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BANACH-SAKS PROPERTIES
AND SPREADING MODELS

BERNARD BEAUZAMY

Introduction.

Our aim in this paper will be to study several versions of the Banach-Saks
properties for a Banach space E: how they are characterized, how they can be
compared, and also to show that their negation can be described by the
existence of a bounded sequence of points satisfying a certain geometric
property (formally analogous, for example, to R. C. James’s characterization of
non reflexivity [12]).

Such a study was initiated both by H. P. Rosenthal who in [12] gave a
characterization of the spaces which do not possess the property called by us
Banach-Saks—Rosenthal, and by A. Brunel and L. Sucheston ([8], [9]), who,
by associating to any bounded sequence a space with interesting properties,
obtained, among other results, several informations about the Banach-Saks
and the Alternate-Signs Banach—Saks properties.

The idea of using Brunel-Sucheston’s space (called a “spreading model”) to
obtain H. P. Rosenthal’s result was first suggested by L. Tzafriri (see H. P.
Rosenthal [16]). It is carried out in this paper, in which we not only obtain, as a
corollary, H. P. Rosenthal’s result [16], but also a complete description of the
Alternate-signs Banach-Saks property, answering a question of Brunel-
Sucheston [9]. Also, the connections between these properties and the
properties of the spreading model lead to some results which, we think, are
noteworthy.

The organization of the paper will be the following: after recalling the
definitions and basic facts about the Banach—Saks properties which we study,
we introduce, in section I, the Brunel-Sucheston spreading model; most of the
results of this section are well-known and are given without proof. In section II,
we study the following question: when is the spreading model isomorphic to
1,7 The answer, as a corollary, provides H. P. Rosenthal’s result [16], with
some slight improvements. In section III, we turn to the Alternate-Signs
Banach-Saks property and give a complete description of it, both in terms of
geometric conditions and in terms of spreading models.
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In section IV, we turn to operators between Banach spaces: for them,
Banach—Saks properties can also be defined, and we prove for these properties
several factorization results, following, with some simplifications and im-
provements, the lines initiated by us in [4].

In section V, using the tools preceedingly defined, we build an example of a
reflexive space which does not possess Banach-Saks property: the first example
of such a space was given by A. Baerstein [1], but our construction is much
simpler and much more transparent.

The section VI is devoted to the question, asked by H. P. Rosenthal, of the
reiteration of spreading models: given a spreading model of a spreading model
of E, is it a spreading model of E itself? We give an example (due to B. Maurey)
which proves that this is not the case in general.

Let us also mention, to end with this introduction, that we benefitted from
several talks with W. B. Johnson about these questions.

NortaTiON. Besides the usual Banach-Saks property, there are several other
properties, formally analogous, which can be defined for a Banach Space E. Let
us recall the most common of them:

— A Banach space E has the (usual) Banach—Saks property if every bounded
sequence (x,),.n contains a subsequence (x,),.n such that the Cesaro means
n~! 3% x, are norm-convergent.

— A Banach space E has the Alternate-Signs Banach-Saks property if
every bounded sequence (x,),.n contains a subsequence (x,),.n such that the
alternate signs Cesaro means n~! 3] (—1)*x; are norm-convergent.

— A Banach space E has the Banach-Saks—Rosenthal property (sometimes
also called Weak Banach-Saks property) if every weakly null sequence (x,),.n
contains a subsequence (x;),.n such that the Cesaro means n~! 3% x} are norm-
convergent.

We shall denote in short by B.S., A.B.S., B.S.R. these three properties.
Concerning them, the following facts are well known:

a) Every uniformly convex, or more generally super-reflexive, space has B.S.
property (Kakutani [11]); clearly, this property implies B.S.R.

b) Every Banach space which does not contain [{,, uniformly (such a space is
called B. convex; see A. Beck [6]) has A.B.S. This was proved by A. Brunel-
L. Sucheston [9].

¢) Every B. convex Banach space has B.S.R. This was proved by H. P.
Rosenthal [16].

d) B.S. property implies reflexivity, but not conversely (A. Baernstein [1]);
A.B.S. and B.S.R. do not imply reflexivity: ¢, has A.B.S. (Brunel-Sucheston
[91), and I' has B.S.R. (since every weakly null sequence in I' is norm
convergent to zero).
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Our tool for the study of these properties will be the Invariant under
Spreading space introduced by Brunel-Sucheston ([7], [8]), which will lead to
the notion of spreading models. Among other results, the facts a), b), c), just
mentioned will be clearly obtained, so no previous knowledge of these
properties is required, except the fact d), which will be obtained in section V.

For the sake of completeness, we start with some basic considerations about
the Brunel-Sucheston spaces; most of them will be given without proof.

I. Basic properties of Brunel-Sucheston’s spreading models.

ProrosiTioN 1. (Extraction of good subsequences, according to Brunel-
Sucheston):

Let (x,),en be a bounded sequence in a Banach space E. There exists a
subsequence (e,),cn Of (X,)sen and a semi-norm L, defined on the set S of the
finite sequences of scalars (complex or real), such that:

Ve >0,Vaes$, 3veN, v<n <n, < ...
imply
Y ae,ll—L(a)l <&  where a=(a)€S .

The proof of this proposition, which depends on Ramsey’s theorem, can be
found in Brunel-Sucheston ([7] or [8]) for real scalars; the extension to the
complex case is immediate.

If the sequence (x,),n has no Cauchy subsequence (which we assume from
now on), the semi-norm L is a norm. We can then define a norm on the vector
space spanned by the ¢,’s by putting

lae;+ ... +ael = L(a),

if a=(ay,...,a).

We call F the completion of this space under the norm |.|. The norm |.| is
clearly invariant under spreading, which means that, for all n; <n,<...<n,
all a; ... a:

laje; + ... +ael = laje, + ... +ae,] .

The space F will be called the spreading model of E built on the sequence
(x,)sen- The properties of F depend both on E and on the properties of the
sequence (x,),cn. It is an interesting question to describe on F some properties,
either of E, or of (x,),.n, and very little is known in this direction. In the
following pages, we shall answer it in a special case.

