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A STRONGLY ANNULAR FUNCTION WITH
COUNTABLY MANY SINGULAR VALUES

F. W. CARROLL

0. Introduction.

Let D denote the unit disk {z:|z|]<1}, and H(D) the set of functions

holomorphic on D. A function fin H(D) is said to be strongly annular if there is
a sequence O<r,<r,<..., r,11, such that
0.1 lim Inlxin 1f(@@)] = o0.
For any finite complex number a, let Z'(f,a) denote the closed subset of the
unit circle C consisting of limit points of the set {z : f(z)=a}. It is known that,
for f strongly annular, Z'(f, a) is non-empty, and that the open sets C\ Z'(f, a)
and C\ Z'(f,b) do not overlap for a+b, [3, Lemma 4.9], [5, p. 491]. Hence, the
set S(f) consisting of those a for which Z'(f,a)= C is at most countable. With
A. Osada [5], we call such a “singular values” for f.

In [3, Problem 6.4], D. D. Bonar asked what cardinalities are possible for
S(f). At the time, the set S(f) was empty for all known strongly annular
functions. Subsequently, examples were obtained with S(f)= {0}, (see [2] and
[4]), and recently Osada [5] has constructed a strongly annular function f with
S(f)=1{0,1}. In this paper, we use his methods to prove

THEOREM 2. There is a strongly annular function f such that S(f), the set of
singular values of f, is countably infinite.

1. Geometry, and Lemma A.

Let {, be the point on C whose argument is 2n(1 —27%). Thus {,=1,{, = —1,
{;=—i, etc. Let I1, denote the polygon [{o,{ys. . .,¢m 0] (n=2,3,...). The
portion of D outside I1, consists of n+1 segments of D, denoted by
Go, Gy, . .,G,; and G,. Here, G, is the upper semidisk, G, lies in the third
quadrant, etc. We note that G,_, and G, are congruent, but that when we
replace 11, by 11, ,, G, is replaced by two segments G, and G/, , whose union
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is strictly smaller than G,. We also note that the distance from z=0 to the
segment G, is cos (n/2").

Now suppose that {r,,rs,...} is a sequence of positive numbers such that
the circle |z| =r, intersects G, in an open arc but does not intersect the closure
of G,.,. (The choice of the r, will be made inductively in the course of the
construction.) For n23 and 0<j<n, let T, ; denote the small “triangular”
region that is inside I1, and outside |z|=r,_;, and that has a vertex at {;. We
denote by B, ; the arc in which T, ; intersects the circle |z|=r,.

LEMMA A. Let n and j be fixed. There exists a subarc o, ; of the interior of the
arc B, ;, with the following property. For each pair of positive numbers ¢; and M,
there is a function h; in H(D) such that

(1.1) lhi(2)| < ¢; if ze D\T,;
(1.2) |hj(z)l > M; ifzea,;
(1.3) Reh;(z) > 0 if ze B, ;\g, ;.

Lemmas of this sort have been used to “close the gaps” in building strongly
annular functions: when a function has been constructed that has desired
properties on most of the disk and is large on most of the circle |z|=7,, a
function h; can be added such that the sum is large on g, ; and inherits the
other properties. Proofs of similar lemmas are in [2] and [4]; for completeness
we shall include an outline of the proof of Lemma A at the end of the last
section. For the present, we emphasize that the arcs g, ; are independent of M
and ¢, and we use them as we continue the geometrical discussion.

If we remove the n+ 1 small arcs g, ; (j=0, 1,...,n) from the circle |z| =r,, we
are left with n+1 large arcs 4, ; (j=0,1,...,n). For j=0,1,...,n—1, 4, ; is
basically G;N{z : |z|=r,}, except that at each end a short extension protrudes
into the adjacent triangular region. Similarly, 4, , is the component that meets
G,.

2. Construction of the functions.

THEOREM 1. There exist an increasing sequence O=apo<a,<... of real
numbers, a sequence {r,} in (0,1) increasing to 1, and a sequence of functions
f1> f2s f35- - . in H(D) such that for k=2,3,. .., we have

(2.1) ‘|fk(2)—fk-1(2)l <27% for |z,
22) @)l > 2% for |zl=r,
(2.3) Jfi(z2)—a; is bounded away from 0 in G; (0<j<k—1),
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(2.9) f(2)—ay is bounded away from 0 in G, ,

k—

1
2.5 Jx is bounded in G, U | G, .
i=1

Assuming the truth of Theorem 1 for a moment, we present the proof of
Theorem 2.

ProoF oF THEOREM 2. It follows from (2.1) that { f,} is a Cauchy sequence in
the space H(D); let f be its limit. The inequalities (2.1) and (2.2) show that fis
strongly annular. Moreover, (2.3), together with Hurwitz’s theorem, shows
that f(z)#a; for z € G; (j=0,1,...).

