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ON THE ASYMPTOTIC BEHAVIOUR OF
NONLINEAR CONTRACTION SEMIGROUPS

GUSTAF GRIPENBERG

1. Introduction and statement of results.

The purpose of this paper is to study the asymptotic behaviour of nonlinear
contraction semigroups. This question has been investigated in [1-3, 5, 7, 9—
12] from various points of view. Here we shall only consider the strong
convergence of semigroups.

Let X be a real Banach space with norm |-| and let X* be its dual (with
norm |[-|*). The duality mapping F: X — X* is defined by

F(x) = {x*e X*| (x,x*)=|x]>=(x**)?},

where (x,x*) denotes the value of x* at x. Recall that S:C — C<X is a
contraction semigroup if

S(t+s)x = S(OSs)x, [SOx—S@)yl < |x—y|
and

lim S(t)x = SO)x =x, ts=0, x,yeC.

t—>0+

A subset A< X x X is said to be accretive if for every [x;y,] € 4, i=1,2, there
exists z € F(x; —x,) such that (y, —y,,z)=0. We use the notation

R(I+44) = {x+4y| [x,y]€ A}, D(4) = {x | 3y such that [x,y] € A}
and
AT'0) = {x]| [xy]e4}.

For more information on accretive sets and the generation of semigroups in
Banach spaces, (especially the existence of the limit in (1.5) below) see [3], [6].
Our first result is

THEOREM 1. Assume that

(1.1) X is a uniformly convex real Banach space,
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(1.2) Ac X x X is closed and accretive,

(1.3) there exists iyp>0 such that R(I+AA)>cl (D(A)), 0< i< iy,

(1.4) there exists xo € A”'(0) and a continuous function ky: (9, 00) x (0, 00)
— [0, 00) such that if [x;,y;] € A, x;%x¢, i=1,2 then
01 +V2,23) 2 —ko(IX; — Xol, X2 = Xo) (1> 21) + (2, 2,))
for some z; € F(x;—x,), i=1,2 and z3 € F(x;+x, —2x,),

(1.5) S(O)x=lim,., (I+n"'t4)™"x, x € cl (D(A)),

(1.6) lim,, |S(t+h)x—S(t)x|=0 for every h>0 and x € cl (D(A)).

Then
(1.7) lim, S(t)x exists for all x e cl (D(A)).

If A is an odd mapping, i.e. [x,y] € A iff [—x, —y] € A and [0,0] € A4, then
(1.4) is a consequence of (1.2). In this case Theorem 1 has been established in
[2, Th. 4.1]. Here we have the following sufficient conditions for (1.4) (for
simplicity we take x,=0).

ProposITION 1. Assume that (1.1) holds and that

(1.8)  X* is strictly convex _

(1.9) [xyleA iff y=y,+y,, [x,y]€A;, i=1,2 where A, is odd and
accretive,

(1.10) A, is accretive, 0 € int (D(A4,)) and [0,0] € A,,

(1.11)  for every >0 there exists ¢>0 such that if [x,y,] € A,, i=1,2,
2, € F(x), 1,120, Ix,| e, then
01, 20) Z [yl (1x |+ x2)).

Then (1.4) holds.

Observe that (1.11) will certainly be satisfied if (1.10) holds and
0 € int (45 '(0)). In the second example related to Theorem 1 we consider the
case when A is the subdifferential of a convex function.

ProPOSITION 2. Assume that (1.5) holds and that

(1.12) X is a real Hilbert space with scalar product (-, "),

(1.13) ¢: X — [0,00], @ % + 00 is lower semicontinuous and convex and ¢(x,)
=min,.y ¢(x) where x, € X,

(1.14) [x,y] € Aiff p(x)<o0 and y € {w | w,z=x)L0(2)—(x), z € X},

(1.15) there exists a continuous function k,: (0,00) — (0,1] such that
Px)2@(xo—ki(x—xo)(x—X0)), x€X, x*x,.

Then (1.7) holds.
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Note that according to a result in [1] the assumptions (1.5) and (1.12)-
(1.14) do not imply (1.7).

