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A RESULT ON SPECTRAL SYNTHESIS
OF DIRECT PRODUCTS

RUPERT LASSER

It is well known that for locally compact abelian groups G a closed subset §
of G with scattered boundary 88 is a C-set, see [1, Theorem 2.5.1] or [2, Ch. 2,
§ 5.3]. We shall show that under certain conditions the product S T of a closed
subset S with scattered boundary S ih a closed subgroup (G/H) =G and a
compact C-set T in G is an S-set, respectively C-set, if the product (G/Hy - T is
direct. ((G/H) - T is a direct product, if every element A of (G/H) “T has a
unique representation A=y, B e (G/H), ye T. This is equivalent to the
injectivity of r on T, where r: G — H denotes the restriction map of G on H).
More precisely we shall prove the following theorem, the demonstration of
which is based on an appropriate modification of the technique of local
membership. We shall use the notation of [1].

THEROEM. Let G be a locally compact abelian group, H a closed subgroup and
r: G — H the restriction map of Gon A. Let TG be a compact C-set, such that
r is one-to-one on T, and let S< (G/H) be a closed set with scattered boundary
0s. ’

a) If (G/H) - T is an S-set, then S* T is an S-set.

b) If (G/H) - T is a C-set and the approximate identity of k((G/Hy - T) is
bounded in the “multiplier norm” on k(S T), (i.e. || |
=sup{|fxgl,:ge k(S T), llgll,=1}), then S-T is a C-set.

PRrOOF. a) Suppose that I is a closed ideal in L!(G) with Z(I)=S" T, and let
fe LY(G). _
(i) We prove that if f satisfies the following 2 conditions, then fe I:

(1) there exist a compact set C<(G/H) and a gel such that f
~g € k(((G/H'\ C) T); .

(2) for each A € (G/H) there exist an open neighbourhood V of 4 in (G/H)
and a g € I such that f—g e k(V-T).
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(This is the modification of the concept of “belonging locally” referred to in the
first paragraph.)

Let C<(G/H) be such a compact set and g, el such that f—g,
€ k(((G/H)Y \ C)-T). Then there are open V;<(G/H), g; € I such that f—g;
€ k(V,-T), i=1,...,n, for which CcU"_, V.. Denote

J = k((G/HY \V)-T)+...+k((G/H \V)-T).
Then

Z(J) = D ((G/HY\V) T = (Dl (G/H)' \ V,.> -T< ((G/H'\C)-T

by the injectivity of r on T. Since r is one-to-one on T, C- TN Z(J)= . Hence
there is a u € L'(G) such that #i=1 in a compact neighbourhood of C- T and
supp#é is compact and disjoint from Z(J). Consequently, u=3"_,u,
u; € k(((G/H) \ V;)- T), and u is an identity modulo k(C-T). Thus

f= ( —uxgo+ Z u; *g,) <(f"go)”‘u*(f_go)+i=il “i*(f"&'))

e I+k((G/H)Y -T),
because
ux*x(f—g)e k(((G/H)A\ V) T)N k(W T) = k((G/Hy -T) for i=1,...,n,

and

(f—80)—u*(f—go) € k(C-T) N k((G/H) \NC)-T) = k((G/H) - T).

Since (G/H) - T is an S-set, we see that k((G/H) - T)=J((G/H) -T)<J(S-T)
cI. Consequently fe I
(ii) Let fe k(S-T) and

A(f,I) = {A e (G/Hy, for which there do not exist the ¥ and g of (i)} .