Let us mention a few more things (due to Brunel-Sucheston) of the space F:
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it is finitely representable in E, and the shift T defined by T3 a,e,) =3 o€+ 1
is an isometry of F. .

The sequence (e,) will be called the fundamental sequence (in short fs.) of F
(it is not a basis in general). We shall now enter in a few technical ‘facts
concerning it.

LemMa 1. (Brunel-Sucheston [9]). The differences e,,_,—e,, are
unconditional in F; more precisely, if A< B are finite subsets of the integers, one
has, for any sequence of scalars (a;)

s

2 a;(ezi—1—ey)

ieB

Z a;(exi-1—ey)

ied

Proor oF LEMMA 1. It is enough to show that for any n, for any i, between 1
and n,

n

Z a;(ezi-1—ey)
i=1
i%io

n

Z a;(ezi—1—ey)| -

1

lIA

But, for m € N, one has, for all k=0,...,m—1:

n

Z a;(eyi-1—ez)

i=1

io—1

Z a;(eyi—1—€3) +a; (€250 1 +x— €250 +4)
i=1

n
+ Z ai€2i—1+m—€2i4m)| -
i=ig+1

Summing up these equalities and dividing by m, one obtains:

n ip—1
Z ai(eyi—1—ey)| 2 Z ai(eZi—l_eZi)+aio(e2io—l—elig+m—1)/m
i=1 i=1
n
+ Z a;i(€2i—1+m—€2i+m)
i=ig+1
n
2 Z a;(ei-1—€3) “‘2|ai0|/m,
i+io

and this proves the lemma.

There is a case when the sequence (e,),cn itself is unconditional in F, namely
when (x,),cn is weakly null in E:

LEMMA 2. If x, 55> O for o(E,E*), the sequence (e,),.n is unconditional
in F.
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PrOOF OF LEMMA 2. We shall prove more precisely that if A< B are finite
subsets of the integers, we have, for all sequences of scalars (o):

Y oy Y e -

keA keB

<

Let us show for example that
gy +ozes| = |oge; +aze; +oge

the proof of the general statement being completely similar. Let ¢>0. We can
find v € N such that if v<n, <n,<n,, -

{“‘1191 +a,e;+aze;| —|lase, +aze,, +asze, ||| < e
llayes +aszes|—llase,, +asze, ll| < ¢.

Since e, == 0 in E for o(E, E*), there exist positive rational coefficients

Py p .

—ﬁ,...,ﬁk, with p;+...+p, = N, and

I €
N P1€n +1FDP2€y 42+ oo+ Di€ry 1k <|~£:|.

From @ it follows that for j=1 ...k, one can write
laje; +aze, +aze;| = llaje, +aze, +j+aze, invill—¢.

We repeat p, times the inequality with j=1,p, with j=2,... p, with j=k, we
sum up and divide by N. We obtain:

laje; +aze, +azes| 2 llaje, +ay(preq, +1+ - .. +pen +)/N+aze, onill—¢

= I|alen.+a3en,+N+1"_28 2 |a,e; +aze;| -3¢,

and this proves the lemma.

The space F has one more property (proved by Brunel-Sucheston [8]) which
will be useful to us: it is so close to E that the convergence of the Cesaro means
n~!3"e, in F leads to the same property for a subsequence of (e,),en in E:

PropPOSITION 2 (Brunel-Sucheston [8]). If the Cesaro means n~'3Y}e,
converge in F, there is a subsequence (€,),en Of (en)nens Such that, for all
subsequences (€})),en of (€xncn» the Cesaro means n™' Y\ e} are norm convergent
in E.

The proof of this proposition can be found in [8, prop. 3]. We shall come
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back on it later, when we deal with the alternate sums n=! " (— 1), for
which the same property will be true.

We shall now investigate the following question: when is the sequence
(én)nen» in F, equivalent to the usual /,-basis?

II. Spreading models isomorphic with /,.
Let us consider the following two properties of a Banach space E:

There exist 6>0 and a bounded sequence (x,),.y in E such that, for
all k, &y,...,g =1, all n,<n,<... <n,
() 1k
=) ex,l = 4.
(2o
There exist >0 and a bounded sequence (Xp)uen in E such that, for
all k, if k<n;<...<ny, for all scalars Cyvnt Coky
(92) 2k 2k
Z CiXyl 2 0 Z lcil -
1 1

Property (#,) was first considered by H. P. Rosenthal [16], who proved that
it holds if E does not have B.S.R. property.

Property (£,) will be the key for the study of A.B.S. property, in connection
with /,-spreading models. In fact, one has:

THEOREM 1. For a Banach space E, (2,) and (2,) are equivalent, and they are
satisfied if and only if E has a spreading model the fundamental sequence of which
is equivalent to the ,-basis.

Actually, we shall prove more: if the properties (#,) and (2,) are satisfied,
one can sharpen the estimates occuring in them. More precisely, let us
introduce:

For all n>0, there exists a bounded sequence (x,),.n in E such that,
forall k,all g, ...ge=+1,alln,<... <n,

lk
< e 2 e

For all n>0, there exists a bounded sequence (x JneN 10 E such that
for all k, if k<n,<...<ny, for all scalars c, ... cp,

Z CiXp,
1

(CH)
<1+pn.

(22)

Zk
(l—ﬂ);lcfl s = (1+n)zl:|0:|-

Then:
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THEOREM 2. For a Banach space E, the properties (2,), (2,), (?1), (#3) are all
equivalent; they are satisfied if and only if E has a spreading model, the
fundamental sequence of which is equivalent to the l,-basis.

PROOF OF THEOREM 2. 1°) Let us assume that (£,) holds in E, for a sequence
(xp)nen @and a 6> 0. Then, obviously, the same property holds for (e,),n in F,
the spreading model built on the (x,),.n- Therefore, we have for all k, all
& ... 5==11:

LemMaA 3. If, for all k, all ¢, ...¢g=+1,
1 k
7 L &i€i
it
then, for some &' >0, for all k, all scalars ¢, ... c,:

k
Z Ci€;
1

=90,

k
2 5,Z|Ci|'
1

ProoF OF LEMMA 3. a) Let us first assume the scalars (c;) to be real. Then it is
enough to prove the lemma for (c;) € Z. But we have, if we put ¢ =sgnc; p;
=lc;l:

lespres+ ... +eperd 2 leg(ey+ ... +ep)+ex(ep 1+ ey ip)t ..