Is is rather easy to see that if one can take the function k, to be a constant
and X is a Hilbert space, then (1.4) is equivalent to [4, line (4)] (with U=5(¢), t
>0). In [2, Th. 43] it is shown that if A=a(I—T), a>0 and T is a
nonexpansive mapping, then (1.6) holds, and obviously (1.6) is a necessary
condition for the conclusion of Theorem 1. To see that some assumption like
(1.1) is essential, consider the following simple example: Let

X = {fe C([0,00)) N L*([0,00)) | lim |f(x+h)—f(x) = O for all h>0}

with sup-norm and let
SN =flt+1, t=20,7120.

Obviously S is a linear contraction semigroup on X which satisfies (1.6) but
lim,., ,, S(¢)f does not exist for all fe X.

It follows from [9, Th. 4] that if (1.1)-(1.3), (1.5) hold, X * is uniformly convex
and int (47'(0))# ¢ then (1.7) holds. In the Hilbert space case this result has
been established in [3, Th. 3.13] and [10, Coroll. 3.6]. In the next theorem we
extend this result in the case when X is uniformly convex, replacing the
assumption int (4~1(0))# & by a weaker one.

THEOREM 2. Assume that (1.1)-(1.3) and (1.5) hold and that

(1.16) there exists a real topological vector space V and a linear injection j: V
— X, such that,

(L17)  D(A)<=j(V),

(1.18) int (j~1(A~1(0) * &,

and either

(1.19)  there exists d>0, x, € A~'(0) and a bounded set B in V such that if
[x,y] € A, x ¢ j(B), then (y,z)=d for some z € F(x—x,),

or
(1.20) there exists a sequence {B,}, of bounded sets in V such that if
[x,y] € A and |x|+|y|<n, then x € j(B,).
Then (1.7) holds.
Note that if V=X, then (1.20) is trivially satisfied and so the assumption

int (A71(0))* & is a special case of this theorem. As another example assume
that (1.12) holds and that V is a reflexive Banach space, the injection j: ¥V — X
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is continuous and § : ¥ — [0, 00) is convex, lower semicontinuous and satisfies

lim y(x) = +00.
x|y — 00
Moreover, assume that int({x € VI Y(x)=0}) + & and take A to be the
subdifferential (see (1.14)) of the function Yy where Yy (x)=1(j ~1(x)) on j(V)
and Yy(x)=+00 on X \j(V). Then one can show that the assumptions of
Theorem 2 (with (1.19)) are satisfied.

In the next theorem X is a Hilbert space and we consider a combination of
the assumption int (4~!(0))% & and the condition that (I+A)™" is compact,
which has been used in [7, 9, 10].

THEOREM 3. Assume that (1.5) and (1.12) hold and that

(1.21) A< X x X is maximal accretive,

(1.22) there exists xo € A~"(0) such that x € A~ 1(0) whenever [x,y] € A and
(ya X = xO) =0,

(1.23) there exists a closed subspace E of X such that (A71(0)—xo)> U where
U is an open neighborhood of 0 in E,

(1.24) P(I+A)~" is compact, where P is the orthogonal projection onto the
orthogonal complement E of E.

Then (1.7) holds.

Observe that assumption (1.22) was introduced in [5] and termed “firm
positivity”. A related result is to be found in [10, Th. 3.7] where it is assumed
that the closed affine space spanned by 4~ !(0) has codimension 1 and that for
some sequence {t,}o, of positive numbers tending to + 00, lim,_,  S(¢,)x
exists.

The following result answers a question raised in [1, P. IL, Chap. 4].

PROPOSITION 3. Assume that (1.5) and (1.12)—(1.15) hold with x,=0, k,(r)=1,
r>0 and that [x,,y;] € A. Then it does not follow that the semigroup S!
generated (in the sense of (1.5)) by —A', where

AY = {[x,y]| [x+x,y+y;] € A}
satisfies (1.7).
It is easy to see that A' in the proposition above is the subdifferential of the
convex function

Y(x) = (p(x+xl)—())19x+xl)'
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Observe that the approach taken in this paper differs from that in [9, 11]
since there the following convergence condition plays a central role: 4~ *(0) is
nonempty and [x,,y,] € 4, |x,|£C, |y,/<C and lim,_, , (,, z,)=0 imply that

lim inf |x,—Px,| = 0

n-oo

where z, € F(x,—Px,) and P: X — A~ '(0) is the nearest point mapping.

