 1B N> —3Kx (e (N)—e" (e (f)+3Kse' (f)
e’ (f) = 1B (NI*+3Kx(€ () =€ (e’ (f) +3Kse" (f) -

Note that the sum of the two formulas of Theorem 1.6 gives the formula for
Ae of Eells and Sampson [4, p. 123]. The difference of the two formulas of
Corollary 1.8 gives a formula for 4u, u= (¢’ —e”)?. This u has the same meaning
as in the paper of Chern and Geoldberg [2], and this gives the two dimensional
case of their formula (57).

2. Proof of the formulas.
We compute at each x € S the value of 4e’ by using holomorphic normal
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coordinates centered at x and f(x). Recall that in such coordinates we have
(2.1) g=1 g=0 g =-3Ks atx,

and

22 hap = Oop,  Mopur = 05, = 0, hypoie = 05,50 = Kyp5

at f(x), where the last two equations follow from (1.3) and (1.4). We obtain

, 1, 1/1 -
(2.3) e gezz» = g(ghangwgl

Z

_ a.—p a =a a T a.= B 1 o T
= haﬂziwzwi W sWz + W Wz + WoWz s + ZKSWZWE

at x, where in the last expression we have simplified the formula by using the
relations (2.1), (2.2) and

(2.4) w,;; = w; =0 atx

which results from (2.2) and the harmonic equation (1.2). Using the chain rule
and simplifying by (2.2) we get

(2.5 huﬂzi = haﬂw"ﬁ"wgwg"*"haﬁw’w’wa? .

Differentiating the harmonic equation (1.2) we obtain in the same way

(2.6) wh, = — 08 pwiwiwt W, = — (05,5 WiwlvE

at x, where the second equation is just the conjugate of the first. If we use the
symmetry relation

(Hg./wu) = 0;‘;,“;,7 )
which results from ha];=h_,;‘,—,, rewrite (2.5) and (2.6) in terms of K,p,s (last
equation (2.2)), and substitute the result in (2.3) we get
2.7) SA€ = Wi+ Kops (WIWE — whRwEd + LK swiis

at x. By (2.4), the first term is ||’ (f)]|?(x). The first formula of Theorem 1.6

follows, because the remaining terms of (2.7) clearly agree with the

corresponding terms in (1.6). The second equation is proved in the same way.
To prove Corollary 1.7 we use

1 1
1dloge = g(loge’)ﬁ = %Ae’/e’—ge;eg.

From this we obtain the first formula with

vy B 1 ee;
e T er

Math. Scand. 45 — 2
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In holomorphic normal coordinates we have, because of (2.4),

B = wiwts,  €h = Wiwt, e = wiwk .

gives the second formula, with «”(f)=0.

To prove Corollary 1.8 observe that when X has complex dimension one
there is only one K,3,5 and this is equal to —3Ky (cf. (2.1) and (2.2)).

Schwarz’s inequality gives |ee:| S wiwie', hence o' (f) = 0. The same reasoning

3. Harmonic maps to surfaces.

Our counterexamples to the Schwarz lemma are based on the following
more general observation:

THEOREM 3.1. Let S and X be compact Riemann surfaces with metrics g and h
respectively, and let f: S — X be a harmonic map that preserves area (i.e., f *wy
= twg) and Gaussian curvature (i.e., f*Ky=Kg). Then either

(1) fis a holomorphic or anti-holomorphic local isometry, or
(2) (S,g) and (X, h) are both flat tori.

Proor. Assume first that f preserves. orientation, i.e., f *wy = ws, which by
(1.1) is equivalent to €'(f) —e”(f)=1. Since we also have f*K y = K, Corollary
1.8 gives

e (f) = IFUNI* 2 0,

thus ¢’ is subharmonic, hence constant, and ¢” =¢'—1 is also constant. Thus if
z and w are holomorphic normal coordinates centered at p € S and f(p) € X,
we have

0 =e"(f) = (WaW); = wew, .
Since at p we have f”(f)=w;; and € (f)=|W,|?, we conclude that
3.2 either f'(f) =0 or &'(f) = 0.