+elep .. ap 41t ot ) 2 o(pr+...+pd

which, in this case, proves the lemma; the f.s. (e,) of the spreading model F is
therefore equivalent to the usual /;-basis.

b) If F is a complex Banach space, the preceeding computation also holds for
real scalars. Therefore, no subsequence of (e,) can be weak Cauchy (a
subsequence is weak Cauchy if lim ¢ (e}) exists for all £ € F*, but then this limit
also exists for real valued & € F*, and this is not possible if (e,) is, for real
scalars, equivalent to the /,-basis); a subsequence (€)),cn Of (€,),en Must be
equivalent to the complex [;-basis (L. Dor [10]), and therefore the sequence
(e,) itself, since it is I.S.

2°) Let us now assume that E has a spreading model F, built on some
bounded sequence (x,),cn, such that the f.s. (e,),n is equivalent to the [;-basis.
We shall show now that, for all #>0, we can find a subsequence (e;),n Of a
sequence of blocks on the (e,),.n Which satisfies (£5).

For the (e,),cn, We have, in F, the estimates

m Z ol = |Z cel = M Z leil -
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for some constant m, M >0. We shall start by improving these estimates, using
a computation due to R. C. James [13]. Here, it is specially easy, because the
norm of F is I.S. on the sequence (e,),n-

Let us put

K = inf{|} oel ¥ lo|=1},
then K=m. Let n>0; we can find
ny ngy
fi = Y ofe, with ¥ |of| =1,
i=1 1
such that

K = |fil = K(1+n/4).

Since the norm is 1.S., we also have:

Y e

i>ng

K=inf{

Y |a..|=1}.

Therefore, if we put, with the same sequence of scalars af . ... a°

no?®

S = Z a?e(k—l)myh' ,
i=1
we have, for all k e N, K<|f,| K (14 1/4).
If (c;) is a finite sequence of scalars, with 3" |c;=1, we have:
K s Y aifl £ K(1+n/4)
and if we put f}, =K ™!f,, we obtain, for all finite sequences of scalars (c):

Yled S 1Y afil £ A+n/4) Y el -
Let k € N be given. We chose an #7/8-net in the unit sphere of I, which we call
(c,...,cM=1 . 1. There exists an integer v, such that, if
Ve Sy < np < ... < R,

we have, for all [=1,...,L:

2h

Y, 'f

i=1

2k

2 'f,

i=1

< n/8

(because the f; always use the same coefficients (a?), and because the sum
Y% c{f,, “starts” on the integer (n, —1)ny+ 12 v,). Therefore, since T2, |c¥|
=1, for all I:

2k

Y fn

i=1

1-n/8 =< S 1+434/8.
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From this, we deduce that for all finite sequences of scalars c; ... cy:

2!(

; cifw

Now, if we chose e, =f", for all k € N, the sequence (e})ycn Will satisfy (£5): we
shall have, for all k, all sequences c; ... ¢, of scalars, if kSn; <...<ny,

1-3y/8 < < 1+59/8.

2* 2k
(1=3n/8) Y leil = < (1+51/8) ; leil -
1

ReMARK. If we wish only to obtain (2,) instead of (£), that is, if we do not
try to improve the estimates, we do not need to take blocks on the x,’s: we
obtain (2,), by this method, on a subsequence of the x,’s. Let us observe,
however, that if (x,),.n is weakly null in E, so is (e}),eN-

3°) Let us now show that (%) implies (#). Let >0,k e N, n; <...<n,
.. &= =*1, be given. Let (x));.n be the sequence satisfying (#)) in E with n
replaced by n'=#3/2. ,
Let us denote by [x] the integer part of x, x € R*, and let us call k'
=[log, k]. We have

k k k'
”k“ Y ex,|| 2 }k" Y el — kMY gixnl| -
1 k'+1 1
For the sum Y% ., &x,, we obtain by (%)
k
Y &xy)| 2 (1=m)(k—K)
k'+1
and
»
Y Xyl S K(L+n)
1
Therefore:
1 & k—k k
=Y &X 2 A=n)———(L+n)-.
2 oy
| z1-9
if k is greater than some k, (depending on n).
Let us put
1 & 1
yl ‘k— Z X- ""yj k Z x(] l)ko+l’ ..
i= 0 i=1
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We then have, by the preceeding computation, for all k,all e, ... g = t1,all n,
<...<ng:
2

E Z Eiyni

1

1 k 1 ko
o PRGHEEY EE)

i=1 =1
and since ||y;| £1+#, property (£)) holds, for the sequence (y,),en-

Obviously, (#;) implies (2,) and (£3) implies (2,). If (#,) holds for some ¢
>0, it can be proved as in 3°) that (£,) holds with /2. Therefore, theorem 2 is
proved.

We shall now apply these tools in order to obtain Rosenthal’s result [16]:
property (£,) holds is E does not have B.S.R. property.

ProrosiTioN 1. (H. P. Rosenthal [16]). If there exists in E a weakly null
sequence such that no subsequence has norm-converging Cesaro averages, E has

property (2,).

ProoF oF propPoSITION 1. Let (x,) be such a sequence; it follows from
Lemma 1.2 that (e,) is an unconditional basis of the spreading model F built on
the sequence (x,). From proposition 1.2. follows that the Cesaro means
n~!3"e, cannot converge in F.

LemMa 1. If n=1 3" ¢, does not converge in F, there exists a >0 such that for
all n |n"*Y% el >0.

Proor oF LEMMA 1. There exists an increasing sequence of integers n, and
a 6,>0 such that, for all k:

n
ety el > 6.
1

We shall show that this implies for all n

nl'Y el > 6,/2.
j

Let n € N. We choose j great enough to have (nsup;le;|)/n;<d,/2. Dividing N
=n; by n, we obtain

N = nk+r, r<n.