Finally we remark that the convergence of continuous contraction
semigroups studied here is closely related to the convergence of discrete
semigroups of the form T*x, x € C where k is a nonnegative integer and T is a
nonexpansive operator on C.

2. Proof of Theorem 1.
First we establish the following easy

LEMMA 2.1. Assume that (1.1)—(1.3) and (1.5) hold and that lim, _, . S(t)x exists
for all x € D(A). Then lim,_, , S(t)x exists for all x € cl (D(A)).

Proor. This is a direct consequence of the fact that it follows from the
accretivity of 4 that S is a contraction semigroup, i.e.

IS(t)x =Syl = Ix—yl, t20,x,yecl(D(A),
cf. [6].
We may without loss of generality assume that x,=0 in (1.4), otherwise we

perform a translation. Let x € D(A) be arbitrary and put u(t)=S(t)x. It follows
from [6, Prop. 2.3, Th. 3.4] that

2.1) u is Lipschitz-continuous on [0, 00) ,
hence differentiable a.e. (since X is reflexive by (1.1)) and satisfies
(2.2) ‘ [u(®), —u'()]e A ae. t=0.

Since |u(t)| is also differentiable a.e. we have by (1.2), (2.2) and [8, Lemma 3.1]
that for any v e 471(0)

(2.3) didtlu(t)y—v|* = 2(u'(t),z(t)) £ 0 ae. t20

where z(t) € F(u(t)—v).
Assume that lim,_ . u(t) does not exist. Then there exists by (2.3) (since
0 € A~1(0)) a constant ¢, >0 such that

(24) lu(@ 2 ¢; = lim fu(s), ¢20.

5§00
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We also conclude that there exist sequences {r,}o_, and {s,}°2, of real
numbers and a constant ¢, such that

(2'5) |u(rn)_u(sn)| g Cc; > 0’ ngl .

Invoking (1.4), (2.2) and the fact that |u(t)| is contained in a compact subset of
(0,00) (see (2.3) and (2.4)), we deduce the existence of a constant ¢3>0 such
that
— (U (ra+ O+ (5,4 1), 23, (0)
2 (W (ra+0),2,,,(0)+ (W (s, + 8,2, (), n=1, ae 120

where z, ,(t) € F(u(r,+1)), z, ,(t) € F(u(s,+1)) and z3,0(t) € F(u(r,+t)+u(s,
+t)). Integrate this inequality over (0, f) for some ¢ >0, and use [8, Lemma 3.1].
This yields

26) u(ra+0)+u(s,+0)* < |u(r)+uls,)® +cs(u(r,)? = lu(r, + 1)
+luls)? —luls, +07), nz21,:20.

Assume that r,<s, for all n. Then |u(s,)| < [u(r,)| by (2.3) (since 0 € 4 ~10)
and by (1.1) and (2.5) there exists a constant ¢, € (0,1) such that
27 u(r) +uls)® < dcglu(r,)?,  nz1.
On the other hand we have by the triangle inequality
(2.8) lu(ry+0)+uls,+0)I> = Qlu(r,+0|—|u(s,+)—u(r,+1))?, n=1.
Insert (2.7) and (2.8) into (2.6) and first let t — oo and then n — oco. This yields
by (1.6) and (2.4)

4c? < 4cyc?

and since ¢, >0, ¢, <1 we have a contradiction. Consequently lim, _, . u(t) exists
and as x € D(A) was arbitrary, the assertion of Theorem 1 follows from
Lemma 2.1.

3. Proofs of Propositions 1 and 2.

It is well-known that if (1.1) and (1.8) hold, then F is a bijection and F~! (the
inverse of F) is uniformly continuous on bounded sets of X*. Obviously we
have only to show that (1.4) holds with A4 replaced by A4,, (the same fact for 4,
is trivial).

