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A NOTE ON REFLECTION

DAG NORMANN

Through the recent development in the theory of recursion in normal, higher
type functionals, the importance of Grilliot’s selection theorem for
subindividuals has become evident. After the Harrington-MacQueen-proof of
this selection-property [1] and the reflection-properties obtained from it in
Harrington [0], the theory has been tremendously enriched.

The development of degree-theory for normal higher-type functionals was
one of the applications of these selection- and reflection principles.

Unfortunately, in order to use these principles one had to add restrictive
assumptions such as the continuum hypothesis, so there was a need for
improvements of these principles.

In this paper we will show that some genuine subsets of the individuals may
share some of the reflection and selection-properties of the set of sub-
individuals. We actually show that for some well-behaved recursive well-
orderings of the individuals, we may uniformly “search” through proper initial
segments.

These results were first presented in my lecture at the GRT Il-conference in
Oslo June -77, and there is an application in Normann [6].

Our proof is based on the notion of set-recursion (Normann [6], [7],
Moschovakis [5]), and it will be an advantage to know the original version of
Grilliot’s selection theorem as proved in Harrington-MacQueen [1] or
Moldestad [3]. We have based our notation on the exposition in Moldestad
[3]. We repeat the complete argument with the adjustments needed for the
more general result, and to transform the argument to the context of set
recursion, or actually E-recursion.

Throughout this note we will let I be a set of individuals. We will assume that
I has recursive pairing and coding of countable sequence (I =tp (k) for k=1 or
I=H(x) for some cardinal » whose cofinallity is not w). We will let < be a
well-ordering of I. By “recursive” we will always mean E-recursive in the
parameters I, <.

For standard notation in higher type recursion theory we refer to Moldestad

[3]

Received January 4, 1979,



6 DAG NORMANN

DEeFINITION. A subset A of I is reflecting if for all b € I, if A4 is recursive in b,
then Sup {K&”; a € A} is K}-reflecting.

DEFINITION. < is recursively regular if there is no function recursive in some
individual mapping an initial segment of < onto a <-cofinal subset of I.

THEOREM. The following two statements are equivalent:
a) < is recursively regular
b) All proper initial segments of < are reflecting.

Proor. b) = a). Assume < is not recursively regular. Let f, a be recursive in
an individual ¢ such that fmaps {b ; b<a} cofinally into <. By an argument of
Moschovakis [4] (see also MacQueen [2] or Moldestad [3]) the semirecursive
subsets of I will not be closed under existential quantification over I. But we
may write 3b<a 3d < f(b) for 3d € I, so the semirecursive subsets of I cannot
be closed under <-bounded quantification, so the initial segments cannot all
be reflecting.

In order to prove a) = b) we need two lemmas.

LEMMA 1. Assume that < is recursively regular. Let A< be bounded and
recursive in some c € I. Then A € Ly _[I, <]. (| <| is the order-type of <. We
let x € L,[x], so we do not treat I, < as relations above).

Proor. Let A be bounded by b,,. Since A4 is recursive in ¢, we will have that
A € M? for some y. (We here use notation from Normann [6] or [7]). In
particular then, A e L[I, <] e M}*°.

The wellordering < is inducing a well ordering on L,[I, <], which we use to
define recursive Skolem-functions on L,[I, <]. Using these, let K, be the least
substructure of L,[I, <] that contains A4, each ¢ <b, and that is closed under
the Skolem-functions.

K, is recursive in ¢ and indicable over w x {c ; c<b,}. By the regularity
assumption, K, NI is bounded by some minimal element b,.

Inductively, define K; and b, , in the same way, and let K=U,_,, K;. Then
K N1 is a bounded initial segment of I and K is indicable over K N I recursively
in c.(as L,[I, <] is indicable over I). This shows that the ordertype of the
ordinals in K is less than || < ||. Moreover, K is by construction an elementary
substructure of L,[1, <].

Let K’ be the Mostowski collapse of K. By the collapsing function, 4 will be
mapped on 4, s0 A € K" and KNI=K'NI. Let y, be.the supremum of the
ordinals in K'. Then y,<| <| and K'=L,[K'NI, <[K"]. But then

Ae Lyo[I’ <] = Lﬂ<"[19 <]

and lemma 1 is proved.
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We will make use of the following corollary:
Let Ac({c:c<a}Uw)e (where x¢ is all finite sequences from x) be
recursive in some individual. Then 4 e Lyl <]

In the next lemma we will repeat the Harrington-MacQueen argument with
some modifications. An essential feature of their proof is that one need to have
control over the possible arguments of a computation, e.g. they should be
restricted to the individuals. This is not the fact for set recursion. In order to
get around this difficulty, we cheet. We prove the theorem for recursion in the
functional ‘E (existential, total quantification over I) and the essential relations.
To avoid confution, we use superscripts 1 and 2 to indicate computations
norms etc. in 'E-recursion respectively set recursion.

