A RESULT ON SPECTRAL SYNTHESIS OF DIRECT PRODUCTS

RUPERT LASSER

It is well known that for locally compact abelian groups G a closed subset S of \widehat{G} with scattered boundary ∂S is a C-set, see [1, Theorem 2.5.1] or [2, Ch. 2, § 5.3]. We shall show that under certain conditions the product $S \cdot T$ of a closed subset S with scattered boundary ∂S in a closed subgroup $(G/H) \subseteq \widehat{G}$ and a compact C-set T in \widehat{G} is an S-set, respectively C-set, if the product $(G/H) \cdot T$ is direct. $((G/H) \cdot T)$ is a direct product, if every element λ of $(G/H) \cdot T$ has a unique representation $\lambda = \beta \gamma$, $\beta \in (G/H) \cdot \gamma \in T$. This is equivalent to the injectivity of T on T, where $T : \widehat{G} \to \widehat{H}$ denotes the restriction map of \widehat{G} on \widehat{H}). More precisely we shall prove the following theorem, the demonstration of which is based on an appropriate modification of the technique of local membership. We shall use the notation of [1].

THEROEM. Let G be a locally compact abelian group, H a closed subgroup and $r: \hat{G} \to \hat{H}$ the restriction map of \hat{G} on \hat{H} . Let $T \subseteq \hat{G}$ be a compact C-set, such that r is one-to-one on T, and let $S \subseteq (G/H)^{\hat{}}$ be a closed set with scattered boundary ∂S .

- a) If $(G/H) \cdot T$ is an S-set, then $S \cdot T$ is an S-set.
- b) If $(G/H) \cdot T$ is a C-set and the approximate identity of $k((G/H) \cdot T)$ is bounded in the "multiplier norm" on $k(S \cdot T)$, (i.e. $||f|| = \sup\{||f * g||_1 : g \in k(S \cdot T), ||g||_1 = 1\}$), then $S \cdot T$ is a C-set.

PROOF. a) Suppose that I is a closed ideal in $L^1(G)$ with $Z(I) = S \cdot T$, and let $f \in L^1(G)$.

- (i) We prove that if f satisfies the following 2 conditions, then $f \in I$:
- (1) there exist a compact set $C \subseteq (G/H)^{\hat{}}$ and a $g \in I$ such that $f g \in k(((G/H)^{\hat{}} \setminus C) \cdot T)$;
- (2) for each $\lambda \in (G/H)$ there exist an open neighbourhood V of λ in (G/H) and a $g \in I$ such that $f g \in k(V \cdot T)$.

Received August 21, 1978.

(This is the modification of the concept of "belonging locally" referred to in the first paragraph.)

Let $C \subseteq (G/H)^{\hat{}}$ be such a compact set and $g_0 \in I$ such that $f-g_0 \in k(((G/H)^{\hat{}} \setminus C) \cdot T)$. Then there are open $V_i \subseteq (G/H)^{\hat{}}$, $g_i \in I$ such that $f-g_i \in k(V_i \cdot T)$, $i=1,\ldots,n$, for which $C \subseteq \bigcup_{i=1}^n V_i$. Denote

$$J = k(((G/H) \setminus V_1) \cdot T) + \ldots + k(((G/H) \setminus V_n) \cdot T).$$

Then

$$Z(J) = \bigcap_{i=1}^{n} ((G/H) \setminus V_i) \cdot T = \left(\bigcap_{i=1}^{n} (G/H) \setminus V_i\right) \cdot T \subseteq ((G/H) \setminus C) \cdot T$$

by the injectivity of r on T. Since r is one-to-one on T, $C \cdot T \cap Z(J) = \emptyset$. Hence there is a $u \in L^1(G)$ such that $\hat{u} = 1$ in a compact neighbourhood of $C \cdot T$ and supp \hat{u} is compact and disjoint from Z(J). Consequently, $u = \sum_{i=1}^{n} u_i$, $u_i \in k((G/H) \setminus V_i) \cdot T)$, and u is an identity modulo $k(C \cdot T)$. Thus

$$f = \left(g_0 - u * g_0 + \sum_{i=1}^n u_i * g_i\right) + \left((f - g_0) - u * (f - g_0) + \sum_{i=1}^n u_i * (f - g_i)\right)$$