Let [x;,y,] € A5, x;%0, i=1,2. Define

(3.1 0 = min {|x,|,[x,l}, y = max{lx,}Ix,|} .
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Choose ¢ so small that the condition in (1.11) is satisfied and so that {x | |x]|
<&} =D(A,), (this is possible by (1.10)). Since F ! is uniformly continuous we
deduce that there exists a constant ¢, depending on §,y so that for some
Xy € X, |x3]<e

(3.2) F(x;—x3) = F(x))+c F(x;+x;).

By our choice of ¢ there exists y; so that [x;,y;] € 4, and then we have by the
accretivity of 4, and (1.11) that

(yl,F(xl))+(y3,F(x1—x3))+(yl—y3,F(x1—x3)) 20.

Using (3.2) we see that this inequality is equivalent to

(3.3) i F(x +x3) 2 = (2/e) (1, F(xy)) -
In the same way we deduce that
(34 (2, F(x, 4+ x3)) = = (2/c;)(v2, F(x3))

and adding (3.3) and (3.4) we get (1.4) when we note that we may obviously
choose the constant ¢, to depend continuously on |x,| and |x,|. This completes
the proof of Proposition 1.

To prove Proposition 2 we note that all assumptions in Theorem 1 except
(1.4) follow from (1.12)—(1.14) (cf. [3, p. 25, p. 89]). To show that (1.4) holds
we let [x;,y,] € 4, i=1,2. By the definition of the subdifferential we obtain

(V1. X1 = Xo+ €2 (X3 = X)) 2 @(xy)—@(xo—2(x;— X))
and
(V2: X3 = Xo 4+ €2 (X; —Xg)) 2 @(x3) — @ (x—C2(x; — X))

where ¢, =min {k, (]x, — x,|), k; (]x, — xo|)}. Adding these inequalities and using
(1.13) and (1.15) we conclude that (1.4) holds with

ko(s,t) = (min {k, (s),k; (})"" = 1.

Now we can apply Theorem 1 and the proof of Proposition 2 is completed.

4. Proof of Theorem 2.

Let x e D(A) be arbitrary, define u(t)=S(t)x, t=0 and assume that
lim, , ., u(t) does not exist. We may clearly assume that 0 € int (j~*(4~'(0))).
Again it follows from [6, Prop. 2.3, Th. 3.4] that (2.1)-(2.4) hold. From (2.3) we
deduce that
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4.1) re [(u' (1), z(t)|dt < oo, z(t)e F(u(t)—v),t=0,ve A" 1(0).

0

Now it follows from either (1.19), (2.2) and (4.1) or from (1.20) and (2.1)-
(2.3) that there exists a bounded set B in V such that if

4.2) E = {t| t=0, u(t) € j(B)}
then
(4.3) lim m([t, 00)\ E) = 0

where m is Lebesgue mesure. As we assume that lim,_,  u(t) does not exist, it

follows from (2.1) and (4.3) that for some sequences {r,}s>, and {s,}5=, of real

numbers tending to + 0o, such that r,,s, € E, n>1, the inequality (2.5) holds.

From the definition of the set E and the fact that 0 € int (j~'(47'(0))) we
conclude that there exists a constant c¢; >0 such that c;(u(r,)—u(s,) € 471(0),
n21. This yields by (2.3)

(4.4) [u(s,)+cs3(uls,) —uE)) < |lu(r)+cs(u(s,)—u(r,)), n=1

if we assume that r,<s, for all n. In the same way we also obtain
(4.5) lus,)l < lu(r)l, nz=1.
Fix n. We introduce the notation
(4.6)
Vo = u(r), Wy = ulS,) X, = 0, +C(Wy—0,), Yo = Wyt cz(w,—v,).
From the triangle inequality we have

(4'7) Iynl = (l +C3)IW"I —C3IU"| .

From (4.4) we conclude that, see [6, p. 74])
Wy—v,2) =0, ze€eF(x,),

and consequently, adding and subtracting one term,

(4.8) xal® S (vw2), z€F(x,).