The two theories are sufficiently equivalent to justify this trick.

The proof of the lemma is essentially the same as the Harrington—
MacQueen-proof for the general Grilliot selection, say for *E. At some point in
their proof they use that quantification over the power-set of subindividuals, is
computable in *E. At the analogue point we will have to quantify over the
subsets of the individuals with low cardinality. We show that we only need to
consider such subsets that are computable in *E and a real. By recursive
regularity and the corollary to Lemma 1 quantification over the family of such
sets will be computable in 3E.

Elsewhere we repeat the original argument as given in Moldestad [3].

LemMA 2. Let < be recursively regular. There is an index e such that
{e}*(¢,a)l
if and only if
3b < a; {}(b,a)]
. and then

I<e,e’,@>|I* = min{|<¢,c,a>|"' ; c<ay}

ProoF. Let X consist of those elements of L, . [I, <] that are on the form

o0 =<{nd ), a€l,del neow.

We let a, be {e,,d,), and
lall = min {jle,||" ; x<a} .

Let o, B range over X. It is sufficient to prove
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SUBLEMMA. There is an index m such that

i) Ifll <oo = {m}*()| and || <|<m,B)|?
ii) {m}2(B)l = IBll<oo

Proor. To find m we use the recursion theorem for set recursion. i) is first
proved by induction on ||| and then ii) is proved by induction on ||<{m, 8|2

Given u € On, assume as an induction hypothesis that 1Bl <u = {m}*B)|
and ||B]| < I<m, B)||®. Let a be given and assume that llee]l = .

Let S be the relation obtained by the following proposition:

PROPOSITION. In 'E-recursion there is a semirecursive set S such that iftisa
computation then S(t,0) if and only if ¢ is an immediate subcomputation of t.

(The method needed for proving this proposition goes back to Moschovakis
[4]. For generalizations in various directions, see MacQueen [2] and
Moldestad [3]). Define the relation R by

R(x,y,w) < S(x,y) if x is not on the form of a sub-
stitution {e}'(a)~{e,}'({e,}" (a),a)

R(x,y,w) <> (y={e,,a) or w is a computation and
I<ey,ad|I' < |w|* and y=<e, {e,}"(a),a))
otherwise.

Let a, be the bound of the index-set for «. For an ordinal o, let T, be the
relation defined by

T, = {feX: Vx<ay R(a,,B,w)} where ||w|' = 0.
Then
BeT, v (Bl <|af and ¢ < tvT, cT,.

Now, let W be the set of prewellorderings of {c: ¢<ay}® that are in
Ly[1, <]. W is uniformly E-recursive in I, <, .

For'oe W, let 0(5) be the length of the prewellordering 6. Let 4
=sup{0(J);d e W}.

Let C be the set of 'E-computations.

There is an index m, such that {m,}2(m,a,w)| if

i) we C or w is an E-computation in I, <.
ii) {m}*>(B)| for all p e T (Tpp)

and if w € C, then

I[Kmy,ma,w)||* > [<m,B)||> forall e Ty (Tywy?) -
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By the recursion theorem one can find an index m, such that {m,}?(m,a,7)| if
ye Wand for all yy e W

O(VI) < 0('}’) = {mz}z(m,a,yl)l and {ml}z(m9aa <m27maa9‘y’>)l
Moreover, m, may be chosen such that
[<my, my o, y )12 > [[<my, myo, y Y112, [ Kmy, my o, {my, my o,y )12

for all y’ such that O(y')<O(y).

Then, if O(y)<O(y) and B € Ty(m, m,qyy) it follows that ||| < || and by
the induction hypothesis

I[<my, mya, y> 112 > [I[<my,m, o, Kmy,my 0,95 (12 > [[<Km, B3112 2 1Bl
There is an index m; such that
{ma}>(mo)l if Vy € W{m,}?(m,o,7)]

and

[Kmy,m,a)||* > |<my,m,a,p)||> for all y e W.
For 1</, let

o(t) = inf{[|[{my,m,a,p)(* ; y € Wand O(y)=1} .
Then {o(7) ; 1< 4} is a strictly increasing sequence of ordinals bounded above
by [[<my, m, o)

CLaM 1. There is an ordinal ©' <4 such that T,,,=T,,, when T St<A.

ProOF. Assume that this ts not the case. We are going to construct an element
of W of length 4, and there by obtain a contradiction.