Proor oF THEOREM 1. We take a,=0, a;=1, a,=2,
(cos)(n/4) < r; < cos(n/8) < r, < cos(n/16),

and f (z)=f,(z)=5. Thus, all the conditions (2.1)-(2.5) are satisfied for k=2.
Suppose we have obtained ay,a;,...,0,—1, P12 stnet> JarSase o os a1
satisfying the requirements of the theorem. Since f,_, is bounded in G,_,, we
may and do choose a real number a,>a,_, such that f,_, (z) —a, is bounded
away from zero on G, _,. Next, we choose a number r,>r,_, such that, in the
first place,

cos (n/2"*!) < r, < cos (n/2"*?),

and secondly f, _,(z) —a; has no zeros on the circle |z|=r, for j=0,1,...,n. By
Runge’s theorem, there is a polynomial P; such that the following
approximations hold: we use the notation = to mean “is approximately equal

tO”

(2.6) (1) P;y(z)=0 on |z|<r,_,, and also for z in G,,Gy,...,G;_y,

Gjir. .., G,
(ii) {fu-1(2)—a;} exp{P;(z)} +a;=R, R a large positive number, for z on
A, .

The square matrix of size (n+1)x (n+1) with 0’s on the diagonal and 1’s
elsewhere is nonsingular, having a determinant (—1)"n. Hence the system

Yau=a (j=01,..,n)
i%j

has a unique solution. Using these values for a,,. . .,a, we define

g@)={ﬁ-an—ﬁ:m}wp(

n
=0 =

% p@)+ 3 sew ).

i=0
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On |z|<r,_,, we see that g(z) approximates f,_,(z), and the tolerance on the
P;’s can be chosen so that

lg(z)—fu-1 (@) < 27" for |z[=r,_, .

On the region G; (respectively G.), only P; (respectively P,) can differ greatly
from zero, so that there g(z) is approximately

(2.7) {fn—l(z)“ Z 0‘;} exp (Pj(Z))+ Z &;

itj i+j
= {fo-1(2)—a;}exp (Pj(z))+a;, (z€G;UA4,).

Since f,_, (z) is bounded away from a; on G; (from a, on G,), the same will be
true of g(z) provided that the P;s (i +j) are close enough to zero there. In view
of (2.6 (ii)), Re (g(2)) will be large on U {4, ; : j=0,1,...,n} provided R is large
enough. We shall assume that it has been chosen so that

(2.8) Re[g(z)] > 2, for ze | A, .
ji=0

Now g is a holomorphic function having all the desired properties of the
function f, we seek, with one exception: it is not known to have large modulus
_,on the gaps o, ; between the arcs 4, ;.

We invoke Lemma A to close each gap successively. The ¢; in (1.1) are
chosen so small that the new function

fa(2) = g(@D+ho(D)+ .+ . +h,(2)

remains bounded away from a;in G; (0<j<n—1) and away from 4, in G,, and
is large on 4, ;NG; (0sj<n—1)and on 4, ,NG,. On g, the function f, will
have large modulus if we choose the M; in (1.2) to be sufficiently large. Finally,
on the protrusions of the 4, ; into the triangular regions, f, will be large in view
of (1.3) and (2.8). This concludes the proof of Theorem 1.

Proor oF LEMMA A. If Q denotes the extended complex plane, then Q\ B, ;
is simply connected and hence conformally equivalent to 2\ K, where K is the
union of the closed disk {{:|{|<1} and the line segment [—2,2]. The
conformal mapping ¢ is continuous at the boundary (in the sense of prime
ends) and can and will be chosen so that the two endpoints of B, ; map into
—2 and 2. We take g, ; to be the arc of B, ; whose two sides correspond under
¢ to the top and bottom semicircles of |{|=1. (Symmetry justifies this
assertion). Now ¢ maps the boundary to T, ; onto a closed curve in |{|>1.
Choose a number g, 1 <g <2, such that |@(z)|>¢ for all z on 6T, ;. Then for all
sufficiently large positive integers m, the function
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Y(2) = (e/o(2)*"

is holomorphic on Q\ B, j»1s small on D\'T, ; and large in modulus on O js
and it has positive real part on B, i\ 0, ;. Let T be the interior of T, ;N {z: |z|
>r,} and let E be D\ T. Then E is a relatively closed subset of D, and ¢ is
continuous on E and holomorphic on its interior.

For every point z in D\ E (that is, for every z in T), there is a continuous
curve 7, mapping [0, 1) into D\ E which satisfies (a) 7,(0)=z and lim, ,, |z, ()|
=1, and (b) for every £>0, there is a 6> 0 such that 1>|z|>1—§ implies |z, (8)]
>1-—¢, O0=<t<l. That is, E belongs to Arakelian’s class Kp. Arakelian’s
Theorem [1] states that for a relatively closed subset E of D, the condition
E € Kj is (necessary and) sufficient in order that every complex function
continuous on E and holomorphic in its interior can be uniformly
approximated on E by a function holomorphic on D. Hence y can be
approximated uniformly on D\ T by a function h; in H(D), which will then
have the desired properties (1.1), (1.2), and (1.3).
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