But:

1 1 1
0, = I'V'|e1+~~-+eN| s 'I_V_lel+"'+enk|+ﬁlenk+1+"‘+enk+r|



BANACH-SAKS PROPERTIES AND SPREADING MODELS 367

which implies

1 .
—ley+ ... +eul = 0,/2.

N
Therefore
1
—n—lglel+ cootenl = 0,/2.
But since
les+...+el = les +...teyl = ... = leu-n+ ... +eul,

the lemma follows.
Since (e,) is monotonic-unconditional, we obtain from lemma 1:
12 12 o
Z e z > =
nzlzg'el nzlze"‘2’
forall nand all ¢, . .. ¢,= + 1. It now follows as in the proof of theorem 2, 1°),

that (e,) is equivalent, in F, to the [,-basis. Theorem 2 now implies that the
properties (2,) and (#,) are satisfied, which proves proposition 1.

2

2

ReMARK. We obtained the estimates (¢£)), which slightly improves
Rosenthal’s result, who gave only (£,). In fact, to obtain estimates as good as
one wants is of great help for proving factorization results, as we shall see in
section 1V.

Let us now say a few words about properties (2,) or (2,). Obviously, if they
hold in E, the space cannot have Banach-Saks property: if (x,) satisfies (2,),
one can write, for any subsequence (x,) of (x,):

1 n 2n
— . xl - xr
Hzn (21: ‘ ..;1 k)
and (x) cannot have norm-convergent Cesaro averages. But the space ¢, does
not have Banach-Saks property, and, as will be seen in the next paragraph,

does not possess (2,) either: (2,), therefore, is not a characterization of Non
B.S. But of course, for reflexive spaces, both coincide:

1L 1B
n1Xk 2n Xk

1

=0

ProposiTiON 2. For reflexive spaces, (#,) and Non B.S. are equivalent.

Proor of PROPOSITION 2. For reflexive spaces, Non-B.S. and Non-B.S.R.
are equivalent, and the latter implies (£,).
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Also, if (2,) is satisfied, so is (#,), and E must contain /{” uniformly. But c,
contains I{” uniformly and does not possess (£2,): (2,) is not equivalent to the
fact of containing [{” uniformly. It is of course satisfied if E contains [;, but
conversely, Baernstein space [1] is reflexive, does not have B.S. property,
therefore does not have B.S.R. property (since they are equivalent for reflexive
spaces), so has (2,) (Proposition 1 and Theorem 2), but does not contain ;.
Therefore, (2,) is strictly intermediate between containing [; and containing
19 uniformly.

We have seen that (#,) does not describe Non-B.S.; it does not describe
Non-B.S.R. either: Proposition 1 says that Non-B.S.R. implies (#,), but I, has
obviously both (#,) and B.S.R. There is, however, a class of spaces for which
(#,) and Non-B.S.R. are equivalent:

ProposiTION 3. For Banach spaces non-containing 1, the properties (#,) and
Non-B.S.R. are equivalent.

Proor ofF ProposiTION 3. In any Banach space, Non-B.S.R. implies (Z,).
Conversely, assume (#,) to be satisfied for a bounded sequence (x,),cn. If E
does not contain [, the sequence (x,),.n contains, according to a result of
H. P. Rosenthal [15], a subsequence (x),.n Which is weak-Cauchy:
this means that for all ¢ € E*, the limit lim,_  £(x) exists. If we take the
differences y, =%(x}, - — X5.), we obtain a weakly null sequence, which satisfies
(with the same &) the estimates (£,). Therefore, as already observed, non
subsequence of (,),en can have norm-convergent Cesaro averages, and E does

not have B.S.R. property.

In the next paragraph, we shall investigate a new version of the Banach-Saks
property, the A.B.S. property, which will be intermediate between B.S. and
B.S.R. It will be found that the equivalent formulations occuring in theorem 2
provide a complete characterization of this new B.S. property.

II1. The Alternate signs Banach-Saks property.

Let us make an attempt to find properties weaker than the usual Banach-
Saks property. Les us consider:

For every bounded sequence (x,),.n in E, there is a subsequence
(1) (x.).en and a sequence (g,),en Of signs such that the averages
n~ 13" ¢x, are norm-convergent.

For every bounded sequence (x,),.n in E, there is a subsequence
2 (x,),en and a sequence (g,),.n Of signs such that the averages
n~13"¢.x) are norm-convergent to zero.
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For every bounded sequence (x,),.n in E, there is a subsequence
3) (x.)nen Such that the alternate signs averages n~*' Y7 (—1)*x} are norm-
convergent.

For every bounded sequence (x,),.n in E, there is a subsequence
@) (x.)nen such that the alternate signs averages n~! 37 (— 1)*x} are norm-
convergent to zero.

Then, the main theorem of this paragraph is:

TueoreM 1. For a Banach space E, properties (1), (2), (3), (4), are all
equivalent. They are satisfied if and only if the equivalent formulations occuring
in theorem I1.2 are not.

We shall say that E has Alternate signs Banach—Saks property if (1), (2), (3),
(4), hold. This property has already been studied by A. Brunel and L.
Sucheston [9], who proved that a B. convex space has it, but that B. convexity
is not necessary, since c, also has it. Our result is of course much stronger,
since it provides a complete description of the A.B.S. property.

PrOOF OF THEOREM 1.  Obviously, @)= (2)= (1); @) = 3)= (1).
Obviously also, if (2,) holds none of (1), (2), (3), (4), can hold, as we have
already observed.

Assume that (4) does not hold. Then we can find a bounded sequence (x,),n
in E such that, for all subsequence (x,),.n, the sums n™! 3% (—1)*x} do not
converge to zero. Of course, we can restrict ourselves to the good subsequence

(ennen Of (X,)en, built by prop. I.1., and we can assume ||x,|| =1 V n, therefore
le =1 Vn.