Now if f: § — X is harmonic where X is any Kaehler manifold, it is known
that (hypof)Wiwe(dz)* is a holomorphic quadratic differential on S. This is
checked by computing its derivative with respect to Z using (1.2), and implies

LemMa 3.3. Let f: S — X be harmonic. Then each of the functions é'(f), €’ (f)
is either identically zero or has only isolated zeros.

From (3.2) and this lemma we conclude that either ¢'(f)=0 or p"(f)=0. In
the first case f would be anti-holomorphic, which contradicts the assumption
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that f'is orientation-preserving, thus f”(f)=0. If we now use in the second
equation of Corollary 1.8 that e'(f)—e"(f)=1, de”"(f)= | (f)I =0 and f*Ky
=Ks=K, say, we conclude that Ke"(f)=0. From Lemma 3.3 we see again
that either K=0 (and both surfaces are flat tori) or ¢’(f)=0, and f is
holomorphic, hence also locally isometric since it is both conformal and area-
preserving,.

Finally, if f reverses orientation, i.e., f *wy = — wg, we argue in the same way
starting from the second equation (1.8) to conclude that either both surfaces
are flat tori or f is anti-holomorphic.

COROLLARY 3.4. Let S be a compact Riemann surface with metric of constant
negative curvature, and let f: S — S be harmonic and area-preserving. Then fis a
holomorphic or anti-holomorphic isometry.

If f: § — S, we say that fis area-decreasing if |e'(f)— ¢ (f)|£1 at all points
of S. By (L.1), this is equivalent to |f*wg|<|ws|, thus, strictly speaking, we
should say that f does not increase area.

COROLLARY 3.5. Let S be a compact Riemann surface with metric of constant
negative curvature, and let ¢: S — S be a smooth map of degree one that is not
homotopic to a holomorphic map. Then the harmonic map f homotopic to ¢ is not
area-decreasing.

Proor. If f were area-decreasing we would have |¢'(f)—e”(f)|<1 and

j(e’(f)—e”(f))ws = st,

hence €'(f)—e”’(f)=1, ie, f is area-preserving. By the previous corollary f
would be holomorphic, contrary to the hypothesis.

Observe that there are plenty of maps ¢ that satisfy the hypothesis of
Corollary 3.5, for example, any diffeomorphism which is not of finite order in
homology, e.g., a “Dehn twist”. A harmonic map homotopic to ¢ exists by the
main theorem of Eells and Sampson [4], and moreover it is also a
diffefomorphism, cf. [11], [12]. Note, on the other hand, that all these
diffeomorphisms are homotopic to area-preserving diffeomorphisms of S. This
follows, say, by composing ¢ with the diffeomorphism constructed in [10]
which brings ¢*wg to ws.

COROLLARY 3.6. There exist harmonic diffeomorphisms of the unit disk in C
with the Poincaré metric that are not area-decreasing.
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Proor. Lift one of the maps f of the previous Corollary to the universal cover
of S.

Finally we remark that a flat torus has plenty of harmonic diffeomorphisms
that are area-preserving but neither holomorphic nor anti-holomorphic.

4. Maps to quotients of the ball.

Let S be a compact surface with metric g of constant curvature —1 and
fundamental group I'. We think of S as D/I", where D is the unit disk with the
Poincaré metric and I is a Fuchsian group. Let B" be the unit ball in C" with
metric

_ o =T woit) (X dwediv?) + (5 edw?) ( wodvi")

(41) h (1 — Z wawa)Z

of constant holomorphic sectional curvature —1 and invariant under the
group G"=S8U (1, n)/center of biholomorphic maps of B". Recall that SU (1,n)
is the subgroup of SL (n+ 1,C) that preserves the form |z,|>—|z,[>— ... —|z,|?
and acts on B" via the natural identification of B" with the set of lines through
the origin in C"*! on which the form is positive. Finally let I" be a discrete
subgroup of G" which acts freely on B". The quotient manifold X =B"/I" is
then a Kaehler manifold of constant holomorphic sectional curvature — 1. Our
goal is to prove the following theorem:

THEOREM 4.2. Let S and X be as above, and let f: S — X be a harmonic map.