We may safely assume that ¢; <1 and hence it follows from (4.5) and (4.6) that
|x,| < |v,l. This fact combined with (1.1), (2.4) and (2.5) gives the existence of a
constant ¢, € (0, 1), such that

(4.9) [on+xal = 2¢alv,l -
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Now we get
4.10)  (v,2) S lim QA7 (x,+ A0, ~Ix,/%)
A—=0+

é (2C4Ivnl - |xn|)|xn|’ Z € F(xn) 5

where the first inequality follows from [6, p. 74] and the second from the
triangle inequality and (4.9). Combining (4.4), (4.6)-(4.8) and (4.10) we get

(L+ca)lulsp)l —cslu(r) = cqlulr,) -

If we let n — oo in this inequality it follows from (2.4) that ¢, <c,c, and since
¢;>0and ¢, <1 we have a contradiction. This completes the proof of Theorem
2, as x € D(A) was arbitrary and we can apply Lemma 2.1.

5. Proof of Theorem 3.

Let x € D(A) be arbitrary and define u(t)=S(t)x, t=0. Without loss of
generality we may assume that x,=0 in (1.22) and (1.23) and that E % {0}, (cf.
[5, p. 22]). First we are going to establish

LEmMA 4.1. If the assumptions of Theorem 3 hold, then u(t) converges weakly
in X as t — oo.

Proor. By [6, Prop. 2.3, Th. 3.4] we conclude that (2.1) and (2.2) hold and
that moreover

(5.1) u(t)e D(4), t=z0,

since (1.3) follows from (1.12) and (1.21), see [3, Prop. 2.2]. We want to apply
[5, Th. 1] and hence we must establish the following complement to [5, Th. 3]

(5.2) ifu,~ u (weakly) as n — oo, [u,,y,] € 4, n=21, {y,}3>, is bounded and
lim,_, . (,, 4,)=0, then u € 471(0).

Let {u,}=, and {y,}o%, be such that the assumptions in (5.2) hold. By (1.23)
there exists »>0 such that

(5.3) ve A '(0) ifveE and |v|<r.

Put u=q+s, u,=q,+s, and y,=w,+z, where ¢, q,, w, € E and s, s, 2, € E.
Since s,=P(I+A)"'(u,+y,) and {u,}>>, and {y,}3, are bounded, it follows

from (1.24) and the weak convergence of u, that
(54) s

,— S as n— 00.

Suppose that w,+0 for all n. Then it is a consequence of (5.3) and the
accretivity of A4 that if v,=rw,|w,| ™!, then
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(_y"’ un) = (ym un—un)+rlwn, g rlwnl
and since lim,_, , (y,, u,)=0 we get
(5.5) w,—0 asn—- o00.

Without loss of generality we may assume that y, ~ y (weakly) as n — oo
and we proceed to show that [u,y] € A. Let [ug,y,] € A be arbitrary. Then (y,
— Yo, U, —Up) 2 0 and using (5.4) and (5.5) one easily sees that (y —yo,u—1,)=0
and the desired conclusion follows from the maximal accretivity of A. In the
same way we deduce that

0u) = lim (y,u,) = 0

and by (1.22) we conclude that the assertion of (5.2) holds. Now we have only
to combine (2.1), (2.2), (5.1), (5.2) with [5, Th. 1] and the proof of Lemma 5.1 is
completed.
Put u(t)=q(t)+s(t) where q(t) € E, s(t) € E for all t=0. Now
s(t) = PU+A) '(u(@®)—uw' () ae t=0

by (2.2) and so it follows from (1.24), (2.1), Lemma 5.1 and the obvious fact
that |u(t)| is bounded, that

(5.6) lim s(t) exists .

=00

The proof will be completed if we show that g(t) also converges.
Observe that (2.3) holds. As an easy consequence we have for t;, >t,>0

(5.7) (u(t;)—ulty),u(ty)—v) £ 0 for every ve A~1(0).
Fix t;>t,>0 and let

q = q(t)—qte), s = s(ty)—s(t) .
The relations (5.3) and (5.7) (with v= —rgq|q|™}) yield

(g+s,u(to) = —rlql
since (gq,5)=0 and so it follows from this inequality that
lu(e)? < —rlgl+1ql” +IsI* + (u(ty), u(to))

and as moreover |u(t,)| <|u(t,)| we conclude that
(5.8) lgl(r—lg) < luto) —lu(e,)* +Is)* .