PrOPOSITION 1. If the sequence n~'3" (—1)*e, converges in F, there is a
subsequence (€,),.n Of the sequence (e,),cn Such that, for all subsequences
(€neny ™10 (—1)*e; converges to zero in E.

Proor oF ProrosiTion 1. This proposition is quite analogous to
Proposition 3 of Brunel-Sucheston [8], and our proof will follow the same
lines. The only difference is that here we deal with alternate signs, whereas in
[9] all signs are +.

Let us assume that n™' 37 (—1)*e¢, 55> y in F.

Lemma 1. If y=lim,, n~' 3% (—)te, in F, then y=0.

PrOOF OF LEMMA 1. Let us put s,=n" 31 (—1)e,. If s, 55> y in F,
Sy —S3, — 0. But:

Math. Scand. 44 — 24
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Sp—S2m =

n 1 2n
X (=De=-53 (-1,

S| =

1 n 2n
=—Y (= e~ —1)ke
2 L (~ Ve ¥ (- e
and therefore:

n

1 2n
Isu =520l = ‘5 (z (- Dfe— 3 (—1)*ek+1)

1 n+1
1 2n+1
= %( 21: (—l)kek—(—l)"“e.m)
hence:
2n+1 1
Sp— Szl 2 Tlhwﬁ"ﬂ

from which follows s,,.; 5> 0, and y=0, which proves the lemma.

Let us come back to the proof of Proposition 1. For all ¢> 0, there exists an
integer P(¢) such that, if p=P(e),

<eée€.

{p" T (= 1e,
1

From the construction of Brunel-Sucheston’s spreading model (prop. I.1), it
follows that, when p > P(e), there exists an integer N (depending on ¢, p), such
that if

N=<n<n<...n
then

® Hw 3 (= 1Ye,

1

<é€.

Let us choose by induction an increasing sequence of integers (P,),cn, With:

P, 2 P(1/2")
P, 2 nP,_, Letusputv(m)=NQ2™",P,),r,=X5_, (v(j)+ P)). For the r,’s, we
have:

Tnti g rn+Pn

r, = v(n.
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From @ follows that, if r,Sm;<m,< ... mp, then

1 P,
() — Y (=1Ye, || < 1/2".
Pn 1 ’

Let us consider the terms (e;) of indexes

rtL 42,0 +P 1, L+ Py, L+, L+ P,

written in this order, and let us call them y,,y, . . .. Let (z;) be a subsequence of
the (y;). Let n € N and let k be the integer defined by

P +... 4P, Sn<P+...+P,.
Set m=n—Y*% P,, We write the Euclidean division:
m=dP+0Q, Q<P
and again

O = diP 1 +Qi Qi < Py

We can now write:
Y (=Wz = [(=Dzy+ ...+ (=D)zp ] +
ji=1

(=P zp 4 (=D tPezp ]+
+... +[(—l)P‘+"'+P“‘+12P,+...PH,+1+ cee +("1)P'+“'P*ZP,+...P,‘]
+(_I)P'+“'+P"+IZP,+...+P,+1+ (=),
For the terms between brackets, the condition @ implies:
=Dz 4.+ (=D zp || < P27
H=DPHzp gyt 4+ (=P Pozp ) < P22
“("‘I)P'Jr'“'+P""+IZP,+...+P,‘~,+1+ . +(‘“I)P‘+"'+P"ZP,+...+P,‘||
< P27k,
We have now to consider the m terms of the sum
(=Dzp 4. 4Pt -+ (=D"2zp 1 4P4m-

For the first d,P,, by grouping them into d, blocks of P, terms, we have, by
using @, a majoration by d,P,27* There remains Q, terms. For the first
d,P,_,;, we obtain again d,P,_,27%*!. For the last Q; terms, we use the
triangular inequality.
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Finally, dividing by n, we obtain:

12 Sk_,279P; 0,
- 2|l < Jj=1 J 4 o-k otk Xk
n ; = P P; * * * P,
because d,P,/n<1 (since d,P,<m=n), and '
Oi- Q- .
% =< —;);—1 (since n=Py) .

But if n— + 00, k — + 00, and all these terms go to zero (since Q;/P, <P, _,/P,
<1/k); the proof of Proposition 1 follows.

Let us come back to the proof of theorem 1. If (4) does not hold, it follows
clearly from Proposition 1 that n=! 37 (— 1)*e, does not converge in F. Exactly
as in Lemma II.1, it follows that we can find a >0 such that, for all n:

> 0.

nt Y (= e
1

LemMA 2. If, for all n, [n"' 3% (—1)*e,| > 8, then, for all choices of signs
g ...6,=71,

> 0/4.

n
n by ge,
1

ProoF OF LEMMA 2. Let ne N, ¢, ... ¢,= +1; we can write:
lejer+ ... +ee, = lejeg+ees+ ... +eeq,- 4l
and also
= |—ge,—... =¢85, .
Therefore:

leser+ ... e, 2 |%[£1(e1 —e)+e(e3—e)+ ... te,ler,—-1—ex)]l .

But from Lemma 1.1, follows that:
leg(e; —ex)+ ... +e,(ez0—1—€24) 2 I'%[ex_ez"' cooteg1—ell,

which proves the Lemma.

But then Lemma IL.3 implies that (e,),en is equivalent, in F, with the [,-
basis; the other properties follow from Theorem II.2. Our theorem is proved.

In comparison with the equivalent formulations occuring in theorem 1, let us



BANACH-SAKS PROPERTIES AND SPREADING MODELS 373

mention the following result obtained by B. Maurey and G. Pisier [14]: a
Banach E is B convex if and only if, for any bounded sequence (x,),.n, there
exists a sequence of signs (g,),en Such that n™!' ¥ gx, 55> 0 in E (no
extraction of subsequence is needed).

It is clear that A.B.S. property is weaker than B.S.; it is stronger that B.S.R,,
since Non B.S.R. implies (#2,).

¢o is an example of space having A.B.S. (Brunel-Sucheston [9]) without
having B.S.; I, is an example of space having B.S.R. without A.B.S.

It is also clear that B. convexity implies A.B.S.: as we already observed,
properties (#2,) and (£,) imply that E contains [{” uniformly.