Then
J [rox éf s .
s s

4.3)

Moreover equality holds if and only if there is a metric of constant curvature — 1
on the surface S with respect to which f is a totally geodesic holomorphic or anti-
holomorphic immersion.

We recall that a map f'is totally geodesic if and only if it maps geodesics to
geodesics. This is equivalent Yo B(f)=0, where B is the second fundamental
form of f (cf. [4, pp. 123, 131]). In our situation B(f)=0, if and only if f'(f)
=p"(f)=0, with §/,8" as in section 1.

Note that if f is a holomorphic totally geodesic immersion with respect to
some metric of constant negative curvature on S, then f*wy is the Kaehler
form of this metric, thus Gauss-Bonnet gives

f frox = —2my(S) = j o5,
S s
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and equality does hold in (4.3). Similarly, if f is an anti-holomorphic totally
geodesic immersion, then
J [rox = *“j Wg
s s

and equality again holds in (4.3).

LemMma 44. Let f: D — B" be harmonic. Then
q(f) = 2 NES)~e" (N +p(f)

q'(f) = 3" () (N)—e (/) —p(f)
where p(f)20 and p(f)(x)=0 if and only if d.f (T,D) is contained in a complex
one-dimensional subspace of T, ,,B".

ProoF. Let x € D. Since ¢'(f) is invariant under G, to compute g ( )(x) we
may assume f (x)=0 e B". At 0 one finds by direct computation from (4.1) that

4.4) KaBy5 = 4{51/35y6+6a§6ﬂy} = %{haﬁhy5+ha5hﬁy} .

Direct calculation from (1.5) gives

4
() = 5 {20820 (R WD — (w25 i)
1
= H2P = w v w.))
= (e —ce") +4—;7{|wz|2|w5|2~|<wz, wiol?)

from which the first formula follows, letting p(f) be the second term in this
expression, and from Schwarz’s inequality we see that p(f)=0.

For the last assertion, let V=d_ f(T.D)< Tj,,,B", and let W be the smallest J-
invariant subspace of Tj,B" containing V. Then

W®C = n°(V¥®C) @ > (V®C) = " °(V®C) @ 7" °(VRC) ,

where 7% %! are the projections of TB"®C onto T!°B" T°!B"
respectively. Clearly dimg W <2 if and only if dimc n!'°(V®C)< 1. Since the
latter space is spanned by wi, w, the equality part of Schwarz’s inequality gives
that dime 7'-°(V ®C)< 1 if and only if p(f)(x)=0, and this completes the proof
of the lemma.
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We remark that a more geometric expression for p(f) is the following. Let
u,v be an orthonormal basis for T,D, and let « be the angle between the planes
df(T.D), JAf(T,D) in T;,B", and let 4 be the area of the parallelogram
determined by df(u) and df (v). Then 16p(f)(x)=A?sin?«, from which the
asserted properties of p(f) follow easily.

The lemma gives the following simplification of formulas (1.7):

COROLLARY 4.5. If f: D — B" is harmonic then

Lloge'(f) taloge (f) = a'(f)+ 2L ((f,’) +ie—e'—1)
Lloge'(f) = a(f)+ ’f,((’;)) Cle—e+1)

where o', o', p20 and p is as in (4.4).

LEMMA 4.6. Let p be an isolated zero of €, and let z be a holomorphic
coordinate centered at p. Then there exists a positive integer m,, a positive
constant ¢, and a function g(z) which is C* for z+0, g € O(|z|) and dg/ex,
0¢/0y € O(1), so that

€(2) = |z’™(c+e(2)
in a neighborhood of p. A similar local representation holds near an isolated zero

of €'

Proor. We use equation (1.2) exactly as in the proof of equation (5) in [5] to
show that the leading term in the Taylor expansion of w, is holomorphic, i.e.,

= Az"+0()z|"*Y)

for some positive integer m and some non-zero vector A= (a,...,a™). Thus

€ (Z) “B awtzi aB(O) aadﬁ'2|2m+0(lzl2m+l) .
g g

Ifwelet m,=m, c=1 /g (0)h,3(0)a*a® and let ¢ be the remainder term divided by
lz|>™ we obtain the desired representation. The bounds on ¢ follow from the
standard properties of the remainder in Taylor’s formula. The representation
for ¢” is obtained in the same way.