Since |u(t)]* and s(t) converge by (2.3) and (5.6) we can deduce from (4.8) and
the definitions of ¢ and s that g(t) converges as t — 0o. This completes the



OH THE ASYMPTOTIC BEHAVIOUR OF ... 395

proof of Theorem 3, since x € D(A) was arbitrary and we can apply Lemma
2.1.

6. Proof of Proposition 3.

It follows from a result in [1, P. II, Chap. 4] that there exists a Lipschitz
continuous function B: X — X, (X is the real Hilbert space of square
summable sequences), such that B(0)=0 and B is the subdifferential (in the
sense of (1.14)) of a convex, continuous function ¥: X — [0, 00), ¥(0)=0, but
the semigroup generated by — B does not converge for all x € X. Let u, be
such an element in X and choose r> |u,|. Since B is Lipschitz continuous there
exists a constant ¢ such that

(6.1) W)=yl = clx—=yl, IxlLIyl Sr.
Choose z € X so that

(6.2) lz| = (r+1)(c+1).
Define

(6.3) C={ueX| |lz—ul<r}, D =cleco(CU-C)

and

(6.4)

_ JYu—2)+(z,u) ifuecC
ol = Y(—u—2)—(z,u) ifue —C.

Let xe C,ye —C, a, 20, a+ =1 be such that ax+fly e C U —C, assume
for example that ax+ By € C. Then we have by (6.1)—(6.4), the convexity and
nonnegativity of ¥ and the fact that y(0)=0

(6.5) ag(x)+Bo(y)—elax+py)
ay (x —z) + B (0) + a(z, x) — B(z,y) — Y (ax + By — 2) — (2, ax + By)

v

2 Ylax+pz—z)—Y(ax+ By —2)—2(z By +2)) +2B|z|?
2 —clBz— Byl —2Bzlr + 2P|z
2 2B(|z1* —clzl —cr—|zlr) 2 0.

Since C is closed and convex, every element u € D can be written in the form u
=ax+pfy, xeC,ye —C, o, =0, a+ f=1. Define ¢ on D by

(6.6) 9w = inf{up(x)+Pfp0) | u=ax+py, o,f20,a+p=1,
xeC,ye —C}.
Since  is convex and (6.5) holds, this definition agrees with (6.4) on CU —C.
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Next we show that ¢ is convex on D. Let u;,u, € D, o, 20, a4+ =1 and let ¢
>0 be arbitrary. Then there exists x; € C, y; € —C, ,, f; 20, ; + p;=1,i=1,2
such that

(6.7) 6@ (x)+Bioy) £ @eu)+e,  u = ax+By, i = 1,2.
From (6.6), (6.7) and the convexity of ¢ on the convex sets C and — C we have
@ouy +Buy) = ooy @(x))+ Pz (x2) +afy @ (1) + BP0 (v2)
S a@(uy)+Po(uy)+e .

As >0 was arbitrary, the desired conclusion follows. Finally let ¢ (1) = + oo if
u ¢ D. It is clear from the definition that ¢ is even and since we have shown
that ¢ is convex we have only to check that ¢ is lower semicontinuous. Let
u, € D, u, — uas n — oo. Then there exist for all n x, € C, y, € —C, a,, §,=0,
o,+ B,=1 so that

68) @ (x)+B.0v) £ ew)+nt,  u, = oax,+ By, n = 1.

Taking subsequences if necessary we may assume that o, — a, f, — B, x, = x,
V. =y (weakly) as n — oo and using the fact that C and — C are convex and ¢
is weakly lower semicontinuous on C and —C we conclude from (6.8) that

o) = p(ax+By) = ap(x)+fo(y)
< lim inf (¢, (x,) + B0 (v,) < liminfo(u,) .

Hence ¢ is lower semicontinuous.

Define A by (1.14) and choose {x,y,]=[z,z]. Now it is easy to see, using
the convexity of ¢, that {y | [x,y] € A} only depends on the values of ¢ in a
neighborhood of x and so

(6.9 [x,y] € A' iff Bx=y provided |x|<r,<r

where r; > |u,l. Since clearly [0,0] € A! it follows from (2.1)-(2.3) and (6.9) that
S! equals the semigroup generated by —B on the set |x|<r, and this
semigroup did not converge for all x, |x|<r,. This completes the proof of
Proposition 3.
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