The previous results allow us to give easily a geometric description of the
negation of Banach-Saks property:

PROPOSITION 2. A Banach space E does not have Banach—Saks property if and
only if the following property holds:

There exists a bounded sequence (x,),.N in E and a number 6 >0 such
that, for all subsequences (X,),en Of (Xwuens all m € N, all k with 1<k

<m, one has:
1<k m >
Ly x-3 %
J J
“m 1 k+1

ProOF OF PROPOSITION 2. a) If this property holds for a bounded sequence
(x,), no subsequence of it can have norm convergent Cesaro averages, and E
cannot have Banach-Saks property.

b) Assume now that E does not have Banach—Saks property. Then two cases
are possible:

o) E is reflexive. Then, E does not have B.S.R. property either, then has
property (£,), which obviously implies (23).

B) E is not reflexive. Then, by a result of R. C. James [12], there exists a
sequence of points (x,),.n Of norm 1, satisfying for all k e N,

(Z5)

=0.

©) ’ dist (conv (xy,. . .,X,), span (Xg41,--.)) = 1o -
We shall see that this condition implies (2,).

For m,k € N, with k<m, if k <[%], one has, for any subsequence (x});en Of
(xj)jeN:

1 k m 1 m k [m/3]
’ / ’ / ’
”;(Z Xj= 2 x,) 2 ;( x| =12 X — > xi>
1 k+1 [m/3]1+1 1 k+1

>29 1=i

=37 3 15°
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and if k>[m/3], since by @ we can write:

k ) 9
> p—
REEPE B
we obtain
1/k m 9 k 3
— - > 2 >
m(? i ,El x’) = 10m = 10’

from which (2,) follows.

Let us now say a word about the super-properties associated with the several
Banach-Saks properties. For the usual Banach-Saks property, the super-
property is obviously super-reflexivity (since B.S. is weaker than super-
reflexivity and stronger than reflexivity).

For A.B.S. property, we have:

PrOPOSITION 3. The super-property A.B.S. is B-convexity.

PrOOF OF ProPOSITION 3. If E is B convex, it has A.B.S., therefore super
ABS. If E is not, [, is finitely representable in E, and I; does not have A.B.S.

For super-B.S.R., no complete description is known: it is only clear that [,
and the B-convex spaces have this property.

Let us now turn to the Banach-Saks properties for operators; we shall try to
prove for them some factorization theorems.

Iv. Factoring Banach-Saks properties.

Let now A4, A, be Banach spaces, and T a continuous operator from A4 into
A,. We shall say that:

— T has B.S. property if any bounded sequence (xp)sen contains a
subsequence (x,),cn such that the averages n~! 21 Tx; converge in A4,.

— T has A.B.S. property if any bounded sequence (x,),.n in 4 contains a
subsequence (x;),.\ such that the averages n ™! 31 (= 1)¥Tx; converge in 4,.

T has B.S.R. property if any weakly null sequence (xp)wen In A contains a
subsequence (xj),.n such that the averages n=! 3" T (x;) converge in A,.

Finally, we shall say that T factors through a Banach space Y if there exist
operators U: A — Y, V: Y— A,, with VoU=T,

Our aim, in this paragraph, will be to establish the following theorems (the
first one already appeared in [4]).
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THEOREM 1. Any operator which possesses Banach—Saks property factors
through a space which has the same property.

THEOREM 2. For an operator, the corresponding formulations of (1), (2), (3), (4)
of section 111 are all equivalent (we call them A.B.S.); any operator satisfying
them factors through a space with A.B.S.

For B.S.R. property, the result is not so satisfactory:

THEOREM 3. Any injection, starting from a space which does not contain l,,
possessing B.S.R. property. factors through a space with B.S.R.

Let us call A4, the space 4, equipped with the gauge of T(B,) (this space is
isometric with A/ker T). There is a continuous injection i between 4, and 4,
and any space Y intermediate between A, and A, is a factorization space for T.
The spaces possessing the required properties will be a special class of
intermediate spaces: the Lions—Peetre Interpolation spaces.

We refer to [5] for a detailed study of these spaces. Let us recall briefly that
the norm is defined by:

@  lxllg a0, = inf  max (||e*'x(t)l| L4, 1€ %X (@) Lo(a,)

J x(t)dt=x

-

with £,<0, &,>0, l<p<oo, &/(&y—&,)=0 and that the following formulas
hold:

@ x| (A Ae, = inf ||eé°'x(t)||llﬂgo)' ||e¢°‘x(t)||2p(,,l)

‘[ x(t)dt=x

- 00

and, for some C, all x € A,

®  Ixl(apap,, = Clixlh,® Ixl, -

The proof of the three theorems will follow from the next proposition:

PROPOSITION 1. If the spaces (A, A,), , have property (2,), there exists in Ay
a bounded sequence (e,),.n Which satisfies property (#,) in A, (for some 6>0)
(we identify a point of A, and its image in A, by the canonical embedding).

If (e,),cn is bounded in A, and gives (2,) in A,, it gives automatically (#,)
in A, also: we shall then say that 4, and 4, have (£,) homothetically.
Our proof of proposition 1 follows the same lines as in [4], but will be much
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simpler, since we obtained in section II, for Property (2,), estimates as good as
we want.
Let >0 be small enough for, if we set

S 1—y r-e 1—7 1/6
n=1 m"‘([(uzn)"] ’[(1+2n)‘*"_] )

we have ' < (35). For all n, we choose e,(t) with [fXe,(t)dt=e,, and

@ max (||e®'e, () Lray lle e, (O)llLriay) < 1421 .

If (Ao, A1)e,, has property (2,), it has (2)), (by theorem II.2), from which
follows that, by (2):

1 k
1_’1 é “Zsiem
k 1 (AO’AI)B.p
1k 1-9 1k 0
< bl Z 8,-2,"([) et~ Z Eie"i(t)
k3 LP(4,) kT L7(4,)
which gives:
1 k
e =% ge, (t) 2 1-n
k3 L?(4y)
® Lk
eél‘_ Z Bl'ell.'(t) g 1""7]’ .
kT LP(4,)

LEMMA 1. There exists a number M >0 and an integer i, such that, for all i
=iy, one has simultaneously:

+M P 1/p
(J e'e,(t) dt) > 1-27
-M Ao
® +M p 1/p
(J eble,(t) dt) > 1-27¢.
-M 4,

This lemma means of course that the (e;(t));.n take almost their whole mass
on a fixed compact set, both in 4, and in A4,.