A(f,1) is closed and A(f,I)<6S. To show this, let A € (G/H) \ S. Then there

is a compact neighbourhood W of 1 such that WNS= . Hence W- TN Z(I)
= (7 and therefore f'belongs to I locally at all A € W- T, [1, Prop. 2.5.1]. By the
usual conclusions [1, Proof of Theorem 2.4.1] it follows that f € I +k(W-T). In
particular, 4 ¢ A(f, ). Finally f € k((intS)- T), and hence 4(f,I)=dS. We shall
show that A(f,I)=J, by proving that the closed set A(f,I) has no isolated
points. Suppose A is an isolated point of A(f,I). Then there exists an open
neighbourhood U of A in (G/H) such that

UN{1} < (G/HYNA(f,]).
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Since [+k(4-T)=k(A-T)2k(S-T), there is a g € I such that f—g e k(4-T).
Further A-T is a C-set, because T is a C-set, hence there exist f, € k(W,), W,
open, W,24- T, for which

f-g =limf,x(f-g).

Then there are open V,< (G/H) such that 21 € V, and V,- T< W,, therefore
f, € k(V,-T). Choose open neighbourhoods V,W in (G/H) such that i e V,
Ve W, W< U and V, W compact. Then

V-TN (G/H \W)T=

and thus there is an h € L' (G) such that i(a)=1for all @ € V- T'and A(y)=0 for
all y € ((G/H) \ W)- T. It is immediate that we can now apply part (i); thus
hxf *(f—g) € I for each n € N, and therefore h*f e I. Now

f=hxf—(h=f—f)el+k(V-T),

hence i¢ 4(f,I), a contradiction.

(iii) By using (i) again we can prove a) for open H. Therefore suppose that
(G/H) is not compact. For f € k(S T) there are g, € L!(G) such that supp g, is
compact and lim fxg,=f Further for each ne N there is a compact
C< (G/H) such that

suppg, N (G/H) T < C'T,

hence fxg, € k(((G/HY \C)-T). By (i), 4(fxg,I) is empty, this yields
f*g, €1, so that fe I. Consequently S- T is an S-set.
b) Let fe k(S-T), and let

L = f+k(S-T)+k((G/H) - T) .

Using the fact that k((G/H) - T)<L, it follows by the arguments of a) that:
(1) If f satisfies the following 2 conditions, then fe L:

(1) there exist a compact set C<(G/H) and a ge L such that f—g
€ k((G/HY \NO)-T);

(2) for each 4 € (G/H) there exist an open neighbourhood Vof Atanda g e L
such that f—g e k(V-T).

(i) Define A(f, L) as in a). 4(f, L) is closed and A(f, L)< éS.If 4 € (G/H) \' S,
and if W is a compact neighbourhood of 4 in (G/H) such that W- TN S-T
= (¥, then there is a function h € L'(G), which is an identity modulo k(W-T)
and he k(S*T). Hence f—fxhe k(W-T) and fxhe L, ie. A¢ A(f,L), and thus
A(f,L)<= 0S. Again, let A be an isolated point of A(f, L). By applying the fact
that L+k(A-T)2k(S- T), we show exactly as in a) that A(f,L)=(, and the
arguments of a) (iii) yield f € L.
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(iii) Hence for &> 0 there are h € k(S* T) and g € k((G/H) - T) such that || f
—f*h—g|, <e. There is by hypothesis a k € k((G/H) - T) such that lg—g=*kl|,
<¢ and

sup {|k*ull, : uek(S-T), |ul,=1} < C,

where C does not depend on g and & Thus

If=f*(h+k—k=xh)ll, < | f—fxh—gll, +lg—g=kl,
+llgxk—(f—f*h)*kl; < 2e+Ce.

This and a) yield the fact that S- T is a C-set.

CoOROLLARY. Let G be a locally compact abelian group and let G=H - N, where
H,N are closed subgroups. If TS G/N " is a compact C-set and S< (G/Hy is a
closed set with scattered boundary, then ST is an S-set.

ProoF. Since r: G — H is one-to-on¢ on G/N~, Theorem 3.1.9 of [1] applies
to a=r|G/N, the restriction of r to G/N_. Hence o(T)=r(T) is an S-set and by
Reiter’s inverse projection theorem [2, Ch. 7, § 3.1] r~*(r(T))=(G/H) ‘- Tis an
S-set. T'is a C-set in G by [2, Ch. 7, § 4.5] and r of course one-to-one on T.
Thus the assertion follows.
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