Suppose V1' <4 31 (v <t<4)and T,,=* T, Take 7' < 4. Let t be minimal
such that v'<t and T,.,& T,

We may effectively in ©' and t choose w’ and w such that |w|! =1, |w'||l=1

and w,w e C. If B e T, \ T, then

Vx < ay R(a,,fow) and ~VYx < ay R(a,, B, W).
If 7 R(«,, B,,W'), then a, is a substitution
{e}'@ = {} ({e} (@a), B, = <€ {e,} (@), a)

and |w|'<|<e, ad||' < |lw|'. Hence R(a,, B, w") for all w” such that |w”|!
=
Let
P(T’) = {x<a0 5 aﬂ € Td(t)\ Ta(t’) —iR(ax’ﬁxrwl) .
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P(7') is independent of the choice of w,w’, P(t’) is nonempty, P(t)=P(v) for
TSv<rt, and for t<v will P(7') and P(v) be disjoint.
For each v<4, select y, € W such that O(y,)=v. Define

5; %ty )y < s5,%{t,) if for some minimal 1, ,
ty € P(ty) A t; € P(ty) A sy € Field (y,,) A s, € Field (y,,)
A(T<T, V (1, =T,=T A 5, <, 5)))

where * is the concatenation of sequences.

< will be a prewellordering on {c ; ¢ <a,}2 and will be recursive in I, <, a,
and thus an element of Ly.[1, <] by lemma 1. So < € W. But || <| =4 which
is absurd. This ends the proof of claim 1.

Let o=Sup{o(r) : <4}
CLaM 2. 02 ||| (Hence ||[<m3,m,a) (> |lal])

PRrROOF. Suppose o < ||a||. Let x<a,. If a, is a substitution

{e}' (@) ~ {¢}' ({e,}! (@) 0)
and o(7') < |<e;,a)||' <o, choose B € T, (where v comes from claim 1).

Let B,=B, if y+x and let B,=<e¢,{e;}'(a),a). Then B e X and
B € T,\T,., This contradicts claim 1, so either |<e,,a)d|'<0o(1) or
I<er, ad ] 2. -

Now, let B be defined in the following way: Let x<a, If a, is not a
substitution, let B, be such that S(a,, B,) and ||B,||* = . By the assumption it is
always possible to find such f,, and by the recursive wellordering we may select
B, from x in a recursive way.

If a, is the substitution {e}'(a)~x{e'}!({e,}'(a),a), let

ﬂ = {(e” {el}l(a)’a> lf ”<e1’a>l§a(‘t’)

{es,a) otherwise

Then ||| 20, and f € X by lemma 1. By construction, § € T, Choose 7 such
that ' <t<4. Choose ¥,y € W such that O(y")=1', O(y)=1,

o(t) = |[<mypmay>|*> and  o(7) = [<mymay)|?.
By the construction of m,,
I<ma, myo, 311 > |1 for all B € Tygm, maysy -

Hence [[<my,m,a,y>||2> ||B| since B e Towy=Ty¢mym,ayy» contradicting the
fact that |[(m,,m,a,7>||>=0(t)<a < ||B|. Thus claim 2 is proved.
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By the second recursion theorem for set recursion there is an index m such
that

{ma}?(me) = {mp?(@  I<Kma)|? > [{ma,m,a)|?

for all « € X. This m satisfies part i) of the sublemma. Part ii of the sublemma is
proved by induction on ||{m;B)>|>2.

As an induction hypothesis, suppose that {m}*(«)| and that ii) is satisfied for
all B such that ||[<m, BD|1% < ||[<m, a>||2.

Since {m}*(x)|,

{myp?(mw)] and  [<Kma)|® > [<myma)|? .

Also {m,}*(m,a,y)| for all y € W. Let the ordinals {o(r): <A} and o be
defined as before. Choose 7' <4 as before. As in claim 2, if «, is a substitution

{e}' (@) = {e}'({e1}' (a),0)
then either
[<ep,ad|' £ a(r) or |Kepad|' 2 0.

We will prove that |a|| <o, so assume in order to obtain a contradiction that
el >0. Construct f as in claim 2. By construction € T, and ||f]|=0.
Choose y € W such that o (') = ||{m,, m,a,y'>||>. Choose y € W such that O(y')
< O{(y). By the construction of m,:

“<m2’m’ o, ?)"2 > ”<mla m, o, <m2’m’a,y,>>”2

By construction of m,:

"<m1’ m,a, <m29m7 “aV'>>|| > “<m’ﬂ>"1 H

since f € Tyim,mayyir = Tow) -

By the induction hypothesis and part i) of the sublemma, ||B| < ||{(m, B)|*.
Hence ||/3||<||(m2,m,oc?y>||2 for all y e W such that O(y)<O(y). By the
definition of ¢(z), ||B]l <o(t) when t' <t <4, so ||f|| <o. This contradicts the
assumption, and the sublemma and lemma 2 is established.

From lemma 1 and lemma 2 it is now trivial to prove theorem 1.
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