Proor or LemMa 1. It is clearly enough to prove separately, for 4, and 4,,
the existence of M and i,. Let us prove it for 4, If the conclusion was false, one
could find a sequence of (M,) strictly increasing to infinity, a sequence of (i),
strictly increasing, such that:
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M, 1/p
q Ile§°’ei.(t)llﬁodt) < 1-27

"Mk

1/p
(j le**e;, (£)11%, dt) <n/2.
[t1>M,sy

e, (t) if Mps|t|<M;,,

0 if not ,

We put

€, (1)

and e (t)=e, (t)— e, (t).
The e (t) are disjointly supported, and for the ¢;;, we have

’ ' 3’1/
e (Olray < 1-21 + 0 = 1=
lle*'e;, (Dl ray) = n+ ) )
Then we obtain, for all n:
eﬁo' n e{qt n
l-n" = Y e, (t) < Y e, ()
noq LP(Ag) n LP(A)

et 1 1 3
+ e, (1) £ 1+2p)—=+1——
n ; LP(Ag) nl p 2

and this cannot happen if n is large enough; this contradiction proves the
lemma.

We eliminate the first i, terms of the sequence (e;(t)); the conclusion of the
lemma follows, after renumerating, with i, =1.
Let us put

L) = e(t) if =M
=0 if not ,

and g, (t)=e,(t)—f(t); let us put finally:
+ 00 + 00
S = J fde; g = J g ()dt .

LEMMA 2. The points f; are in A,, and their norms are bounded in A,.

Proor or LEMMA 2. We have:

+M
j e, (1) dt

I\

I fillay = i

+M
f e” ' [le®ey (1)l 4, dt
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and with g=p/p—1:

+M 1/q +M 1/p
(J e~ %1 dt) . (J e, (0)11%, dt>
-M -M
+M 1/q
< (1—2n)<f e‘¢°“'dt> ,
-M

which proves the lemma.

IIA

We shall now see that, in (4o, 4,), ,, the differences e, —f, have a small
norm:

LemMA 3. For all k € N, one has:

"ek—'ﬁc"(Ao,Al)e'p < 8(n)'r.
PrOOF OF LEMMA 3. We have e, —f, = [;;;>u €(t)dt, and therefore:

||ek—fk||(Ao,A,)M < max (lle§0‘gk(t)||L”(Ao)5 "eéltgk(t)”L"(A,))

which, by estimates @ and ®, can be shown to be at most equal to 8(i’)"/.

It follows from Lemma 3 that, in (4, 4,),,, the f;’s give property (2,): for
all ke N,allg ...¢,all n,<...<n, one has:
k

]2 e 4

ah
2 1—'7“(3'1)”" z 1/2,
by the choices of 1 and #'. Since the points (f,) are in A4,, formula @ and
Lemma 2. give:

<)
<

en.- '—fn,»
A

1 k

Z lf;l.

12 1

E Z Eif".‘ Z tfn,
1 A

and since | fi|| 4, < C,, we obtain, for some &' >0:

1 k

x 21: &ifo

< Cli+

5:

0

20,

4,

which proves Proposition 1.

We shall now deduce from Proposition 1 the proof of the three theorems we
have mentioned:

PROOF OF THEOREM 1. Let us assume that T, from A into 4,, has B.S. One
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checks immediately that i, from A, into A,, also has B.S. Then i is weakly
compact, and, by [2], (4o, A4,)y, , is reflexive.

But 4, and A4, cannot have (#2,) homothetically, since i has B.S. From
Proposition 1 follows that (4, 4,),,, does not have (2,) either, and it must
have B.S., by section IIIL

PrOOF OF THEOREM 2. Let us assume that T has A.B.S.; then i has A.B.S.
also, and A4,, A, cannot have (£2;) homothetically. It follows from Proposition
1 that (4, 4,), , does not have (2,), and has A.B.S. by theorem III.2.

ProOF OF TIEOREM 3. If (Ao, 4,)y,, does not have B.S.R,, it has (#,), and
Ay, A, have (2,) homothetically, on a sequence (e,),.n bounded in A,. Since
A, does not contain [, by a result of H. P. Rosenthal [15], some subsequence
of (e,),en is weak-Cauchy; the consecutive differences on this subsequence are
weakly null on A, and satisfy (2,) in A,: this contradicts the fact that i has
B.S.R.

We have assumed, in theorem 3, that T was an injection, because it is not
clear that i has B.S.R. if T has it.

Let us finally mention that it follows easily from theorems 1 and 2 that
uniformly convexifying operators (see [2] for definition) factor through a space
with Banach—-Saks property, and that Type Rademacher operators (see [3] for
definition) factor through a space with Alternate Signs Banach-Saks property.

Y. Construction of a Baernstein space.

In this paragraph, we shall show how the tools introduced and the results
obtained allow us to build a reflexive space without Banach—Saks property.
This has already been observed by W. J. Davis, T. Figiel, W. B. Johnson, A.
Pelizynski in [18].

Our starting point will be a space close to the one introduced by J. Schreier
[17], and built along the same lines. We shall call it S. Let us give its
construction.