$$\in I + k((G/H) \cdot T),$$

because

$$u_i*(f-g_i) \in k(((G/H)\hat{\ } \setminus V_i) \cdot T) \cap k(V_i \cdot T) = k((G/H)\hat{\ } \cdot T)$$
 for $i=1,\ldots,n$, and

$$(f-g_0)-u*(f-g_0)\in k(C\cdot T)\cap \,k\big(\big((G/H)\hat{\ } \smallsetminus C)\cdot T\big)\,=\,k\big((G/H)\hat{\ }\cdot T\big)\,.$$

Since $(G/H) \cdot T$ is an S-set, we see that $k((G/H) \cdot T) = \overline{J((G/H) \cdot T)} \subseteq \overline{J(S \cdot T)}$ $\subseteq I$. Consequently $f \in I$.

(ii) Let $f \in k(S \cdot T)$ and

$$\Delta(f,I) = \{\lambda \in (G/H)^{\hat{}}, \text{ for which there do not exist the } V \text{ and } g \text{ of (i)} \}.$$

 $\Delta(f,I)$ is closed and $\Delta(f,I) \subseteq \partial S$. To show this, let $\lambda \in (G/H) \setminus S$. Then there is a compact neighbourhood W of λ such that $W \cap S = \emptyset$. Hence $W \cdot T \cap Z(I) = \emptyset$ and therefore f belongs to I locally at all $\lambda \in W \cdot T$, [1, Prop. 2.5.1]. By the usual conclusions [1, Proof of Theorem 2.4.1] it follows that $f \in I + k(W \cdot T)$. In particular, $\lambda \notin \Delta(f,I)$. Finally $f \in k((\text{int }S) \cdot T)$, and hence $\Delta(f,I) \subseteq \partial S$. We shall show that $\Delta(f,I) = \emptyset$, by proving that the closed set $\Delta(f,I)$ has no isolated points. Suppose λ is an isolated point of $\Delta(f,I)$. Then there exists an open neighbourhood U of λ in (G/H) such that

$$U \setminus {\lambda} \subseteq (G/H) \setminus \Delta(f,I)$$
.

Since $I+k(\hat{\lambda}\cdot T)=k(\hat{\lambda}\cdot T)\supseteq k(S\cdot T)$, there is a $g\in I$ such that $f-g\in k(\hat{\lambda}\cdot T)$. Further $\hat{\lambda}\cdot T$ is a C-set, because T is a C-set, hence there exist $f_n\in k(W_n)$, W_n open, $W_n\supseteq\hat{\lambda}\cdot T$, for which

$$f-g = \lim_{n \to \infty} f_n * (f-g)$$
.

Then there are open $V_n \subseteq (G/H)^{\hat{}}$ such that $\hat{\lambda} \in V_n$ and $V_n \cdot T \subseteq W_n$, therefore $f_n \in k(V_n \cdot T)$. Choose open neighbourhoods V, W in $(G/H)^{\hat{}}$ such that $\hat{\lambda} \in V$, $\bar{V} \subseteq W$, $\bar{W} \subseteq U$ and \bar{V}, \bar{W} compact. Then

$$\bar{V} \cdot T \cap ((G/H) \hat{\ } \setminus W) \cdot T = \emptyset$$

and thus there is an $h \in L^1(G)$ such that $\hat{h}(\alpha) = 1$ for all $\alpha \in \overline{V} \cdot T$ and $\hat{h}(\gamma) = 0$ for all $\gamma \in ((G/H) \setminus W) \cdot T$. It is immediate that we can now apply part (i); thus $h * f_n * (f-g) \in I$ for each $n \in \mathbb{N}$, and therefore $h * f \in I$. Now

$$f = h * f - (h * f - f) \in I + k(V \cdot T),$$

hence $\lambda \notin \Delta(f, I)$, a contradiction.