We now continue the proof of the theorem. To prove the inequality we
consider two cases: (1) f is holomorphic or anti-holomorphic, (2) fis neither
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holomorphic nor anti-holomorphic. Case (1) follows from well-known area-
decreasing properties of holomorphic maps, but for completeness we repeat the
standard argument: Suppose f is holomorphic. Then ¢’ =0, f *wg=e€'ws and
the first equation of (1.6) together with (4.4) gives

(4.7) ide = B (NI*+3(e) —3e

because p(f)=0. Let x be a point of S where ¢’ attains its maximum. At x we
have de’ <0, hence €'(¢'—1) <0 at x. But we must then have ¢ <1 at all points
of S, hence || f*wp|=|€'ws< [ ws. If fis anti-holomorphic we get ¢'=0, ¢" < 1.

Consider now case (2). We can apply the formulas of Corollary 4.5 at all
points of S except the zeros of ¢, respectively ¢”, which by Lemma 3.3 are
isolated. Let S, be the surface with boundary obtained by removing a disk of
radius ¢ about each of the zeros x,...,x, of ¢, and let |z|*™(c; + ¢;(z)) be the
local expression for ¢’ near x; given by Lemma 4.6. Green’s Theorem and the
bounds on g; easily give

lim J Adlogewg = =21y 2m; .
e=0 J S, i
From Corollary 4.5 we have

L (%A loge — o (f)— f((f,Dws y L, (€ ="~ s,

I

and letting ¢ —> 0

(4.8) -ny mﬁ—-J (o +p/e)wg = %j (€ —eNwg—1% J ws .
7 s s s
Since m;, o', p=0 it follows that
(4.9) J oy = J (€ —ewg £ j s ,
s s s

which is one half of the asserted inequality. Arguing on the same way with the
zeros yy,. ..,y of ¢’ and the corresponding exponents 2m/ given by Lemma
4.6, we get

p 1 g 1
—an}’—J (oz”-}-? ws = —%| (€—-e)os—3 | ws,
i N N N

from which we get the second half of the inequality, namely

(4.10) J [*ox 2 —J ws .
s s
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Now we examine when equality can hold in (4.3). First, if fis holomorphic,
we must have e'=1, hence from (4.7) that §'(f)=0. Since f is holomorphic
B"(f)=0, hence the second fundamental form B(f)=0 and fis totally geodesic,
and an immersion since €’ =1, thus f *wy is never zero. The case that fis anti-
holomorphic is handled similarly.

Now suppose that f is neither holomorphic nor anti-holomorphic and
equality holds in (4.3). We must then have equality in (4.9) or (4.10). Suppose
that equality holds in (4.9). Then the left hand side of (4.8) must be identically
zero. Since the m;> 0, this sum must be empty, i.e., ¢ >0, and we must also have
o’ =p=0. We summarize the situation as follows:

LEMMA. If jsf*wx =Isﬂ)s, then
4.11) , €x)>0 forall xe8§,

(4.12) for each x € S, d, f(T,S) is contained in a complex
one-dimensional subspace of T;,X ,

4.13) tlogele’ = —a'+e —¢" .

Note that the second assertion follows from p=0 and Lemma 4.4, and the
third is obtained from the difference of the two equations of Corollary 4.5 once
we set a'=p=0.

It now follows as in Theorem 3.1 of [12] that ' —e” = 0. Namely, from (4.13)
we see that loge'/e” is superharmonic on the set where ¢ —e” <0, and from
(4.11) it follows that log e'/e” is never — co. If the set where ¢ —e” <0 were non-
empty, loge’/e” would take its minimum on the boundary, which is impossible
since it is identically zero on the boundary.