If A={ny,n,,...,n}, with n,<n,<...<n,, we call A admissible if k<n,.
We denote by 4" the set of all admissible (finite) subsets of N. The space S is
the closure of the finite sequences of real scalars under the norm

Ixlls = sup 3 |x(@)

AeN ieA

(where, as usually, we denote by x(i) the ith term of the sequence x). The
following facts follow clearly from the definition:
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a) There is a canonical injection of norm one from /; into S; the points of the
‘canonical basis (e,),.n Of /; are of norm one in S.
b) One also has

xlls = sup {Z x())é(@) ; A admissible set, £(i)= il}
ied

and therefore S is isometric to a subspace of a space %(K), where K is a
countable compact set; it follows that S cannot contain [,.

c) The sequence (e,),.n satisfies property (2,) in § with §=1. Since it also
satisfies (#,) in [}, S and [, have (2,) homothetically.

d) For any subsequence (e}),.n Of (e,),cn, it is easily checked that:
121 21—

27 X,

=2k

s n

from which follows that the sequence (e,),.n must be weakly convergent to
zero. By the Krein—Smulian theorem, the closed convex hull of the e,’s is
weakly compact in S, and, therefore, the injection from [, into S is weakly
compact.

Let us now take the interpolation space (/,,S),,, (0<6<1, 1 <p<o0). From
[2] follows that this space is reflexive, and from section III, theorem 1, follows
that it cannot have Banach—Saks property.

V1. Reiteration of spreading models.

We shall now consider the following question, asked by H. P. Rosenthal:
given a space E, a spreading model F, of E, built on some bounded sequence
(xp)men Of E, a spreading model F, of F,, built on some bounded sequence
(Vwmen Of Fy, can F, be represented as a spreading model of E? More precisely,
does there exist another bounded sequence (x}),.n Of E such that the model
built on (x,),.N is isometric with F,? We shall show that the answer to this
question is negative.

Let us consider a space with property (2,). By section II theorem 1 it has a
spreading model F, isomorphic to ; let (e,) be the basis of this spreading
model. By James’s argument, we can construct blocks

i+ P +1
fo= Y oe,  with ,20, Y o =1,
nt1 n+1

such that || f,|[r, £1+1/n, ¥ n, and, for any n, for any finite sequence of scalars

(cl')a
T o ;O—szm
F, nj izn

izn
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It follows from these two conditions that the spreading model F, built on the
sequence (f,) in F, must be isometric with /. Therefore, to prove our claim, we
need only to produce a space possessing property (£,) and having no
spreading model isometric with /,. The following example of such a space is
due to B. Maurey.

Let us call E the space S equipped with the norm

Ixle = lxll;,+lxlls -

The norm ||. | g is equivalent with ||.||s; E must therefore have property (£,).

We shall show that E has no spreading model isometric with [,. Let us
assume, on the contrary, that the spreading model F, built on a bounded
sequence (x,),cN» i isometric with [,. On this sequence (x,),.n, W€ can make
the following assumptions, by passing to subsequences if necessary:

— X, lg=1 Vn

— (x,)nen 18 @ good sequence, according to Brunel-Sucheston

— (x,)nen is weak Cauchy (since E does not contain [/, by fact b) in the
preceeding paragraph).

We can also assume that each of the x,’s is finitely supported: if not, we take x,
finitely supported, with |x,—x,| <1/n.

Now, let us put y,=%i(x,,—x,,-;). The sequence (y,),n is weakly
convergent to zero, each of the y,’s is finitely supported: y,(i)=0 for i>i(n), and
the spreading model built on the y,’s is still isometric with /;:

Ve>0, V (c,) finite sequence of scalars, 3v sueh that if v=n,<n,<...

X WY comlle=2 lell < e.

By, again, eventually passing to a subsequence of the y,’s, we can assume, from
@, that
1=27" < yalle = 14277

Since the coordinate functionals are continuous, and since (y,),.n is weakly
null, we can find a strictly increasing sequence (a,),.n Of integers, and
subsequence (y,),en Of the (¥,),en With:

o | 2 s

y.@) =0 for i>a,.

LEMMA 1. The quantities |y, |, tend to zero when n — oo.
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PROOF OF LEMMA 1. Assume on the contrary that this is not the case. Then
we can find a subsequence of the (Vuhnens still denoted by (v,),.n, and a §>0
such that

96
— < ! <
® 0= il 6.

It follows from @ that there exists v € N such that, if vEm;<m,:

0

0
2___ S ’ ’ ..<._ .
@ 10 = ”ym, +ymz“E = 2+ 10

But y;, and y,_ are almost disjointly supported: we have, by @:

’ ’ 1 ’ ’
”ym1 +ym1 ”loC é max (EE + “yml ”.l(,g ”ymz ”loc)

and if v has been chosen large enough for 27*< /10, we have

116

’ q S .
”ym1+ym2”lm = 10

But then

’ a 116 2 ’
”yml +ym2 ”E § TO + ”ym, +ym2”S

76

= llyi..,||5+||yi..2|lg—m, by ®

)
2—5.

IIA

But this, compared with @, is impossible: this contradiction proves the
lemma.

LeMMaA 2. For all y € E with Iyle=1, we have ||y +y.|ls — 1, when n — oo.

PROOF OF LEMMA 2. Let &> 0 be given; let y € E; choose y’ finitely supported
with |ly—y'[| <e/2. Let j, be such that Y'()=0if j>j,. Choose m, such that
Z 'ym(j)l é 2—m for mzmo )

JZo
and m, 2m, such that, by lemma 1,

Iymli, = if mzm, .

€
2jo
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Let A be an admissible set. Then:

— either A4 begins before j,, and then, has at most j, elements. Then we have:

PIRVESAG Y Iy'(i)l+'ZA Wm @]

ieA ieA

Ltjollymll, £ 14+¢/2

lIA

— or A begins after j,, and then:

.ZA 10/ +y) () = .ZA m@ = 1+12m < 1+

N ™

for m large enough.

But also, we can find a set 4 for which

Y a2 1-¢2,

ieA
from which follow that, for m large enough:

E / !

1—5 S Y +ymls £ 1+e/2
and therefore | |ly+y,,lls— 1| <&, which proves our lemma.
It is now clear that D and lemma 2 are in contradiction: for v large enough,
we have, if v=m, <m,:
2—15 < Vm +Vmlle £ 2475

and, by lemma 1:

IA

1ym e, = 1710, Iyl = 1/10,
which implies:

2=7% S [Vm +Vmlls £ 2415,

contradicting lemma 2. This achieves the construction of our example.
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