(iii) By using (i) again we can prove a) for open H. Therefore suppose that $(G/H)^{\hat{}}$ is not compact. For $f \in k(S \cdot T)$ there are $g_n \in L^1(G)$ such that supp \hat{g}_n is compact and $\lim f * g_n = f$. Further for each $n \in \mathbb{N}$ there is a compact $C \subseteq (G/H)^{\hat{}}$ such that

$$\operatorname{supp} \hat{g}_n \cap (G/H) \cdot T \subseteq C \cdot T,$$

hence $f * g_n \in k(((G/H) \cap C) \cdot T)$. By (ii), $\Delta(f * g_n, I)$ is empty, this yields $f * g_n \in I$, so that $f \in I$. Consequently $S \cdot T$ is an S-set.

b) Let $f \in k(S \cdot T)$, and let

$$L = \overline{f * k(S \cdot T) + k((G/H) \cdot T)}.$$

Using the fact that $k((G/H) \cdot T) \subseteq L$, it follows by the arguments of a) that:

- (i) If f satisfies the following 2 conditions, then $f \in L$:
- (1) there exist a compact set $C \subseteq (G/H)^{\hat{}}$ and a $g \in L$ such that $f-g \in k(((G/H)^{\hat{}} \setminus C) \cdot T)$;
- (2) for each $\lambda \in (G/H)$ there exist an open neighbourhood V of λ and a $g \in L$ such that $f g \in k(V \cdot T)$.
- (ii) Define $\Delta(f, L)$ as in a). $\Delta(f, L)$ is closed and $\Delta(f, L) \subseteq \partial S$. If $\lambda \in (G/H) \setminus S$, and if W is a compact neighbourhood of λ in (G/H) such that $W \cdot T \cap S \cdot T = \emptyset$, then there is a function $h \in L^1(G)$, which is an identity modulo $k(W \cdot T)$ and $h \in k(S \cdot T)$. Hence $f f * h \in k(W \cdot T)$ and $f * h \in L$, i.e. $\lambda \notin \Delta(f, L)$, and thus $\Delta(f, L) \subseteq \partial S$. Again, let λ be an isolated point of $\Delta(f, L)$. By applying the fact that $L + k(\lambda \cdot T) \supseteq k(S \cdot T)$, we show exactly as in a) that $\Delta(f, L) = \emptyset$, and the arguments of a) (iii) yield $f \in L$.

(iii) Hence for $\varepsilon > 0$ there are $h \in k(S \cdot T)$ and $g \in k((G/H) \cdot T)$ such that $||f - f * h - g||_1 < \varepsilon$. There is by hypothesis a $k \in k((G/H) \cdot T)$ such that $||g - g * k||_1 < \varepsilon$ and

$$\sup \{ \|k * u\|_1 : u \in k(S \cdot T), \|u\|_1 = 1 \} < C,$$

where C does not depend on g and ε . Thus

$$||f - f * (h + k - k * h)||_{1} \le ||f - f * h - g||_{1} + ||g - g * k||_{1} + ||g * k - (f - f * h) * k||_{1} < 2\varepsilon + C\varepsilon.$$

This and a) yield the fact that $S \cdot T$ is a C-set.

COROLLARY. Let G be a locally compact abelian group and let $G = H \cdot N$, where H, N are closed subgroups. If $T \subseteq G/N$ is a compact C-set and $S \subseteq (G/H)$ is a closed set with scattered boundary, then $S \cdot T$ is an S-set.

PROOF. Since $r: \hat{G} \to \hat{H}$ is one-to-one on G/N, Theorem 3.1.9 of [1] applies to $\alpha = r \mid G/N$, the restriction of r to G/N. Hence $\alpha(T) = r(T)$ is an S-set and by Reiter's inverse projection theorem [2, Ch. 7, § 3.1] $r^{-1}(r(T)) = (G/H) \cdot T$ is an S-set. T is a C-set in \hat{G} by [2, Ch. 7, § 4.5] and r of course one-to-one on T. Thus the assertion follows.

REFERENCES

- 1. J. Benedetto, Spectral synthesis, Teubner, Stuttgart, 1975.
- H. Reiter, Classical harmonic analysis and locally compact groups, At the Clarendon Press, Oxford, 1968.

INSTITUT FÜR MATHEMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN ARCISSTR. 21 D-8000 MÜNCHEN 2 FEDERAL REPUBLIC OF GERMANY