We must then have ¢’ —e” 20, hence loge'/e” 20. Arguing as in Proposition
2.2 of [12] we see that ¢’ —e¢”>0: Namely, if ¢ —e” =0 at some point x of S,
since ¢’ >0 we must also have ¢”(x)>0. Taking a small disk about x where ¢”
>0, from (4.13) we get

14 log—e—:—, Sée—e' = e”(f,,—,—-l> < Cloge'/e” .
e 4 ,
But Lemma 6’ of [7] asserts that a function g =0 which satisfies an inequality
of the form 4g < Cg on some disk D centered at x must also satisfy

ﬂ gdA = Cg(x).
D

Applying this to g=loge'/e”, we see that if g(x)=0, then g=0 in a
neighborhood of x, thus the zero set of g, which is the same as that of ¢’ —e”,
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would be open in S. If ¢ —¢” vanished at some x, then it would vanish
identically, i.e., f*wy =0, which is impossible when equality, holds in (4.9).

It follows that ¢’ —e” >0 everywhere on S, i.e., f*wy is never zero, and in
particular f'is an immersion. By (4.12) we have that for each x € S, d__f gives an
isomorphism between T,S and a complex line in T, X. These isomorphisms
give a complex structure on S with respect to which fis holomorphic. If we give
S a metric of constant curvature —1 which is compatible with this complete
structure, from the above discussion of equality in (4.3) for holomorphic maps
it follows that f is totally geodesic.

Finally the case that equality holds in (4.10) is handled in the totally
analogous way, thus completing the proof of Theorem 4.2.

THEOREM 4.14. Let S be a compact orientable surface of genus g> 1, let X be a
compact Kaehler manifold of constant holomorphic sectional curvature —1, and
let @: S — X be a smooth map. Then

f o*wyx
s

Equality holds if and only if there is a metric of constant curvature —1 on S and a
map f homotopic to ¢ which is a totally geodesic holomorphic or anti-holomorphic
immersion.

< 4n(g-1).

Proor. X must be of the form B"/I" for some discrete I <= G" which acts
freely on B", and S can be represented as D/I'. Since X is compact and
negatively curved, by the main theorem of Eells and Sampson [4] ¢ is
homotopic to a harmonic map f. The theorem follows by applying Theorem
42 to f and rewriting the right hand side of (4.3) by the Gauss—Bonnet
theorem.

We remark that wy = —4n/n+ 1c,(X), where ¢, (X) is the first Chern class of
X and n=dim¢ X. Thus the inequality in (4.14) can be equivalently written as

j o*ci(X)
S

Finally we should give an example where the hypotheses of Theorem 4.14
are sati4sﬁed. Represent B” not as the unit ball in C", but rather as the ball of
radius ]/f, ie., as the set of lines through the origin in C"*! where the form
V2Izol —|z,*— . . . —|z,/*>0. The group G" of automorphisms of B" is then
represented as the subgroup of SL (n+1,C) that preserves this form, modulo
its center. Let I be the ring of integers in the field Q(j, [/§) and let I'"=1"(n) be
the image in G" of the subgroup of SL (n+1,1) consisting of all matrices that
preserve the above hermitian form and which are congruent to the identity

£ (n+D@g-1).
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matrix modulo 3. Then from the arguments at the end of Borel’s paper [1] it
follows that X =B"/I"(n) is a compact manifold of constant negative
holomorphic curvature. Taking D/I' to be B!/I"(1), then the map f: D/I’
— B"/I"(n) induced by the map (z4,z,) — (29,2,,0,...,0) is a holomorphic
totally geodesic immersion. (f is in fact an embedding, since some reflection
shows that it is generically injective and its image is a component of the fixed
point set of the isometry of X induced by the map

(20s215 225 - -, 2,) = (20,2, —23,. .., —2,) Of C"*1) .
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